期刊文献+
共找到3,960篇文章
< 1 2 198 >
每页显示 20 50 100
Variational Mode Decomposition-Informed Empirical Wavelet Transform for Electric Vibrator Noise Analysis
1
作者 Zhenyu Xu Zhangwei Chen 《Journal of Applied Mathematics and Physics》 2024年第6期2320-2332,共13页
Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition... Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition (VMD) and Empirical Wavelet Transform (EWT) offer valuable support for studying signal components, they also present certain limitations. This article integrates the strengths of both methods and proposes an enhanced approach that integrates VMD into the frequency band division principle of EWT. Initially, the method decomposes the signal using VMD, determining the mode count based on residuals, and subsequently employs EWT decomposition based on this information. This addresses mode aliasing issues in the original method while capitalizing on VMD’s adaptability. Feasibility was confirmed through simulation signals and ultimately applied to noise signals from vibrators. Experimental results demonstrate that the improved method not only resolves EWT frequency band division challenges but also effectively decomposes signal components compared to the VMD method. 展开更多
关键词 Electric vibrator Noise Analysis Signal Decomposing Variational Mode Decomposition Empirical Wavelet Transform
下载PDF
Output Waveform Analysis of an Electro-hydraulic Vibrator Controlled by the Multiple Valves 被引量:10
2
作者 REN Yan RUAN Jian JIA Wen'ang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第1期186-197,共12页
The existing research of the electro-hydraulic vibrator mainly focuses on system stability, working frequency width and output waveform distortion. However, this high frequency performance of the electro-hydraulic vib... The existing research of the electro-hydraulic vibrator mainly focuses on system stability, working frequency width and output waveform distortion. However, this high frequency performance of the electro-hydraulic vibrator is difficult to be improved greatly due to fast insufficiently frequency response of the servo valve itself and limited compensation capability of the control structure in the vibrator system. In this paper, to realize high frequency vibration, an improved two-dimensional valve (here within defined as a 2D valve) as a main control component is adopted to the parallel connection with a servo valve to control the electro-hydraulic vibrator, Because the output waveforms of this electro-hydraulic vibrator are incapable to be verified through timely feedback as in the conventional electro-hydraulic servo system, the analysis to the output waveform becomes crucial to the design and control of the electro-hydraulic vibrator. The mathematical models of hydraulic actuation mechanism and the orifice area of the parallel valves connection are established first. And then the vibration process is divided into two sections in terms of the direction of the flow, the analytical expression of the excited waveform is solved. Based on relationships exist between working states and the control parameters the analytical results, the vibration boundary positions and the are derived. Finally an experimental system was built to validate the theoretical analysis. It is verified that this electro-hydraulic vibration system could achieve high working frequency, up to 2 000 Hz. The excited waveform is similar to the sinnsoidal waveform. And the ascent and decent slopes of the waveforms are somewhat asymmetrical. This asymmetry is not only caused by the change of the direction of the elastic force but also dependent on the bias position of the vibration. Consequentky the distortion of effective working waveform is less tha~ 10%. This electro-hydraulic vibrator controlled by the multiple valves could not only greatly enhance the working frequency but also precisely control the vibration characteristic variables such as waveform shape. 展开更多
关键词 2D valves hydraulic multiple-valve system electro-hydraulic vibrator excited waveform
下载PDF
Design for Vibrator Field Experiment Based-on Vibrator-earth System 被引量:8
3
作者 Chen Zubin Lin Jun +1 位作者 Liang Tiecheng Zhang Linhang 《Global Geology》 2000年第1期107-113,共7页
Source-generated energy in seismic vibrator records high frequency harmonic behavior. Conventional vibrator-earth coupling model was set up on the linear system. Some assumptions in the application of linear theory to... Source-generated energy in seismic vibrator records high frequency harmonic behavior. Conventional vibrator-earth coupling model was set up on the linear system. Some assumptions in the application of linear theory to the vibrator problem play an insignificant role in the overall coupling structure. Obviously, non-linear behaviors can be modeled using a “hard-spring” form of the Duffing equation. Model dedicates that a qualitatively similar harmonic component is present for a broad range of possible mathematical descriptions. After some qualitative analysis about the non-linear system, some conclusion can be drawn. Firstly, The design of the vibrator weight should be abided by two points as followed: In order to avoid decoupling for the vibrator to the earth, the weight should be greater than the peak of the driving force amplitude as to keep the resultant force pointing to the earth’s core. On the other hand, for the limited energy output, the vibrator overweight may damage the system high-frequency ability.Secondly, as the driving force frequency approaching to the ground hard-spring inherent frequency, the energy transmission was found to climb its peak from the system energy absorbed curve. At last, due to the non-linear coupling model system, its load curve would come into unstable frequency range, which might limit the application of the Vibroseis conventional sweeping pattern-linear sweep. A new sweeping pattern was listed: the driving signal was the pseudo-random sequence modulated by a fixed frequency cosine signal satisfying with the exploration precision and absorbing efficiency. The synthesized signal was ready to be realized by the electromagnetic driven system. Even the side-lobes noise of its auto-correlation function was restrained well. The theory coming from the Vibrator-earth coupling model was applied to the design of the Portable High-frequency Vibrator System (PHVS), and the good result was obtained. By the analysis of the vibrator base plate signal, the model was proved to be true. The exploration research on PHVS made a first step on its following optimal design. 展开更多
关键词 Portable High-frequency vibrator System(PHVS) Coupling model Seismic prospecting Auto-correlation function Linear sweep Pseudo-random sequence
下载PDF
Vibration Measurement of Pedestrian Bridge Using Double Magnetic Suspension Vibrator Based on Wavelet Analysis 被引量:4
4
作者 JIANG Dong KONG Deshan +1 位作者 ZHANG Zhengnan WANG Deyu 《Instrumentation》 2017年第3期14-23,共10页
Aiming at the problem of pedestrian bridge vibration measurement,a vibration measurement system of pedestrian bridge with dual magnetic suspension vibrator structure was designed according to absolute vibration measur... Aiming at the problem of pedestrian bridge vibration measurement,a vibration measurement system of pedestrian bridge with dual magnetic suspension vibrator structure was designed according to absolute vibration measurement principle. The relationship between the magnetic repulsion force of vibrator and its displacement was obtained by the experimental method and the least square fitting method. The vibration equations of two magnetic suspension vibrators were deduced respectively,and the measurement sensitivity of the system was deduced. The amplitude-frequency characteristic of the system was studied. A simulation model of vibrator measurement system with double magnetic suspension vibrator was established. The analysis shows that the sensitivity of the vibration measurement system with double magnetic suspension vibrator is higher than that with single magnetic suspension vibrator. The four vibration waveforms were measured,that is,no one passes through a pedestrian bridge,there are cars running under the pedestrian bridge,single pedestrian passes through the pedestrian bridge and multiple pedestrians pass through the pedestrian bridge. The multi-scale one-dimensional wavelet decomposition function was used to analyze the vibration signals. The vibration characteristics were obtained using one dimension wavelet decomposition function under four different conditions. Finally,the vibration waveforms of four cases were reconstructed. The measured results show that the vibration measurement system of pedestrian bridge with double magnetic suspension vibrator structure has high measurement sensitivity. The design has a certain value to monitor a pedestrian bridge. 展开更多
关键词 Pedestrian Bridge Magnetic Levitation vibrator Vibration Equation Wavelet Decomposition Waveform Reconstruction
下载PDF
Simulation Analysis and Experiment on Piezoelectric Cantilever Vibrator
5
作者 程光明 胡意立 +3 位作者 温建明 李晓旭 陈康 曾平 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第2期148-155,共8页
Piezoelectric cantilever bimorph vibrator is the core component of piezoelectric inertial actuators.Piezoelectric cantilever bimorph vibrator with lumped mass at the end is studied,and a dynamic model is constructed b... Piezoelectric cantilever bimorph vibrator is the core component of piezoelectric inertial actuators.Piezoelectric cantilever bimorph vibrator with lumped mass at the end is studied,and a dynamic model is constructed by the proposed method of transforming symmetric electrical signal excitation to equivalent harmonic force excitation.Combining the theory and test,the single-degree-of-freedom damp vibration system consisting of the vibrator is analyzed and the full response is provided.Dynamical system modeling and simulation are conducted by software Matlab/Simulink.The output response of deflection,velocity,acceleration,driving force are solved using the input signal of equivalent harmonic force.Based on the data of theory,simulation and experiments,the deflection of vibrator is analyzed and compared under the excitation of sine wave signal.Result shows that the dynamic deflection results of vibrator from theory,simulation and experiments agree well with each other.The proposed modeling and analysis approaches of the single-degree-of-freedom damp vibration system consisting of the vibrator,have some reference significance for further research of piezoelectric inertial actuators. 展开更多
关键词 PIEZOELECTRIC CANTILEVER vibrator VIBRATION SIMULINK dynamic CHARACTERISTIC
下载PDF
Temperature dependence of mode coupling effect in piezoelectric vibrator made of[001]c-poled Mn-doped 0.24PIN-0.46PMN-0.30PT ternary single crystals with high electromechanical coupling factor
6
作者 Nai-Xing Huang En-Wei Sun +4 位作者 Rui Zhang Bin Yang Jian Liu Tian-Quan Lv Wen-Wu Cao 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第7期363-368,共6页
The influence of temperature on mode coupling effect in piezoelectric vibrators remains unclear.In this work,we discuss the influence of temperature on two-dimensional(2D)mode coupling effect and electromechanical cou... The influence of temperature on mode coupling effect in piezoelectric vibrators remains unclear.In this work,we discuss the influence of temperature on two-dimensional(2D)mode coupling effect and electromechanical coupling coefficient of cylindrical[001]c-poled Mn-doped 0.24PIN-0.46PMN-0.30PT piezoelectric single-crystal vibrator with an arbitrary configuration ratio.The electromechanical coupling coefficient kt decreases with temperature increasing,whereas k33 is largely invariant in a temperature range of 25℃-55℃.With the increase of temperature,the shift in the‘mode dividing point’increases the scale of the poling direction of the piezoelectric vibrator.The temperature has little effect on coupling constantΓ.At a given temperature,the coupling constantΓof the cylindrical vibrator is slightly greater than that of the rectangular vibrator.When the temperature changes,the applicability index(M)values of the two piezoelectric vibrators are close to 1,indicating that the coupling theory can be applied to piezoelectric vibrators made of late-model piezoelectric single crystals. 展开更多
关键词 mode coupling effect piezoelectric vibrator piezoelectric single crystal temperature dependence
下载PDF
Low-frequency ride comfort of vibratory rollers equipped with cab hydro-pneumatic mounts
7
作者 Nguyen Van Liem Zhang Jianrun +1 位作者 Lu Xi Huang Dacheng 《Journal of Southeast University(English Edition)》 EI CAS 2020年第3期278-284,共7页
Based on the advantages of hydraulic and pneumatic mounts,a new hydro-pneumatic mount(HPM)is proposed to improve the low-frequency ride comfort of vibration rollers.Through the experiment of the vibratory roller,a non... Based on the advantages of hydraulic and pneumatic mounts,a new hydro-pneumatic mount(HPM)is proposed to improve the low-frequency ride comfort of vibration rollers.Through the experiment of the vibratory roller,a nonlinear vehicle dynamic model working on off-road soil grounds is then established to assess the HPM's ride comfort in the low-frequency region.Two indices,the power spectral density(PSD)acceleration and root mean square(RMS)acceleration of the operator vibration and cab shaking,are chosen as objective functions in both the frequency and time regions.The research results show that when the cab isolations are equipped with the HPM,the RMS values of the operator's seat,cab's pitch and roll angles are reduced by 35%,42%and 53%;and the maximum PSD of the operator's seat,cab's pitch and roll angles are decreased by 39%,59%and 65%,respectively.Consequently,the characteristics of the nonlinear damper and high-static stiffness of HPM can greatly reduce the operator vibration and cab shaking in the low-frequency region when compared to the vibratory roller's cab using the rubber mounts. 展开更多
关键词 vibratory roller quality ride hydro-pneumatic mount low-frequency vibrations
下载PDF
Dynamical Examinations of Vibrator Models, Describing Some Non Elastic Properties of Crystals
8
作者 Vladimir Kh. Kozlovskiy 《World Journal of Condensed Matter Physics》 2017年第3期80-88,共9页
On the base of a vibrator atomic model the mechanical and thermal properties of the object are analyzed. The potential energy of the vibrator is represented by means of positive term with coordinate deflection in seco... On the base of a vibrator atomic model the mechanical and thermal properties of the object are analyzed. The potential energy of the vibrator is represented by means of positive term with coordinate deflection in second power and negative term with deflection in fourth power. With the use of dynamical procedure of calculation, which permits to calculate mean deflection and root mean square amplitude of vibrations, the dependence of applied force from mean amplitude and temperature is calculated. This dependence shows a maximum (or minimum, when the direction of force is reversed), the height of which diminishes with rising temperature. When the force reaches the value of the maximum, the object does not elastic counteract to the force, and gliding begins. It is also considered a vibrator with positive term, containing the deflection in second power and a term, where the deflection treats in third power (Boguslawski vibrator). Exact calculations of the dependence of the force from the temperature in adiabatic process, where the entropy is maintained constant, shows that it is represented by means of a curve with a maximum, so that stretching leads to cooling till the point of maximum is reached. 展开更多
关键词 ANHARMONIC vibrator GLIDING DESTRUCTION ADIABATIC Curve
下载PDF
The Analysis of a Vibrator Oil-stirring Phnomenon and Study on a New Structure
9
作者 HAN Bing-bing ZHANG Gong-xue 《International Journal of Plant Engineering and Management》 2012年第3期178-181,共4页
The deep vibrator is an important equipment of foundation improvement. It works through eccentric masses with high-speed. But the traditional eccentric structure will stir the oil around it, and it will result in the ... The deep vibrator is an important equipment of foundation improvement. It works through eccentric masses with high-speed. But the traditional eccentric structure will stir the oil around it, and it will result in the loss of motor power. The paper analyzed the stirring phenomenon, and got the level and specific data of stirring and swirling through fluent software. After principle analysis, a new type of anti-churning eccentric structure was put forward, which can effectively avoid stirring phenomenon. Otherwise, the new structure will also not produce irregular vibration because of swirling, then it can work with a better performance. In addition, the contrast of dynamic performance between a traditional and new structure was carried out in the paper and proved that the new structure has a better working performance. Modeling data in the paper is from surveying and mapping, so the conclusion can be taken as guidance for vibrator designing. 展开更多
关键词 vibrator eccentric weight oil stirring fluent dynamic properties
下载PDF
Adding body load modifies the vibratory sensation of the foot sole and affects the postural control 被引量:1
10
作者 Yves Jammes Eva Ferrand +2 位作者 Corentin Fraud Alain Boussuges Jean Paul Weber 《Military Medical Research》 SCIE CAS CSCD 2019年第1期60-66,共7页
Background: Heavy backpacks are often used by soldiers and firefighters. Weight carrying could reduce the speed and efficiency in task completion by altering the foot sole sensitivity and postural control.Methods: In ... Background: Heavy backpacks are often used by soldiers and firefighters. Weight carrying could reduce the speed and efficiency in task completion by altering the foot sole sensitivity and postural control.Methods: In fifteen healthy subjects, we measured the changes in sensitivity to vibrations applied to the foot sole when standing upright or walking after load carrying(30% body weight). The participants were asked to judge different vibration amplitudes applied on the 2 nd or 5 th metatarsal head and the heel at two frequencies(25 and 150 Hz) to determine the vibration threshold and the global perceptual representation(Ψ)of the vibration amplitude(Φ)given by the Stevens power function(Ψ=k×Φ~n). Any increase in negative k value indicated a reduction in sensitivity to the lowest loads. Pedobarographic measurements, with computation of the center of pressure(COP) and its deviations, were performed during weight carrying.Results: The 25-Hz vibration threshold significantly increased after weight carrying when standing upright or walking.After standing with the added loads, the absolute negative k value increased for the 25 Hz frequency. After walking with the added loads, the k coefficient increased for the two vibration frequencies. Weight carrying significantly increased both the CoP surface and CoP lateral deviation.Conclusions: Our data show that weight carrying reduces the sensory pathways from the foot sole and accentuates the center of pressure deviations. 展开更多
关键词 FOOT SOLE sensitivity Vibration WEIGHT carrying POSTURAL control
下载PDF
Online asymmetry estimation for whole angle mode coriolis vibratory gyroscopes by high frequency injection 被引量:1
11
作者 Xiang-rui Meng Chong Li Yu-chen Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期314-325,共12页
The whole angle mode gyroscope(WAMG)is considered to be the next generation architecture,but it is suffered from the asymmetry errors to conduct real products.This paper proposes a novel high frequency injection based... The whole angle mode gyroscope(WAMG)is considered to be the next generation architecture,but it is suffered from the asymmetry errors to conduct real products.This paper proposes a novel high frequency injection based approach for the error parameters online identification for the WAMG.The significance is that it can separate physical and error fingerprints to enable online calibration.The nonlinear WAMG dynamics are discretized to meet the requirement of numerical precision and computation efficiency.The optimized estimation methods are then constructed and compared to track asymmetry error parameters continuously.In the validation part,its results firstly prove that the proposed scheme can accurately identify constant asymmetry parameters with an overall tracking error of less than 1 ppm and the extreme numerical convergence can reach 10^(-12)ppm.Under the dynamic asymmetry variation condition,the root mean square errors(RMSE)indicate that the tracking accuracy can reach the level of10^(-3),which shows the robustness of the proposed scheme.In summary,the proposed method can effectively estimate the WAMG asymmetry errors online with satisfied performance and practical values. 展开更多
关键词 Rate-integrating gyroscope(RIG) Whole angle mode gyroscope(WAMG) Coriolis vibrating gyroscope(CVG) Online calibration Online identification Online estimation
下载PDF
Development of a vehicle-track interaction model to predict the vibratory benefits of rail grinding in the time domain 被引量:2
12
作者 Julia Irene Real Clara Zamorano +1 位作者 José Luis Velarte Antonio Enrique Blanco 《Journal of Modern Transportation》 2015年第3期189-201,共13页
Imperfections in the wheel-rail contact are one of the main sources of generation of railway vibrations. Consequently, it is essential to take expensive corrective maintenance measures, the results of which may be unk... Imperfections in the wheel-rail contact are one of the main sources of generation of railway vibrations. Consequently, it is essential to take expensive corrective maintenance measures, the results of which may be unknown. In order to assess the effectiveness of these measures, this paper develops a vehicle-track interaction model in the time domain of a curved track with presence of rail corrugation on the inner rail. To characterize the behavior of the track, a numerical finite element model is developed using ANSYS software, while the behavior of the vehicle is characterized by a unidirectional model of two masses developed with VAMPIRE PRO software. The overloads obtained with the dynamic model are applied to the numerical model and then, the vibrational response of the track is obtained. Results are validated with real data and used to assess the effectiveness of rail grinding in the reduction of wheel-rail forces and the vibration generation phenomenon. 展开更多
关键词 Corrugation · Dynamic overloads · Finiteelement method · Vibrations
下载PDF
A soft-sensing model on hydraulic excavator's backhoe vibratory excavating resistance based on fuzzy support vector machine
13
作者 黄志雄 何清华 《Journal of Central South University》 SCIE EI CAS 2014年第5期1827-1832,共6页
In order to measure the backhoe vibratory excavating resistance of a hydraulic excavator fast and precisely,the influences of vibratory excavating depth,angle,vibratory frequency,amplitude,bucket inserting velocity an... In order to measure the backhoe vibratory excavating resistance of a hydraulic excavator fast and precisely,the influences of vibratory excavating depth,angle,vibratory frequency,amplitude,bucket inserting velocity and soil type on the vibratory excavating resistance were analyzed.Simulation analysis was carded out to establish the bucket inserting velocity,amplitude and vibratory frequency considered as secondary variables and excavating resistance as primary variable.A fttzzy membership function was introduced to improve the anti-noise capacity of support vector machine,which is a soft-sensing model on the hydraulic excavator's backhoe vibratory excavating resistance based on fuzzy support vector machine.The simulation result reveals that its maximum relative training and testing error are nearly 0.68% and-0.47%,respectively.It is concluded that the model has quite high modeling precision and generalization capacity,and it can measure the vibratory excavating resistance accurately,reliably and fast in an indirect way. 展开更多
关键词 fuzzy support vector machine hydraulic excavator backhoe vibration excavating resistance soft-sensing technique
下载PDF
Structural Dynamics in Biology: A Bridge Given by Implicit Vibratory Crossed Models
14
作者 Yves Gourinat Laura Christon Frédéric Lachaud 《Engineering(科研)》 2021年第5期237-256,共20页
This article proposes a synthesis and contribution at three levels: generation of dynamic equations of shell structures interacting with fluids, reduction of implicit resolution, and cross-applications to aerospace ta... This article proposes a synthesis and contribution at three levels: generation of dynamic equations of shell structures interacting with fluids, reduction of implicit resolution, and cross-applications to aerospace tanks and living systems. The synthesis of the equations is proposed around the four principles of thermodynamics at the level of discrete, structural and digitized systems. The implicit approach envisages an innovative analysis in terms of condensation and digitization, with in particular a perspective towards singular and integral methods. Some illustrations are proposed, in the field of performed research models and also in the fields of educational applications in biodynamics. The proposed bridge links, on one hand, the analytical Lagrange-Feynman’s approach, and on the other hand experimental results obtained in laboratory and numerical experiments obtained with multiphysics software. Finally, the realized models concern conservative and dissipative models for the active and passive control of complex systems, in a unified approach. 展开更多
关键词 Vibrations Fluid Shell Interaction General Dynamics Implicit Dynamics Structural Entropy BIOPHYSICS
下载PDF
A Review on Methods for Determining the Vibratory Damping Ratio
15
作者 Nkibeu Jean Bertin Charly Julien Nyobe +1 位作者 Moussa Sali Madja Doumbaye Jerémie 《Open Journal of Civil Engineering》 2023年第2期199-209,共11页
This article aims to popularize the methods for determining the vibratory damping ratio, to explain the various mathematical and physical theorems related to the establishment of literal expressions. Vibration damping... This article aims to popularize the methods for determining the vibratory damping ratio, to explain the various mathematical and physical theorems related to the establishment of literal expressions. Vibration damping is an essential parameter to reduce the dynamic responses of structures. The study aimed at its determination is necessary and essential for the safeguard of buildings and human lives during the earthquake. Among the main methods studied in this article, the free vibration attenuation method seems to be easy to implement but requires a state-of-the-art device to capture the responses. In addition to this device, the other methods require other equipment for the vibration of the system and the transformation of the responses in the frequency domain. 展开更多
关键词 DAMPING OSCILLATOR Attenuation of Free Vibrations Amplification at Resonance Resonance Peak Width Energy Dissipated by Damping Stored Elastic Energy
下载PDF
Vibration harmonic suppression technology for electromagnetic vibrators based on an improved sensorless feedback control method
16
作者 Wei LI Junning CUI +1 位作者 Xingyuan BIAN Limin ZOU 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2024年第3期472-483,共12页
To realize low harmonic distortion of the vibration waveform output from electromagnetic vibrators,we propose a vibration harmonic suppression technology based on an improved sensorless feedback control method.Without... To realize low harmonic distortion of the vibration waveform output from electromagnetic vibrators,we propose a vibration harmonic suppression technology based on an improved sensorless feedback control method.Without changing the original driving circuit,the alternating current(AC)equivalent resistance of the driving coil is used to obtain high-precision vibration velocity information,and then a simple and reliable velocity feedback control system is established.Through the study of the effect of different values of key parameters on the system,we have achieved an effective expansion of the velocity characteristic frequency band of low-frequency vibration,resulting in an enhanced harmonic suppression capability of velocity feedback control.We present extensive experiments to prove the effectiveness of the proposed method and make comparisons with conventional control methods.In the frequency range of 0.01-1.00 Hz,without using any sensors,the method proposed in this study can reduce the harmonic distortion of the vibration waveform by about 40%compared to open-loop control and by about 20%compared to a conventional sensorless feedback control method. 展开更多
关键词 Vibration calibration Electromagnetic vibrators Harmonic suppression Sensorless control method Velocity feedback control
原文传递
Influence of overhanging tool length and vibrator material on electromechanical impedance and amplitude prediction in ultrasonic spindle vibrator
17
作者 Rendi KURNIAWAN Moran XU +8 位作者 Min Ki CHOO Shuo CHEN Yein KWAK' Jielin CHEN Saood ALI Hanwei TENG Pil Wan HAN Gi Soo KIM Tae Jo KO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2024年第4期292-310,共19页
This study presents the development of an ultrasonic transducer with a radius horn for an ultrasonic milling spindle(UMS)system.The ultrasonic transducer was intended to have a working frequency of approximately 30 kH... This study presents the development of an ultrasonic transducer with a radius horn for an ultrasonic milling spindle(UMS)system.The ultrasonic transducer was intended to have a working frequency of approximately 30 kHz.Two different materials were considered in the study:stainless steel(SS 316L)and titanium alloy(Ti-6Al-4V).Titanium alloy gave a higher resonance frequency(33 kHz)than stainless steel(30 kHz)under the same preload compression stress.An electromechanical impedance simulation was carried out to predict the impedance resonance frequency for both materials,and the effect of the overhanging toolbar was investigated.According to the electromechanical impedance simulation,the overhanging toolbar length affected the resonance frequency,and the error was less than 3%.Harmonic analysis confirmed that the damping ratio helps determine the resonance amplitude.Therefore,damping ratios of 0.015-0.020 and 0.005-0.020 were selected for stainless steel and titanium alloy,respectively,with an error of less than 1.5%.Experimental machining was also performed to assess the feasibility of ultrasonic-assisted milling;the result was a lesser cutting force and better surface topography of Al 6061. 展开更多
关键词 Ultrasonic spindle Ultrasonic vibration assisted-milling(UVAM) 1-degree of freedom(DOF) Frequency AMPLITUDE MILLING
原文传递
Dynamics analysis and experiment on the fishtailing type of valveless piezoelectric pump with rectangular vibrator 被引量:10
18
作者 HUANG Yi1, ZHANG JianHui1, HU XiaoQi1, XIA QiXiao2, HUANG WeiQing1 & ZHAO ChunSheng1 1 Department of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China 2 Department of Mechanical and Electrical Engineering, Beijing Union University, Beijing 100020, China 《Science China(Technological Sciences)》 SCIE EI CAS 2010年第12期3241-3247,共7页
In recent years, the research and development of piezoelectric pumps have become an increasingly popular topic. Minimization, structure simplification and stronger output become the focus of piezoelectric pumps’ rese... In recent years, the research and development of piezoelectric pumps have become an increasingly popular topic. Minimization, structure simplification and stronger output become the focus of piezoelectric pumps’ research due to its possible application in MEMS technology. The valveless fishtailing piezoelectric pump, neither a volumetric nor a rotating pump, was invented according to the bionics of fish swimming. With assumption that the head of the fish is fixed while its tail is swinging, fluid would flow toward the end of the tail, achieving the function of a valveless pump. This type of pumps creates a new branch for the piezoelectric pump research, which is proposed for the first time in this paper. The relationship between the flow rates and vibrating frequencies was derived from the interaction between the vibrator and fluid. Numerical simulations with FEM software were conducted to study the first and second vibration modes of the piezoelectric vibrator. The results showed that the maximum amplitude of the vibrator was 0.9 mm at the frequency of 76 Hz for the first vibration mode, while the maximum amplitude of the vibrator was 0.22 mm at the frequency of 781 Hz for the second vibration mode. Experiments were conducted with the Doppler laser vibration measurement system, and the results were compared to those of the FEM simulation. It was shown that in the first vibration mode the piezoelectric vibrator reached its maximum amplitude of about 0.9 mm at the driving frequency of 49 Hz, which gives the flow rate of 2.0 mL/min, in the second vibration mode, the maximum amplitude was about 0.25 mm at the frequency of 460 Hz with the flow rate being 6.4 mL/min. 展开更多
关键词 PIEZOELECTRIC PUMP valveless fishtailing RECTANGULAR vibrator DYNAMICS analysis EXPERIMENT
原文传递
Nonlinear analysis on the coupling process of electromagnetic vibrator and earth 被引量:3
19
作者 CHEN Zubin1,2, TENG Jiwen2, LIN Jun1, ZHANG Linhang1 & JIANG Zhongjin1 1. Institute of Intelligent Instrument & Measurement Control Technology, Jilin University, Changchun 130026, China 2. Institute of Geology & Geophysics, Chinese Academy of Sciences, Beijing 100029, China 《Science China Earth Sciences》 SCIE EI CAS 2005年第8期1175-1182,共8页
The linear model based on the hydraulic pressure vibrator has been no longer adaptable to the electromagnetic vibrator. In order to realize the effective transmission of the limited energy from the vibrator to the gro... The linear model based on the hydraulic pressure vibrator has been no longer adaptable to the electromagnetic vibrator. In order to realize the effective transmission of the limited energy from the vibrator to the ground, it is important to study the coupling model of the electromagnetic vibrator and the earth. In this paper, a nonlinear restore term was introduced to the coupling model because of the existence of a large amount of harmonics in the vibrator baseplate. The nonlinear vibration analysis was applied to the model by the multiscale method. In the course of energy transmission from the vibrator to the ground, ultraharmonic resonance was used to explain the generation of harmonics. An improved scheme was advanced to select the cross correlation reference signal in the vibrator seismic exploration. Good application results were obtained in field experiments. 展开更多
关键词 vibrator COUPLING model electromagnetic NONLINEAR vibration.
原文传递
Experimental investigation of wall-bounded turbulence drag reduction by active control of double piezoelectric vibrator 被引量:2
20
作者 Jian-xia Bai Yong-xiang Huang +2 位作者 Nan Jiang Xing-yu Ma Zhan-qi Tang 《Journal of Hydrodynamics》 SCIE EI CSCD 2020年第4期747-757,共11页
In order to manipulate the large-scale coherent structures in the wall-bounded turbulence and reduce the skin-friction,an active-control experimental investigation is performed by using the synchronous and asynchronou... In order to manipulate the large-scale coherent structures in the wall-bounded turbulence and reduce the skin-friction,an active-control experimental investigation is performed by using the synchronous and asynchronous vibrations of double piezoelectric vibrators embedded spanwisely on a smooth flat plate surface.A TSI-IFA300 hot-wire anemometer and a TSI-1621 A-Tl.5 hot-wire probe are used to measure the time series of the instantaneous velocity at different locations.The influences of the vibrations on the wall-bounded turbulence are compared in a multi-scale point of view.A disturbance Reynolds Number Red=pd2 f/μis introduced to represent the disturbance.A probability density functions(PDFs)of the multi-scale components of the turbulence velocity and the multi-scale conditional phase-averaged waveform are studied in detail using the wavelet transform.The results show that the maximum drag reduction rate 18.54%is obtained at 100 V/160 Hz and Red=0.54 in the asynchronous vibration mode.The disturbances generated by the vibrators have a significant influence on the sweep events of the burst.The asynchronous vibration model is more effective than the synchronous vibration one.A possible physical mechanism is suggested to explain why the disturbance frequency of 160 Hz leads to an optimal parameter set for the drag reduction. 展开更多
关键词 Wall-bounded turbulence active control drag reduction piezoelectric vibrator multi-scale analysis conditional phase-averaged wavefonns coherent structure
原文传递
上一页 1 2 198 下一页 到第
使用帮助 返回顶部