This paper studies the multiuser diversity with constellation selection based on a virtual representation of realistic Multiple Input Multiple Output (MIMO) correlated channels. To realize multiuser diversity in slo...This paper studies the multiuser diversity with constellation selection based on a virtual representation of realistic Multiple Input Multiple Output (MIMO) correlated channels. To realize multiuser diversity in slow fading channels, random beamforming is adopted. Random beamforming matrix exploiting virtual channel representation is constructed, which can match the channel matrix of the desired user better. Sirnultaneously, adaptive coded modulation is applied to each sub-channel of the selected user to improve the system performance further.展开更多
In order to improve the network performance furthermore, a routing algorithm for 2D-Torus is investigated from the standpoint of load balance for virtual channels. The 2D-Torus network is divided into two virtual netw...In order to improve the network performance furthermore, a routing algorithm for 2D-Torus is investigated from the standpoint of load balance for virtual channels. The 2D-Torus network is divided into two virtual networks and each physical channel is split into three virtual channels. A novel virtual channel allocation policy and a routing algorithm are proposed, in which traffic load is distributed to those three virtual channels in a more load-balanced manner by introducing a random parameter. Simulations of the proposed algorithm are developed with a SystemC-based test bench. The results show that compared with the negative first for Torus networks (NF-T) algorithm, the proposed algorithm can achieve better performance in terms of network latency and throughput under different traffic patterns. It also shows that a routing algorithm with load balance for virtual channels can significantly improve the network performance furthermore.展开更多
In wormhole meshes, a reliable routing is supposed to be deadlock-free and fault-tolerant. Many routing algorithms are able to tolerate a large number of faults enclosed by rectangular blocks or special convex, none o...In wormhole meshes, a reliable routing is supposed to be deadlock-free and fault-tolerant. Many routing algorithms are able to tolerate a large number of faults enclosed by rectangular blocks or special convex, none of them, however, is capable of handling two convex fault regions with distance two by using only two virtual networks. In this paper, a fault-tolerant wormhole routing algorithm is presented to tolerate the disjointed convex faulty regions with distance two or no less, which do not contain any nonfaulty nodes and do not prohibit any routing as long as nodes outside faulty regions are connected in the mesh network. The processors' overlapping along the boundaries of different fault regions is allowed. The proposed algorithm, which routes the messages by X-Y routing algorithm in fault-free region, can tolerate convex fault-connected regions with only two virtual channels per physical channel, and is deadlock- and livelock-free. The proposed algorithm can be easily extended to adaptive routing.展开更多
This paper applies the repetition index scheme(RIS)to the channel identification of cyclic prefixed(CP)multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM)systems with virtual carriers(...This paper applies the repetition index scheme(RIS)to the channel identification of cyclic prefixed(CP)multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM)systems with virtual carriers(VCs)in the environment of the number of receive antennas being no less than that of transmit antennas.The VCs will cause a rank deficiency problem in computing the subspace information.With the subcarrier mapping matrix,the received signal is simplified to remove the rank deficiency.We use the RIS scheme to generate many times of equivalent symbols so the channel identification can converge with few received OFDM blocks.The RIS scheme will convert the white noise into non-white noise.With the Cholesky factorization,a noise whitening technique is developed to turn the non-white noise back to white noise.We further analyze the necessary conditions of identifiability of channel estimation.Simulations are performed to show the superiority of the proposed method.展开更多
The rapid time-variation of a fading multipath environment can impair the performance of multiple-input multiple-output orthogonal frequency division multiplexing (MIMO OFDM). This paper proposes a pilot placement met...The rapid time-variation of a fading multipath environment can impair the performance of multiple-input multiple-output orthogonal frequency division multiplexing (MIMO OFDM). This paper proposes a pilot placement method for MIMO OFDM systems under time-varying channels with the guard band. The time-varying channel is described by complex exponential basis expansion model (BEM). We discuss the least square (LS) channel estimation to obtain the minimum mean square error (MSE) and derive the pilot allocation that can satisfy the minimum MSE with regard to guard band in time-varying channels. It is shown that optimal pilot clusters can distribute non-uniformly in frequency domain and minimize the MSE. We generalize our scheme over G OFDM symbols and compare it with comb pilots. It is demonstrated that the proposed approach is more effective than previous work. Simulation results validate our theoretical analysis.展开更多
Despite extensive research, timing channels (TCs) are still known as a principal category of threats that aim to leak and transmit information by perturbing the timing or ordering of events. Existing TC detection appr...Despite extensive research, timing channels (TCs) are still known as a principal category of threats that aim to leak and transmit information by perturbing the timing or ordering of events. Existing TC detection approaches use either signature-based approaches to detect known TCs or anomaly-based approach by modeling the legitimate network traffic in order to detect unknown TCs. Un-fortunately, in a software-defined networking (SDN) environment, most existing TC detection approaches would fail due to factors such as volatile network traffic, imprecise timekeeping mechanisms, and dynamic network topology. Furthermore, stealthy TCs can be designed to mimic the legitimate traffic pattern and thus evade anomalous TC detection. In this paper, we overcome the above challenges by presenting a novel framework that harnesses the advantages of elastic re-sources in the cloud. In particular, our framework dynamically configures SDN to enable/disable differential analysis against outbound network flows of different virtual machines (VMs). Our framework is tightly coupled with a new metric that first decomposes the timing data of network flows into a number of using the discrete wavelet-based multi-resolution transform (DWMT). It then applies the Kullback-Leibler divergence (KLD) to measure the variance among flow pairs. The appealing feature of our approach is that, compared with the existing anomaly detection approaches, it can detect most existing and some new stealthy TCs without legitimate traffic for modeling, even with the presence of noise and imprecise timekeeping mechanism in an SDN virtual environment. We implement our framework as a prototype system, OBSERVER, which can be dynamically deployed in an SDN environment. Empirical evaluation shows that our approach can efficiently detect TCs with a higher detection rate, lower latency, and negligible performance overhead compared to existing approaches.展开更多
针对时变水声信道造成的严重多途干扰问题,提出基于虚拟训练序列的双向水声信道精准估计(Virtual Training Based Bidirectional Channel Estimation,VT-BCE)算法。基于叠加训练(Superimposed Training,ST)方案,将训练序列和符号序列线...针对时变水声信道造成的严重多途干扰问题,提出基于虚拟训练序列的双向水声信道精准估计(Virtual Training Based Bidirectional Channel Estimation,VT-BCE)算法。基于叠加训练(Superimposed Training,ST)方案,将训练序列和符号序列线性叠加,使得训练序列和符号序列的信道信息一致,提高信号的跟踪能力;基于置信传播,双向信道估计(Bidirectional Channel Estimation,BCE)算法将一个数据块分成多个短块,利用整个数据块的信息估计当前短块信道,实现对当前短块的精准信道估计。将ST方案、BCE算法和信道均衡(频域)以迭代的方式相结合,使估计的符号序列可以作为信道估计的虚拟训练(Virtual Training,VT)序列,提升信道的估计性能,进而提高系统的解码性能。最后,通过计算机仿真和水池试验,验证了所提算法的有效性。展开更多
随着卫星通信技术的日益发展,系统内部多信道并存的现象越来越普遍,信道间传输的业务容易引起相互干扰,单纯运用传统路由器很难完成系统中不同信道间的业务完整隔离;同时,多信道卫星通信系统网络拓扑结构复杂,易引起控制混乱等问题。针...随着卫星通信技术的日益发展,系统内部多信道并存的现象越来越普遍,信道间传输的业务容易引起相互干扰,单纯运用传统路由器很难完成系统中不同信道间的业务完整隔离;同时,多信道卫星通信系统网络拓扑结构复杂,易引起控制混乱等问题。针对这些问题,提出一种基于虚拟局域网(Virtual Local Area Network,VLAN)的多信道卫星通信地面系统的设计方法。该方法充分利用网络划分VLAN技术的隔离性和安全性特征,结合多信道通信技术使用多个信道同时传输业务的特征,提升特征维度,实现高效、可靠的多信道卫星通信,具有易于硬件实现的特点,提高网络通信的吞吐量。展开更多
基金Supported by the National Natural Science Foundation of China(No.60496311).
文摘This paper studies the multiuser diversity with constellation selection based on a virtual representation of realistic Multiple Input Multiple Output (MIMO) correlated channels. To realize multiuser diversity in slow fading channels, random beamforming is adopted. Random beamforming matrix exploiting virtual channel representation is constructed, which can match the channel matrix of the desired user better. Sirnultaneously, adaptive coded modulation is applied to each sub-channel of the selected user to improve the system performance further.
基金supported by the National Natural Science Foundation of China (60976020)
文摘In order to improve the network performance furthermore, a routing algorithm for 2D-Torus is investigated from the standpoint of load balance for virtual channels. The 2D-Torus network is divided into two virtual networks and each physical channel is split into three virtual channels. A novel virtual channel allocation policy and a routing algorithm are proposed, in which traffic load is distributed to those three virtual channels in a more load-balanced manner by introducing a random parameter. Simulations of the proposed algorithm are developed with a SystemC-based test bench. The results show that compared with the negative first for Torus networks (NF-T) algorithm, the proposed algorithm can achieve better performance in terms of network latency and throughput under different traffic patterns. It also shows that a routing algorithm with load balance for virtual channels can significantly improve the network performance furthermore.
文摘In wormhole meshes, a reliable routing is supposed to be deadlock-free and fault-tolerant. Many routing algorithms are able to tolerate a large number of faults enclosed by rectangular blocks or special convex, none of them, however, is capable of handling two convex fault regions with distance two by using only two virtual networks. In this paper, a fault-tolerant wormhole routing algorithm is presented to tolerate the disjointed convex faulty regions with distance two or no less, which do not contain any nonfaulty nodes and do not prohibit any routing as long as nodes outside faulty regions are connected in the mesh network. The processors' overlapping along the boundaries of different fault regions is allowed. The proposed algorithm, which routes the messages by X-Y routing algorithm in fault-free region, can tolerate convex fault-connected regions with only two virtual channels per physical channel, and is deadlock- and livelock-free. The proposed algorithm can be easily extended to adaptive routing.
基金Fujian Province Education Department(No.JAT170470)in part by the National Nature Science Foundation of China(No.61501041)+1 种基金in part by the Open Foundation of State Key Laboratory(No.ISN19-19)in part by the Ministry of Science and Technology,Taiwan,China(No.MOST 104-2221-E-030-004-MY2,MOST 108-2221-E-030-002).
文摘This paper applies the repetition index scheme(RIS)to the channel identification of cyclic prefixed(CP)multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM)systems with virtual carriers(VCs)in the environment of the number of receive antennas being no less than that of transmit antennas.The VCs will cause a rank deficiency problem in computing the subspace information.With the subcarrier mapping matrix,the received signal is simplified to remove the rank deficiency.We use the RIS scheme to generate many times of equivalent symbols so the channel identification can converge with few received OFDM blocks.The RIS scheme will convert the white noise into non-white noise.With the Cholesky factorization,a noise whitening technique is developed to turn the non-white noise back to white noise.We further analyze the necessary conditions of identifiability of channel estimation.Simulations are performed to show the superiority of the proposed method.
文摘The rapid time-variation of a fading multipath environment can impair the performance of multiple-input multiple-output orthogonal frequency division multiplexing (MIMO OFDM). This paper proposes a pilot placement method for MIMO OFDM systems under time-varying channels with the guard band. The time-varying channel is described by complex exponential basis expansion model (BEM). We discuss the least square (LS) channel estimation to obtain the minimum mean square error (MSE) and derive the pilot allocation that can satisfy the minimum MSE with regard to guard band in time-varying channels. It is shown that optimal pilot clusters can distribute non-uniformly in frequency domain and minimize the MSE. We generalize our scheme over G OFDM symbols and compare it with comb pilots. It is demonstrated that the proposed approach is more effective than previous work. Simulation results validate our theoretical analysis.
文摘Despite extensive research, timing channels (TCs) are still known as a principal category of threats that aim to leak and transmit information by perturbing the timing or ordering of events. Existing TC detection approaches use either signature-based approaches to detect known TCs or anomaly-based approach by modeling the legitimate network traffic in order to detect unknown TCs. Un-fortunately, in a software-defined networking (SDN) environment, most existing TC detection approaches would fail due to factors such as volatile network traffic, imprecise timekeeping mechanisms, and dynamic network topology. Furthermore, stealthy TCs can be designed to mimic the legitimate traffic pattern and thus evade anomalous TC detection. In this paper, we overcome the above challenges by presenting a novel framework that harnesses the advantages of elastic re-sources in the cloud. In particular, our framework dynamically configures SDN to enable/disable differential analysis against outbound network flows of different virtual machines (VMs). Our framework is tightly coupled with a new metric that first decomposes the timing data of network flows into a number of using the discrete wavelet-based multi-resolution transform (DWMT). It then applies the Kullback-Leibler divergence (KLD) to measure the variance among flow pairs. The appealing feature of our approach is that, compared with the existing anomaly detection approaches, it can detect most existing and some new stealthy TCs without legitimate traffic for modeling, even with the presence of noise and imprecise timekeeping mechanism in an SDN virtual environment. We implement our framework as a prototype system, OBSERVER, which can be dynamically deployed in an SDN environment. Empirical evaluation shows that our approach can efficiently detect TCs with a higher detection rate, lower latency, and negligible performance overhead compared to existing approaches.
文摘针对时变水声信道造成的严重多途干扰问题,提出基于虚拟训练序列的双向水声信道精准估计(Virtual Training Based Bidirectional Channel Estimation,VT-BCE)算法。基于叠加训练(Superimposed Training,ST)方案,将训练序列和符号序列线性叠加,使得训练序列和符号序列的信道信息一致,提高信号的跟踪能力;基于置信传播,双向信道估计(Bidirectional Channel Estimation,BCE)算法将一个数据块分成多个短块,利用整个数据块的信息估计当前短块信道,实现对当前短块的精准信道估计。将ST方案、BCE算法和信道均衡(频域)以迭代的方式相结合,使估计的符号序列可以作为信道估计的虚拟训练(Virtual Training,VT)序列,提升信道的估计性能,进而提高系统的解码性能。最后,通过计算机仿真和水池试验,验证了所提算法的有效性。
文摘随着卫星通信技术的日益发展,系统内部多信道并存的现象越来越普遍,信道间传输的业务容易引起相互干扰,单纯运用传统路由器很难完成系统中不同信道间的业务完整隔离;同时,多信道卫星通信系统网络拓扑结构复杂,易引起控制混乱等问题。针对这些问题,提出一种基于虚拟局域网(Virtual Local Area Network,VLAN)的多信道卫星通信地面系统的设计方法。该方法充分利用网络划分VLAN技术的隔离性和安全性特征,结合多信道通信技术使用多个信道同时传输业务的特征,提升特征维度,实现高效、可靠的多信道卫星通信,具有易于硬件实现的特点,提高网络通信的吞吐量。