期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Experimental determination of gas holdup and volumetric mass transfer coefficient in a jet bubbling reactor 被引量:3
1
作者 Mostafa Abbasian-arani Mohammad Sadegh Hatamipour Amir Rahimi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第6期61-67,共7页
The hydrodynamics and mass transfer characteristics of a lab-scale jet bubbling reactor(JBR)including the gas holdup,volumetric mass transfer coefficient and specific interfacial area were assessed experimentally inve... The hydrodynamics and mass transfer characteristics of a lab-scale jet bubbling reactor(JBR)including the gas holdup,volumetric mass transfer coefficient and specific interfacial area were assessed experimentally investigating the influence of temperature,pH and superficial gas velocity.The reactor diameter and height were 11 and 30 cm,respectively.It was equipped with a single sparger,operating at atmospheric pressure,20 and 40℃,and two pH values of 3 and 6.The height of the liquid was 23 cm,while the superficial gas velocity changed within 0.010-0.040 m·s^(-1)range.Experiments were conducted with pure oxygen as the gas phase and saturated lime solution as the liquid phase.The liquid-side volumetric mass transfer coefficient was determined under unsteady-state oxygen absorption in a saturated lime solution.The gas holdup was calculated based on the liquid height change,while the specific interfacial area was obtained by a physical method based on the bubble size distribution(BSD)in different superficial gas velocities.The results indicated that at the same temperature but different pH,the gas holdup variation was negligible,while the liquid-side volumetric mass transfer coefficient at the pH value of 6 was higher than that at the pH=3.At a constant pH but different temperatures,the gas holdup and the liquid-side volumetric mass transfer coefficients at 40℃were higher than that of the same at 20℃.A reasonable and appropriate estimation of the liquid-side volumetric mass transfer coefficient(kla)in a pilot-scale JBR was provided which can be applied to the design and scale-up of JBRs. 展开更多
关键词 Jet bubbling reactor Liquid-side volumetric mass transfer coefficient Gas holdup Specific interfacial area Experimental analysis
下载PDF
VOLUMETRIC MASS TRANSFER COEFFICIENT BETWEEN SLAG AND METAL IN COMBINED BLOWING CONVERTER 被引量:3
2
作者 Z.H.Wu Z.S.Zou W.Wu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2005年第2期91-95,共5页
The effects of operation parameters of combined blowing converter on the volumetric mass transfer coefficient between slag and steel are studied with a cold model with water simulating steel, oil simulating slag and b... The effects of operation parameters of combined blowing converter on the volumetric mass transfer coefficient between slag and steel are studied with a cold model with water simulating steel, oil simulating slag and benzoic acid as the transferred substance between water and oil. The results show that, with lance level of 2.1m and the top blowing rate of 25000Nm3/h, the volumetric mass transfer coefficient changes most significantly when the bottom blowing rate ranges from 384 to 540Nm3/h. The volumetric mass transfer coefficient reaches its maximum when the lance level is 2.1m, the top blowing rates is 30000Nm3/h, and the bottom blowing rate is 384Nm3/h with tuyeres located symmetrically at 0.66D of the converter bottom. 展开更多
关键词 combined blowing converter cold modeling volumetric mass transfer coefficient operational parameter
下载PDF
Gas–liquid mass transfer and flow phenomena in the Peirce–Smith converter: a water model study 被引量:5
3
作者 Xing Zhao Hong-liang Zhao +1 位作者 Li-feng Zhang Li-qiang Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第1期37-44,共8页
A water model with a geometric similarity ratio of 1:5 was developed to investigate the gas-liquid mass transfer and flow charac- teristics in a Peirce-Smith converter. A gas mixture of CO2 and Ar was injected into a... A water model with a geometric similarity ratio of 1:5 was developed to investigate the gas-liquid mass transfer and flow charac- teristics in a Peirce-Smith converter. A gas mixture of CO2 and Ar was injected into a NaOH solution bath. The flow field, volumetric mass transfer coefficient per unit volume (Ak/V; where A is the contact area between phases, V is the volume, and k is the mass transfer coeffi- cient), and gas utilization ratio (t/) were then measured at different gas flow rates and blow angles. The results showed that the flow field could be divided into five regions, i.e., injection, strong loop, weak loop, splashing, and dead zone. Whereas the Ak/V of the bath increased and then decreased with increasing gas flow rate, and n steadily increased. When the converter was rotated clockwise, both Ak/F and t/increased. However, the flow condition deteriorated when the gas flow rate and blow angle were drastically increased. Therefore, these para- meters must be controlled to optimal conditions. In the proposed model, the optimal gas flow rate and blow angle were 7.5 m3.h-1 and 10°, respectively. 展开更多
关键词 Peirce-Smith converter water model mass transfer flow phenomena volumetric mass transfer coefficient
下载PDF
Catalytic decomposition and mass transfer of aqueous ozone promoted by Fe-Mn-Cu/γ-Al2O_(3) in a rotating packed bed 被引量:4
4
作者 Weizhou Jiao Xingyue Wei +1 位作者 Shengjuan Shao Youzhi Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第5期133-142,共10页
This study investigated catalytic decomposition and mass transfer of aqueous ozone promoted by Fe-MnCu/γ-Al_(2)O_(3)(Cat)in a rotating packed bed(RPB)for the first time.The results showed that the value of the overal... This study investigated catalytic decomposition and mass transfer of aqueous ozone promoted by Fe-MnCu/γ-Al_(2)O_(3)(Cat)in a rotating packed bed(RPB)for the first time.The results showed that the value of the overall decomposition rate constant of ozone(K_(c))and overall volumetric mass transfer coefficient(K_(L)a)are 4.28×10^(-3) s^(-1) and 11.60×10^(-3) s^(-1) respectively at an initial pH of 6,βof 40,Co3(g)of 60 mg·L^(-1)and Q_(L) of 85 L·h^(-1) in deionized water,respectively.Meanwhile,the K_(c) and K_(L)a values of Fenhe water are0.88×10^(-3) s^(-1) and 2.51×10^(-3) s^(-1) lower than deionized water,respectively.In addition,the K_(c) and K_(L)a values in deionized water for the Cat/O_(3)-RPB system are 44.86%and 47.41%higher than that for the Cat/O_(3)-BR(bubbling reactor)system,respectively,indicating that the high gravity technology can facilitate the decomposition and mass transfer of ozone in heterogeneous catalytic ozonation and provide some insights into the industrial wastewater. 展开更多
关键词 Rotating packed bed OZONE Heterogeneous catalysis Overall decomposition rate constant Overall volumetric mass transfer coefficient
下载PDF
A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors
5
作者 Haoyang Wang Ronghao Zhang +1 位作者 Yanlun Ren Li Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第4期389-392,共4页
The research on gas-liquid multiphase reactions using micro reactors is becoming increasingly widespread, given their excellent mass transfer performance. Establishing an accurate and reliable method to measure the ga... The research on gas-liquid multiphase reactions using micro reactors is becoming increasingly widespread, given their excellent mass transfer performance. Establishing an accurate and reliable method to measure the gas-liquid mass transfer performance of micro reactors is crucial for evaluating and optimizing the design of micro reactor structure. In this paper, the physical absorption method of aqueous solution-CO_(2) and the chemical absorption method of sodium carbonate solution-CO_(2) were proposed. By analyzing the chemical reaction equilibrium during the absorption process, the relationship between the mass transfer of CO_(2) and the solubility of hydroxide ions in the solution was established, and the total gas-liquid mass transfer coefficient was immediately obtained by measuring the p H value. The corresponding testing platform and process have been established based on the characteristics of the proposed method to ensure fast and accurate measurement. In addition, the chemical absorption method takes into account temperature factors that were not previously considered. The volumetric mass transfer coefficient measured by these two methods is in the same range as those measured by other methods using the same microchannel structure in previous literature. The methods have the advantages of low equipment cost, faster measurement speed, and simpler procedures, which can facilitate its wide application to the evaluation of the mass transfer performance and hence can guide the structure optimization of microchannel reactors. 展开更多
关键词 volumetric mass transfer coefficient measurement Gas-liquid two phase Micro reactors Physical absorption Chemical absorption
原文传递
Cold Model Study on Mg Desulfurization of Hot Metal Under Mechanical Stirring 被引量:5
6
作者 LIU Yan ZHANG Zi-mu +3 位作者 LIU Jian-nan ZHANG Jun-hua Masamichi Sano ZHANG Jun 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2013年第12期1-6,共6页
The new method of in-situ desulfurization with mechanical stirring of new type impellers was introduced, in which the bubble's dispersion and disintegration of magnesium vapor were the key to boosting the desulfuriza... The new method of in-situ desulfurization with mechanical stirring of new type impellers was introduced, in which the bubble's dispersion and disintegration of magnesium vapor were the key to boosting the desulfurization efficiency and increasing the utilization rate of magnesium. Effects of different new type of impellers on bubble dis persion and disintegration were studied through bubble image analysis, gas-liquid mass transfer, and power con- sumption levels of different impeller structures. The results showed that the sloped swept-back blade impeller-2 pro- duces optimal bubble's dispersion and disintegration, as well as higher volumetric mass transfer coefficient and CO2 gas utilization while consuming the least power. Numerical simulation result with Fluent software also showed that the sloped swept-back blade impeller-2 has higher turbulent kinetic energy and better velocity distribution than the other two impellers. 展开更多
关键词 gas injection refining eccentric mechanical stirring bubble disintegration bubble dispersion volumetric mass transfer coefficient Mg desulfurization hot metal
原文传递
Study on Absorption Rate by Eccentric Mechanical Stirring in Gas Injection Refining for Iron and Steel Making 被引量:5
7
作者 MASAMICHI Sano 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第S2期166-171,共6页
In gas injection refining processes, a great amount of gas is injected into molten metal in short time, so that very large bubbles are inevitably formed. Wide dispersion of small bubbles in the bath is indispensable f... In gas injection refining processes, a great amount of gas is injected into molten metal in short time, so that very large bubbles are inevitably formed. Wide dispersion of small bubbles in the bath is indispensable for high refining efficiency. Eccentric mechanical stirring with unidirectional impeller rotation was tested using a water model for pursuing better bubble disintegration and dispersion. Absorption rate are used to research on the influence law of the bubble dispersion and disintegration and gas-liquid absorption by the influence of, rotation mode, rotation speed and gas flow rate. Compared to the experimental results of absorption rate under eccentric stirring and centric stirring ,provide the scientific experimental and theoretical guidance for high-temperature experiment of hot metal desulfurization .According to experimental and theoretical analysis, this paper has studied various factors effecting on gas absorption process and volumetric mass transfer coefficient using the system of CO2-NaOH-H2O.The results show that:the volumetric mass transfer coefficient and absorption efficiency of CO2 can be increased under eccentric stirring mode, Because bubble disperse quickly with eccentric mechanical stirring, which results in promoting complete reaction between CO2 and NaOH, and improving the mass transfer coefficient and absorption. Volumetric mass transfer coefficient and efficiency of CO2 increase with the increasing rotation speed under the condition of eccentric stirring .But volumetric mass transfer coefficient and efficiency of CO2 decrease with the increasing rotation speed under the condition of centric stirring. 展开更多
关键词 eccentric stirring bubble dispersion bubble disintegration volumetric mass transfer coefficient efficiency of CO2
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部