Chemical speciation is a significant factor that governs the toxicity and mobility of heavy metals in municipal solid waste incinerator fly ash. Sequential extraction procedure is applied to fractionate heavy metals(P...Chemical speciation is a significant factor that governs the toxicity and mobility of heavy metals in municipal solid waste incinerator fly ash. Sequential extraction procedure is applied to fractionate heavy metals(Pb, Zn, Cd, Cu, and Cr) into five defined groups: exchangeable, carbonate, Fe-Mn oxide, organic, and residual fractions. The mobility of heavy metals is also investigated with the aid of toxicity characteristic leaching procedure. In the fly ash sample, Pb is primarily presented in the carbonate(51%) and exchangeable(20%) fractions; Cd and Zn mainly exist as the exchangeable(83% and 49% respectively); Cu is mostly contained in the last three fractions(totally 87%); and Cr is mainly contained in the residual fraction(62%). Pb, Zn and Cd showed the high mobility in the investigation, thus might be of risk to the natural environment when municipal solid waste incinerator fly ash is landfilled or reutilized.展开更多
Polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) emissions in flue gas from two types of municipal solid waste incinerators (MSWIs) most commonly used in China were investigated in this study. The selected i...Polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) emissions in flue gas from two types of municipal solid waste incinerators (MSWIs) most commonly used in China were investigated in this study. The selected incinerators include two grate-type MSWIs: MSWI-A (350 t/d) and MSWI-B 050 t/d), and two fluidized bed MSWIs: MSWI-C (400 t/d) and MSWI-D (400 t/d), which are all equipped with semi-dry lime scrubber and bag filter except MSWI-D equipped with cyclone and wet scrubber (WS) as air pollutant control device (APCD). Results indicated that the emission concentration and the international toxic equivalents (I-TEQs) of the PCDD/Fs from the stacks were in the range of 1.210-10.273 ng/Nm^3 and 0.019-0.201 ng I-TEQ/Nm^3, respectively. They were greatly lower than the emission regulation standard of PCDD/Fs in China (1.0 ng I-TEQ/Nm^3). However, only the PCDD/Fs emission level from MSWI-C was below 0.1 ng I-TEQ/Nm^3. Although the homologue profiles were distinct, the contributions of the 2,3,7,8-subsituted congeners to the total I-TEQ were similar among all the investigated MSWIs. Two major 2,3,7,8-substituted congeners, 2,3,4,7,8-PeCDF and 1,2,3,7,8-PeCDD, account for 47% and 9% (average values) of the total I-TEQ values, respectively. The correlation between PCDD/Fs levels and composition of flue gas was also discussed.展开更多
Steam oxidation resistance of Si3N4 and Si2N2O as well as SiAlON bonded SiC refractories at 900℃was tested according to ASTM-C863.Phase composition and microstructure before and after oxidation were analyzed by XRD a...Steam oxidation resistance of Si3N4 and Si2N2O as well as SiAlON bonded SiC refractories at 900℃was tested according to ASTM-C863.Phase composition and microstructure before and after oxidation were analyzed by XRD and SEM.The results show that Si3N4 and Si2N2O bonded SiC refractory presents better steam oxidation resistance than SiAlON bonded SiC.For Si3N4 and Si2N2O bonded SiC,the oxidation speed is higher with more pronounced volume expansion in the early 100 h;afterwards,the volume expansion slows down gradually and starts to level off after 300 h.It is considered that the high silica glass phase formed during the oxidation covers Si3N4 and Si2N2O,and SiC as a protective layer and fills the open pores.But for SiAlON bonded SiC,the volume expands gradually and constantly with the increasing oxidation duration even after 500 h,due to the continuous formation of mullite transformed from oxidation products and Al2O3 in SiAlON.展开更多
The behavior of soluble salts contained in the municipal solid waste incinerator(MSWI) ash significantly affects the strength development and hardening reaction when stabilized with cement.The present study focuses on...The behavior of soluble salts contained in the municipal solid waste incinerator(MSWI) ash significantly affects the strength development and hardening reaction when stabilized with cement.The present study focuses on the compaction and strength behavior of mixed specimens of cement and MSWI ash.A series of indices such as unconfined compressive strength,split tensile strength,California bearing ratio(CBR) and pH value was examined.Prior to this,the specimens were cured for 7 d,14 d,and 28 d.The test results depict that the maximum dry density(MDD) decreases and the optimum moisture content(OMC)increases with the addition of cement.The test results also reveal that the cement increases the strength of the mixed specimens.Thus,the combination of MSWI ash and cement can be used as a lightweight filling material in different structures like embankment and road construction.展开更多
According to the dual needs of heat transfer and thermal insulation in incinerators,different parts of the incinerators are designed with refractories of different SiC contents.Water vapor is mainly concentrated in th...According to the dual needs of heat transfer and thermal insulation in incinerators,different parts of the incinerators are designed with refractories of different SiC contents.Water vapor is mainly concentrated in the zones of feeding,drying and combustion,and the main damage factors of SiC refractories include high temperature and hydration.The results of hydration resistance of typical SiC-containing refractories show that the higher the SiC content,the worse the hydration resistance.Si_(3)N_(4)-SiC refractories after oxidation treatment have good hydration corrosion resistance,which are appropriate for water-cooled wall of waste incinerators.展开更多
Municipal solid waste incineration tailings were used as lightweight aggregate(MSWIT-LA)in the preparation of specified density concrete to study the effects on compressive strength,axial compressive strength,flexural...Municipal solid waste incineration tailings were used as lightweight aggregate(MSWIT-LA)in the preparation of specified density concrete to study the effects on compressive strength,axial compressive strength,flexural strength,microhardness,total number of pores,pore area,and pore spacing.The results showed that the internal curing and morphological effects induced by an appropriate quantity of MSWIT-LA improved the compressive response of specified density concrete specimens,whereas an excessive quantity of MSWIT-LA significantly reduced their mechanical properties.An analysis of pore structure indicated that the addition of MSWIT-LA increased the total quantity of pores and promoted cement hydration,resulting in a denser microstructure than that of ordinary concrete.The results of a principal component analysis showed that the mechanical response of specified density concrete prepared with 25%MSWIT-LA was superior to that of an equivalent ordinary concrete.It was therefore concluded that MSWIT-LA can be feasibly applied to achieve excellent specified density concrete properties while utilising municipal solid waste incineration tailings to protect the environment and alleviate shortages of sand and gravel resources.展开更多
In the municipal solid waste incineration process,it is difficult to effectively control the gas oxygen content by setting the air flow according to artificial experience.To address this problem,this paper proposes an...In the municipal solid waste incineration process,it is difficult to effectively control the gas oxygen content by setting the air flow according to artificial experience.To address this problem,this paper proposes an optimization control method of gas oxygen content based on model predictive control.First,a stochastic configuration network is utilized to establish a prediction model of gas oxygen content.Second,an improved differential evolution algorithm that is based on parameter adaptive and t-distribution strategy is employed to address the set value of air flow.Finally,model predictive control is combined with the event triggering strategy to reduce the amount of computation and the controller's frequent actions.The experimental results show that the optimization control method proposed in this paper obtains a smaller degree of fluctuation in the air flow set value,which can ensure the tracking control performance of the gas oxygen content while reducing the amount of calculation.展开更多
Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) can be formed during the cooling of flue gases in waste incinerator. These pollutants are either in the gas phase or attached to the fine particles, esca...Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) can be formed during the cooling of flue gases in waste incinerator. These pollutants are either in the gas phase or attached to the fine particles, escaping dust collection. After stack emission, they are slowly oxidized photochemically (gas phase), or eventually are deposited (dry and wet deposition of particulate) in earth surface. In 2007 and 2010, 11 soil samples were collected in the vicinity of a hospital waste incinerator (HWI), prior and after its startup. In order to find out any variation of PCDD/Fs in soil, in brief dioxins, their concentrations were analyzed by high-resolution gas chromatography with high-resolution mass spectrometry (HRGC/HRMS). Compared to the baseline survey (2007), PCDD/Fs in soil significantly increased, by average, +81.6% in total PCDD/Fs and +132.7% in international toxic equivalency (I-TEQ) unit. By principal component analysis (PCA), both the PCDD/Fs homologue and the HxCDF isomer profile in soil were found to become more similar with fly ash. Generally, this incinerator influences the soil only in a limited area. More comprehensive supervision, stricter management and more advanced technology should be implemented in this plant to reduce pollutants emission, even though the level of PCDD/Fs in soil is quite low at present.展开更多
Medical waste incinerator (MWI) fly ash is regarded as a highly toxic waste because it contains high concentrations of heavy metals anddioxins, including polychlorinateddibenzo-p-dioxins (PCDDs) and polychlorinate...Medical waste incinerator (MWI) fly ash is regarded as a highly toxic waste because it contains high concentrations of heavy metals anddioxins, including polychlorinateddibenzo-p-dioxins (PCDDs) and polychlorinateddibenzofurans (PCDFs). Therefore fly ash from MWI must be appropriately treated before beingdischarged into the environment. A melting process based on adirect current thermal plasma torch has beendeveloped to convert MWI fly ash into harmless slag. The leaching characteristics of heavy metals in fly ash and vitrified slag were investigated using the toxicity characteristic leaching procedure, while the content of PCDD/Fs in the fly ashes and slags was measured using method 1613 of the US EPA. The experimental results show that thedecomposition rate of PCDD/Fs is over 99% in toxic equivalent quantity value and the leaching of heavy metals in the slag significantlydecreases after the plasma melting process. The produced slag has a compact and homogeneous microstructure withdensity of up to2.8 g/cm3 .展开更多
The influence of CO2 content and presence of SO2 on the sequestration of CO2 by municipal solid waste incinerator (MSWI) fly ash was studied by investigating the carbonation reaction of MSWI fly ash with different c...The influence of CO2 content and presence of SO2 on the sequestration of CO2 by municipal solid waste incinerator (MSWI) fly ash was studied by investigating the carbonation reaction of MSWI fly ash with different combinations of simulated flue gas. The reaction between fly ash and 100% CO2 was relatively fast; the uptake of CO2 reached 87 g CO2/kg ash, and the sequestered CO2 could be entirely released at high temperatures. When CO2 content was reduced to 12%, the reaction rate decreased; the uptake fell to 41 g CO2/kg ash, and 70.7% of the sequestered CO2 could be released. With 12% CO2 in the presence of SO2, the reaction rate significantly decreased; the uptake was just 17 g CO2/kg ash, and only 52.9% of the sequestered CO2 could be released. SO2 in the simulated gas restricted the ability of fly ash to sequester CO2 because it blocked the pores of the ash.展开更多
Rapid development has led to a tremendous increase in the volume of solid waste produced in rural China.The annual amount of solid waste produced from Chinese rural areas is approximately 110 million tons.Many small-s...Rapid development has led to a tremendous increase in the volume of solid waste produced in rural China.The annual amount of solid waste produced from Chinese rural areas is approximately 110 million tons.Many small-scale solid waste incinerators have been built in Chinese rural areas.It was speculated that the emissions and potential risks of polychlorinated dibenzo-p-dioxins and dibenzofurans(PCDD/Fs,commonly known as dioxins)and polychlorinated naphthalenes(PCNs)from these incinerators could be serious.A preliminary case investigation on PCDD/F and PCN emissions from a small-scale waste incinerator was performed.The stack gas samples were collected using auto isokinetic sampling techniques and PCDD/F and PCN congeners were identified and quantified by high resolution gas chromatography combined with high resolution mass spectrometry.Concentrations and toxic equivalents of PCDD/Fs emitted from the small-scale waste incinerator were 153 ngm^-3 and 5.6 ng TEQ m^-3,respectively,which was much higher than the regulatory level for municipal solid waste incinerators permitted in China and the European Union Directive.PCNs have similar toxicological effects with PCDD/Fs,and the relative potency factors(RPFs)of some PCN congeners(dioxin-like PCNs)to 2,3,7,8-tetrachlorinated dibenzo-p-dioxin(TCDD)were previously proposed to evaluate the dioxin-like toxicity of PCNs.The mass concentrations of PCNs and dioxin-like PCNs from the small-scale solid incinerator were 2927 ngm^-3 and 1137 ngm^-3,much higher than that of dioxins.However,much less attention has been paid to the small-scale incinerators compared with municipal solid waste incinerators.Here,we proposed that there should be a growing need to focus on the emissions and potential risks of dioxins and dioxin-like pollutants from these small-scale waste incinerators in rural China.展开更多
Domestic waste incineration slag(WIS)includes fly ash and slag.Fly ash is classified as hazardous waste because it contains heavy metals.Most of slag are directly stacked or landfilled due to problems such as large ou...Domestic waste incineration slag(WIS)includes fly ash and slag.Fly ash is classified as hazardous waste because it contains heavy metals.Most of slag are directly stacked or landfilled due to problems such as large output and low utilization rate.Harmless treatment is imminent.If WIS is used effectively in the road engineering,which can realize the high-quality and high-efficiency recycling of WIS,and it is of great significance to save resources and protect the environment.This study applies a geopolymer prepared from WIS fly ash as a stabilizing agent in WIS blending macadam for use as a pavement base mixture,and reports the mechanical properties(unconfined compressive strength,splitting strength,and resilience modulus)of the geopolymer-stabilized WIS blending macadam(GeoWIS).The leaching concentrations of harmful heavy metals of GeoWIS soaked in water were also investigated.Finally,the strength formation and heavy metal stability mechanisms were explored.The unconfined compressive strength,splitting strength,and compressive resilient modulus of GeoWIS all increased with increasing geopolymer content and decreasing WIS content.The strength of GeoWIS was derived from its geopolymerization and hydration products(C-S-H gel,N-A-S-H gel,and AFt).When the geopolymer content reached 12%–14%,the GeoWIS without natural macadam met the strength criterion of the asphalt pavement base.Through physical adsorption and chemical bonding,the geopolymer significantly reduced the leaching of harmful heavy metals.In GeoWIS with 50%WIS and stabilized with 10%geopolymer,the Cr,Ni,Cd,and Pb concentrations met the grade III groundwater standard.Concentrations of heavy metals leached from GeoWIS are low and exert little impact on environment.展开更多
Air pollution control poses a major problem in the implementation of municipal solid waste incineration(MSWI).Accurate prediction of nitrogen oxides(NO_(x))concentration plays an important role in efficient NO_(x)emis...Air pollution control poses a major problem in the implementation of municipal solid waste incineration(MSWI).Accurate prediction of nitrogen oxides(NO_(x))concentration plays an important role in efficient NO_(x)emission controlling.In this study,a modular long short-term memory(M-LSTM)network is developed to design an efficient prediction model for NO_(x)concentration.First,the fuzzy C means(FCM)algorithm is utilized to divide the task into several sub-tasks,aiming to realize the divide-and-conquer ability for complex task.Second,long short-term memory(LSTM)neural networks are applied to tackle corresponding sub-tasks,which can improve the prediction accuracy of the sub-networks.Third,a cooperative decision strategy is designed to guarantee the generalization performance during the testing or application stage.Finally,after being evaluated by a benchmark simulation,the proposed method is applied to a real MSWI process.And the experimental results demonstrate the considerable prediction ability of the M-LSTM network.展开更多
Polychlorinated dibenzo-p-dioxins and furans(PCDD/Fs)generated from municipal solid waste(MSW)incineration are considered as the key pollutants,which could pose serious risks to the environment and ecology.This study ...Polychlorinated dibenzo-p-dioxins and furans(PCDD/Fs)generated from municipal solid waste(MSW)incineration are considered as the key pollutants,which could pose serious risks to the environment and ecology.This study comprehensively investigated the effect of selective catalytic reduction(SCR)system on PCDD/F removal,phase distributions,and migrationtransformation characteristics of 17 congeners in a full-scale MSW incinerator.The three flue gas samples and two fly ash samples were separately collected for PCDD/F analysis.The results showed that the SCR system reduced the I-TEQ concentration of PCDD/Fs from 0.135 to 0.010 ng I-TEQ Nm^(−3)with a remarkable toxicity removal efficiency of 92.6%,through oxidation decomposition over V_(2)O_(5)-WO_(3)/TiO_(2)catalysts and chlorination process of low-chlorinated congeners.In addition,the de novo synthesis observed along the flue between SCR system and stack regenerated unexpected PCDD/Fs,which might enhance the PCDD/F emission level.This study verified the three pathways of SCR system on PCDD/F removal and inspired operating suggestions for SCR system,i.e.,keeping SCR system operated in stable and consistent conditions,regularly replacing V_(2)O_(5)-WO_(3)/TiO_(2)catalysts,and timely cleaning the dusts and inlet materials of SCR system,which would be beneficial for achieving the ultra-low emission of PCDD/Fs in full-scale MSW incinerators.展开更多
Garbage incineration is an ideal method for the harmless and resource-oriented treatment of urban domestic waste.However,current domestic waste incineration power plants often face challenges related to maintaining co...Garbage incineration is an ideal method for the harmless and resource-oriented treatment of urban domestic waste.However,current domestic waste incineration power plants often face challenges related to maintaining consistent steam production and high operational costs.This article capitalizes on the technical advantages of big data artificial intelligence,optimizing the power generation process of domestic waste incineration as the entry point,and adopts four main engine modules of Alibaba Cloud reinforcement learning algorithm engine,operating parameter prediction engine,anomaly recognition engine,and video visual recognition algorithm engine.The reinforcement learning algorithm extracts the operational parameters of each incinerator to obtain a control benchmark.Through the operating parameter prediction algorithm,prediction models for drum pressure,primary steam flow,NOx,SO2,and HCl are constructed to achieve short-term prediction of operational parameters,ultimately improving control performance.The anomaly recognition algorithm develops a thickness identification model for the material layer in the drying section,allowing for rapid and effective assessment of feed material thickness to ensure uniformity control.Meanwhile,the visual recognition algorithm identifies flame images and assesses the combustion status and location of the combustion fire line within the furnace.This real-time understanding of furnace flame combustion conditions guides adjustments to the grate and air volume.Integrating AI technology into the waste incineration sector empowers the environmental protection industry with the potential to leverage big data.This development holds practical significance in optimizing the harmless and resource-oriented treatment of urban domestic waste,reducing operational costs,and increasing efficiency.展开更多
The extraction behavior of heavy metals from municipal waste incineration (MWI) fly ash was investigated systematically. The extraction process includes two steps, namely, fly ash was firstly washed with water, and ...The extraction behavior of heavy metals from municipal waste incineration (MWI) fly ash was investigated systematically. The extraction process includes two steps, namely, fly ash was firstly washed with water, and then subjected to hydrochloric acid leaching. The main parameters for water washing process were tested, and under the optimal conditions, about 86% Na, 70% K and 12% Ca were removed from fly ash, respectively. Hydrochloric acid was used for the extraction of valuable elements from the water-washed fly ash, and the optimal extraction was achieved for each heavy metal as follows: 86% for Pb, 98% for Zn, 82% for Fe, 96% for Cd, 62% for Cu, 80% for Al, respectively. And the main compositions of the finally obtained solid residue are Ca2PbO4, CaSi2Os, PbsSiO7, Ca3A12Si3012 and SiO2.展开更多
The impact of moisture on the partitioning of the heavy metals including Pb,Zn,Cu and Cd in municipal solid waste (MSW) was studied in a laboratory tubular furnace.A thermodynamic investigation using CHEMKIN softwar...The impact of moisture on the partitioning of the heavy metals including Pb,Zn,Cu and Cd in municipal solid waste (MSW) was studied in a laboratory tubular furnace.A thermodynamic investigation using CHEMKIN software was performed to compare the experimental results.Simulated waste,representative of typical MSW with and without chlorine compounds,was burned at the background temperature of 700 and 950°C,respectively.In the absence of chlorine,the moisture content has no evident effect on the volatility of Pb,Zn and Cu at either 700 or 950°C,however,as flue gas moisture increasing the Cd distribution in the bottom ash increased at 700°C and reduced at 950°C,respectively.In the presence of chlorine,the flue gas moisture reduced the volatility of Pb,Zn and Cu due to the transformation of the more volatile metal chlorides into less volatile metal oxides,and the reduction became significant as chlorine content increase.For Cd,the chlorine promotes its volatility through the formation of more volatile CdCl 2.As a result,the increased moisture content increases the Pb,Zn,Cu and Cd concentrations in the bottom ash,which limits the utilization of the bottom ash as a construction material.Therefore,in order to accumulate heavy metals into the fly ash,MSW should be dried before incineration.展开更多
The performance of industrial waste incineration bottom ash in controlled low-strength material (CLSM) was investigated in this paper, as the quarry dust was added. CLSM mixtures were made from the industrial waste ...The performance of industrial waste incineration bottom ash in controlled low-strength material (CLSM) was investigated in this paper, as the quarry dust was added. CLSM mixtures were made from the industrial waste incineration bottom ash, quarry dust, and cement. Tests for fresh density, bleeding, compressive strength, shear strength, hydraulic conductivity, and excavatability were carried out. The com- pressive strength ranges from 60 kPa to 6790 kPa, the friction angle varies from 5°to 19°, and the cohesion is from 4 to 604 kPa. Most of the mixtures are found to be non-excavatable. It is indicated that the quarry dust addition increases the compressive strength and shear parame- ters, decreases bleeding, and increases the removability modulus.展开更多
Production of glass-ceramics by sintering the molten slag obtained from electric arc furnace treatment of fly ash was investigated. The effect of washing pretreatment prior to melting the fly ash on the microstructure...Production of glass-ceramics by sintering the molten slag obtained from electric arc furnace treatment of fly ash was investigated. The effect of washing pretreatment prior to melting the fly ash on the microstructure and properties of the glass-ceramics was examined. The results show that washing pretreatment of fly ash can decrease alkali metal chloride and increase network former in fly ash, which results in the increase of peak crystallization temperature of parent glass and strengthening of properties of bending strength and chemical stability of the glass-ceramics. The optimal heat treatment temperature for parent glass of washed fly ash is 1 173 K, at which the crystalline phase of glass-ceramics is composed of gelignite (Ca2A12SiO7) and akermanite (Ca2MgSi207). Glass-ceramics produced at optimal heat treatment temperature are excellent in term of the physical and chemical properties and leaching characteristics, indicating attractive potential as substitute of nature materials.展开更多
To analyze the feasibility of utilization of thermal technology in fly ash treatment, thermal properties and microstructures of municipal solid waste incineration (MSW1) fly ash were studied by measuring the chemica...To analyze the feasibility of utilization of thermal technology in fly ash treatment, thermal properties and microstructures of municipal solid waste incineration (MSW1) fly ash were studied by measuring the chemical element composition, specific surface area, pore sizes, functional groups, TEM image, mineralogy and DSC-TG curves of raw and sintered fly ash specimens. The results show that MSWI fly ash particles mostly have irregular shapes and non-typical pore structure, and the supersonic treatment improves the pore structure; MSWI fly ash consists of Such crystals as SiO2, CaSO4 and silica-aluminates, and some soluble salts like KCl and NaCl. During the sintering process, mineralogy changes largely and novel solid solutions are produced gradually with the rise of temperature. Therefore, the utilization of a proper thermal technology not only destructs those persistent organic toxicants but also stabilizes hazardous heavy metals in MSWI fly ash.展开更多
文摘Chemical speciation is a significant factor that governs the toxicity and mobility of heavy metals in municipal solid waste incinerator fly ash. Sequential extraction procedure is applied to fractionate heavy metals(Pb, Zn, Cd, Cu, and Cr) into five defined groups: exchangeable, carbonate, Fe-Mn oxide, organic, and residual fractions. The mobility of heavy metals is also investigated with the aid of toxicity characteristic leaching procedure. In the fly ash sample, Pb is primarily presented in the carbonate(51%) and exchangeable(20%) fractions; Cd and Zn mainly exist as the exchangeable(83% and 49% respectively); Cu is mostly contained in the last three fractions(totally 87%); and Cr is mainly contained in the residual fraction(62%). Pb, Zn and Cd showed the high mobility in the investigation, thus might be of risk to the natural environment when municipal solid waste incinerator fly ash is landfilled or reutilized.
基金the Natural Science Foundation of Zhejiang Province (No. X206955)Zhejiang Medical and Health Research Fund (No. 2007A047)the Education Bureau of Zhejiang Prov-ince (No. N20080181), China
文摘Polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) emissions in flue gas from two types of municipal solid waste incinerators (MSWIs) most commonly used in China were investigated in this study. The selected incinerators include two grate-type MSWIs: MSWI-A (350 t/d) and MSWI-B 050 t/d), and two fluidized bed MSWIs: MSWI-C (400 t/d) and MSWI-D (400 t/d), which are all equipped with semi-dry lime scrubber and bag filter except MSWI-D equipped with cyclone and wet scrubber (WS) as air pollutant control device (APCD). Results indicated that the emission concentration and the international toxic equivalents (I-TEQs) of the PCDD/Fs from the stacks were in the range of 1.210-10.273 ng/Nm^3 and 0.019-0.201 ng I-TEQ/Nm^3, respectively. They were greatly lower than the emission regulation standard of PCDD/Fs in China (1.0 ng I-TEQ/Nm^3). However, only the PCDD/Fs emission level from MSWI-C was below 0.1 ng I-TEQ/Nm^3. Although the homologue profiles were distinct, the contributions of the 2,3,7,8-subsituted congeners to the total I-TEQ were similar among all the investigated MSWIs. Two major 2,3,7,8-substituted congeners, 2,3,4,7,8-PeCDF and 1,2,3,7,8-PeCDD, account for 47% and 9% (average values) of the total I-TEQ values, respectively. The correlation between PCDD/Fs levels and composition of flue gas was also discussed.
文摘Steam oxidation resistance of Si3N4 and Si2N2O as well as SiAlON bonded SiC refractories at 900℃was tested according to ASTM-C863.Phase composition and microstructure before and after oxidation were analyzed by XRD and SEM.The results show that Si3N4 and Si2N2O bonded SiC refractory presents better steam oxidation resistance than SiAlON bonded SiC.For Si3N4 and Si2N2O bonded SiC,the oxidation speed is higher with more pronounced volume expansion in the early 100 h;afterwards,the volume expansion slows down gradually and starts to level off after 300 h.It is considered that the high silica glass phase formed during the oxidation covers Si3N4 and Si2N2O,and SiC as a protective layer and fills the open pores.But for SiAlON bonded SiC,the volume expands gradually and constantly with the increasing oxidation duration even after 500 h,due to the continuous formation of mullite transformed from oxidation products and Al2O3 in SiAlON.
文摘The behavior of soluble salts contained in the municipal solid waste incinerator(MSWI) ash significantly affects the strength development and hardening reaction when stabilized with cement.The present study focuses on the compaction and strength behavior of mixed specimens of cement and MSWI ash.A series of indices such as unconfined compressive strength,split tensile strength,California bearing ratio(CBR) and pH value was examined.Prior to this,the specimens were cured for 7 d,14 d,and 28 d.The test results depict that the maximum dry density(MDD) decreases and the optimum moisture content(OMC)increases with the addition of cement.The test results also reveal that the cement increases the strength of the mixed specimens.Thus,the combination of MSWI ash and cement can be used as a lightweight filling material in different structures like embankment and road construction.
文摘According to the dual needs of heat transfer and thermal insulation in incinerators,different parts of the incinerators are designed with refractories of different SiC contents.Water vapor is mainly concentrated in the zones of feeding,drying and combustion,and the main damage factors of SiC refractories include high temperature and hydration.The results of hydration resistance of typical SiC-containing refractories show that the higher the SiC content,the worse the hydration resistance.Si_(3)N_(4)-SiC refractories after oxidation treatment have good hydration corrosion resistance,which are appropriate for water-cooled wall of waste incinerators.
基金Funded by the National Natural Science Foundation of China(Nos.U21A20150,52208249,51878153,52108219,52008196,52178216)Research and Demonstration of Key Technologies of Green and Smart Highways in Gansu Province(No.21ZD3GA002)+1 种基金Gansu Provincial Natural Science Foundation(No.23JRRA799)Key Projects of Chongqing Science and Technology Bureau(No.2021jscx-jbgs0029)。
文摘Municipal solid waste incineration tailings were used as lightweight aggregate(MSWIT-LA)in the preparation of specified density concrete to study the effects on compressive strength,axial compressive strength,flexural strength,microhardness,total number of pores,pore area,and pore spacing.The results showed that the internal curing and morphological effects induced by an appropriate quantity of MSWIT-LA improved the compressive response of specified density concrete specimens,whereas an excessive quantity of MSWIT-LA significantly reduced their mechanical properties.An analysis of pore structure indicated that the addition of MSWIT-LA increased the total quantity of pores and promoted cement hydration,resulting in a denser microstructure than that of ordinary concrete.The results of a principal component analysis showed that the mechanical response of specified density concrete prepared with 25%MSWIT-LA was superior to that of an equivalent ordinary concrete.It was therefore concluded that MSWIT-LA can be feasibly applied to achieve excellent specified density concrete properties while utilising municipal solid waste incineration tailings to protect the environment and alleviate shortages of sand and gravel resources.
基金supported by the National Natural Science Foundation of China(62373017,62073006)and the Beijing Natural Science Foundation of China(4212032)。
文摘In the municipal solid waste incineration process,it is difficult to effectively control the gas oxygen content by setting the air flow according to artificial experience.To address this problem,this paper proposes an optimization control method of gas oxygen content based on model predictive control.First,a stochastic configuration network is utilized to establish a prediction model of gas oxygen content.Second,an improved differential evolution algorithm that is based on parameter adaptive and t-distribution strategy is employed to address the set value of air flow.Finally,model predictive control is combined with the event triggering strategy to reduce the amount of computation and the controller's frequent actions.The experimental results show that the optimization control method proposed in this paper obtains a smaller degree of fluctuation in the air flow set value,which can ensure the tracking control performance of the gas oxygen content while reducing the amount of calculation.
基金supported by the National Basic Research Program (973) of China (No. 2011CB201500)
文摘Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) can be formed during the cooling of flue gases in waste incinerator. These pollutants are either in the gas phase or attached to the fine particles, escaping dust collection. After stack emission, they are slowly oxidized photochemically (gas phase), or eventually are deposited (dry and wet deposition of particulate) in earth surface. In 2007 and 2010, 11 soil samples were collected in the vicinity of a hospital waste incinerator (HWI), prior and after its startup. In order to find out any variation of PCDD/Fs in soil, in brief dioxins, their concentrations were analyzed by high-resolution gas chromatography with high-resolution mass spectrometry (HRGC/HRMS). Compared to the baseline survey (2007), PCDD/Fs in soil significantly increased, by average, +81.6% in total PCDD/Fs and +132.7% in international toxic equivalency (I-TEQ) unit. By principal component analysis (PCA), both the PCDD/Fs homologue and the HxCDF isomer profile in soil were found to become more similar with fly ash. Generally, this incinerator influences the soil only in a limited area. More comprehensive supervision, stricter management and more advanced technology should be implemented in this plant to reduce pollutants emission, even though the level of PCDD/Fs in soil is quite low at present.
基金supported by the Zhejiang Provincial Natural Science Foundation(No.Y5100192)
文摘Medical waste incinerator (MWI) fly ash is regarded as a highly toxic waste because it contains high concentrations of heavy metals anddioxins, including polychlorinateddibenzo-p-dioxins (PCDDs) and polychlorinateddibenzofurans (PCDFs). Therefore fly ash from MWI must be appropriately treated before beingdischarged into the environment. A melting process based on adirect current thermal plasma torch has beendeveloped to convert MWI fly ash into harmless slag. The leaching characteristics of heavy metals in fly ash and vitrified slag were investigated using the toxicity characteristic leaching procedure, while the content of PCDD/Fs in the fly ashes and slags was measured using method 1613 of the US EPA. The experimental results show that thedecomposition rate of PCDD/Fs is over 99% in toxic equivalent quantity value and the leaching of heavy metals in the slag significantlydecreases after the plasma melting process. The produced slag has a compact and homogeneous microstructure withdensity of up to2.8 g/cm3 .
基金supported by the Hi-Tech Research and Development Program (863) of China (No. 2012AA06A116)
文摘The influence of CO2 content and presence of SO2 on the sequestration of CO2 by municipal solid waste incinerator (MSWI) fly ash was studied by investigating the carbonation reaction of MSWI fly ash with different combinations of simulated flue gas. The reaction between fly ash and 100% CO2 was relatively fast; the uptake of CO2 reached 87 g CO2/kg ash, and the sequestered CO2 could be entirely released at high temperatures. When CO2 content was reduced to 12%, the reaction rate decreased; the uptake fell to 41 g CO2/kg ash, and 70.7% of the sequestered CO2 could be released. With 12% CO2 in the presence of SO2, the reaction rate significantly decreased; the uptake was just 17 g CO2/kg ash, and only 52.9% of the sequestered CO2 could be released. SO2 in the simulated gas restricted the ability of fly ash to sequester CO2 because it blocked the pores of the ash.
基金We gratefully acknowledge support from the National 973 program(2015CB453100)the National Natural Science Foundation of China(21777172)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB14020102)Youth Innovation Promotion Association of the Chinese Academy of Sciences(2016038).
文摘Rapid development has led to a tremendous increase in the volume of solid waste produced in rural China.The annual amount of solid waste produced from Chinese rural areas is approximately 110 million tons.Many small-scale solid waste incinerators have been built in Chinese rural areas.It was speculated that the emissions and potential risks of polychlorinated dibenzo-p-dioxins and dibenzofurans(PCDD/Fs,commonly known as dioxins)and polychlorinated naphthalenes(PCNs)from these incinerators could be serious.A preliminary case investigation on PCDD/F and PCN emissions from a small-scale waste incinerator was performed.The stack gas samples were collected using auto isokinetic sampling techniques and PCDD/F and PCN congeners were identified and quantified by high resolution gas chromatography combined with high resolution mass spectrometry.Concentrations and toxic equivalents of PCDD/Fs emitted from the small-scale waste incinerator were 153 ngm^-3 and 5.6 ng TEQ m^-3,respectively,which was much higher than the regulatory level for municipal solid waste incinerators permitted in China and the European Union Directive.PCNs have similar toxicological effects with PCDD/Fs,and the relative potency factors(RPFs)of some PCN congeners(dioxin-like PCNs)to 2,3,7,8-tetrachlorinated dibenzo-p-dioxin(TCDD)were previously proposed to evaluate the dioxin-like toxicity of PCNs.The mass concentrations of PCNs and dioxin-like PCNs from the small-scale solid incinerator were 2927 ngm^-3 and 1137 ngm^-3,much higher than that of dioxins.However,much less attention has been paid to the small-scale incinerators compared with municipal solid waste incinerators.Here,we proposed that there should be a growing need to focus on the emissions and potential risks of dioxins and dioxin-like pollutants from these small-scale waste incinerators in rural China.
基金This work was supported by the Fundamental Research Funds for the Central Universities,CHD(grant number 300102212906)the Key R&D Plan of Shaanxi Province(grant number 2023-YBSF-390)+1 种基金the Innovation Capability Support Program of Shaanxi(grant number 2022TD-07)the Xianyang City,Shaanxi Province,China 2019 Key Research and Development Program(grant number 2019k02-125).
文摘Domestic waste incineration slag(WIS)includes fly ash and slag.Fly ash is classified as hazardous waste because it contains heavy metals.Most of slag are directly stacked or landfilled due to problems such as large output and low utilization rate.Harmless treatment is imminent.If WIS is used effectively in the road engineering,which can realize the high-quality and high-efficiency recycling of WIS,and it is of great significance to save resources and protect the environment.This study applies a geopolymer prepared from WIS fly ash as a stabilizing agent in WIS blending macadam for use as a pavement base mixture,and reports the mechanical properties(unconfined compressive strength,splitting strength,and resilience modulus)of the geopolymer-stabilized WIS blending macadam(GeoWIS).The leaching concentrations of harmful heavy metals of GeoWIS soaked in water were also investigated.Finally,the strength formation and heavy metal stability mechanisms were explored.The unconfined compressive strength,splitting strength,and compressive resilient modulus of GeoWIS all increased with increasing geopolymer content and decreasing WIS content.The strength of GeoWIS was derived from its geopolymerization and hydration products(C-S-H gel,N-A-S-H gel,and AFt).When the geopolymer content reached 12%–14%,the GeoWIS without natural macadam met the strength criterion of the asphalt pavement base.Through physical adsorption and chemical bonding,the geopolymer significantly reduced the leaching of harmful heavy metals.In GeoWIS with 50%WIS and stabilized with 10%geopolymer,the Cr,Ni,Cd,and Pb concentrations met the grade III groundwater standard.Concentrations of heavy metals leached from GeoWIS are low and exert little impact on environment.
基金the financial support from the National Natural Science Foundation of China(62021003,61890930-5,61903012,62073006)Beijing Natural Science Foundation(42130232)the National Key Research and Development Program of China(2021ZD0112301,2021ZD0112302)。
文摘Air pollution control poses a major problem in the implementation of municipal solid waste incineration(MSWI).Accurate prediction of nitrogen oxides(NO_(x))concentration plays an important role in efficient NO_(x)emission controlling.In this study,a modular long short-term memory(M-LSTM)network is developed to design an efficient prediction model for NO_(x)concentration.First,the fuzzy C means(FCM)algorithm is utilized to divide the task into several sub-tasks,aiming to realize the divide-and-conquer ability for complex task.Second,long short-term memory(LSTM)neural networks are applied to tackle corresponding sub-tasks,which can improve the prediction accuracy of the sub-networks.Third,a cooperative decision strategy is designed to guarantee the generalization performance during the testing or application stage.Finally,after being evaluated by a benchmark simulation,the proposed method is applied to a real MSWI process.And the experimental results demonstrate the considerable prediction ability of the M-LSTM network.
基金supported by the National Key R&D Program of China(Grant No. 2018YFC1902904)the National Natural Science Foundation of China (Grant No. 22008104)+4 种基金the Shenzhen Science and Technology Innovation Committee (Grant Nos. JCYJ20200109141642225,JCYJ20200109141227141, and JSGG20210713091810035)the Shenzhen Peacock Plan (Grant No. KQTD20160226195840229)provided by Basic and Applied Basic Research Foundation of Guangdong Province (Grant No. 2021A1515010148)Young S&T Talent Training Program of Guangdong Provincial Association for S&T(Grant No. SKXRC202230)Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme 2018
文摘Polychlorinated dibenzo-p-dioxins and furans(PCDD/Fs)generated from municipal solid waste(MSW)incineration are considered as the key pollutants,which could pose serious risks to the environment and ecology.This study comprehensively investigated the effect of selective catalytic reduction(SCR)system on PCDD/F removal,phase distributions,and migrationtransformation characteristics of 17 congeners in a full-scale MSW incinerator.The three flue gas samples and two fly ash samples were separately collected for PCDD/F analysis.The results showed that the SCR system reduced the I-TEQ concentration of PCDD/Fs from 0.135 to 0.010 ng I-TEQ Nm^(−3)with a remarkable toxicity removal efficiency of 92.6%,through oxidation decomposition over V_(2)O_(5)-WO_(3)/TiO_(2)catalysts and chlorination process of low-chlorinated congeners.In addition,the de novo synthesis observed along the flue between SCR system and stack regenerated unexpected PCDD/Fs,which might enhance the PCDD/F emission level.This study verified the three pathways of SCR system on PCDD/F removal and inspired operating suggestions for SCR system,i.e.,keeping SCR system operated in stable and consistent conditions,regularly replacing V_(2)O_(5)-WO_(3)/TiO_(2)catalysts,and timely cleaning the dusts and inlet materials of SCR system,which would be beneficial for achieving the ultra-low emission of PCDD/Fs in full-scale MSW incinerators.
文摘Garbage incineration is an ideal method for the harmless and resource-oriented treatment of urban domestic waste.However,current domestic waste incineration power plants often face challenges related to maintaining consistent steam production and high operational costs.This article capitalizes on the technical advantages of big data artificial intelligence,optimizing the power generation process of domestic waste incineration as the entry point,and adopts four main engine modules of Alibaba Cloud reinforcement learning algorithm engine,operating parameter prediction engine,anomaly recognition engine,and video visual recognition algorithm engine.The reinforcement learning algorithm extracts the operational parameters of each incinerator to obtain a control benchmark.Through the operating parameter prediction algorithm,prediction models for drum pressure,primary steam flow,NOx,SO2,and HCl are constructed to achieve short-term prediction of operational parameters,ultimately improving control performance.The anomaly recognition algorithm develops a thickness identification model for the material layer in the drying section,allowing for rapid and effective assessment of feed material thickness to ensure uniformity control.Meanwhile,the visual recognition algorithm identifies flame images and assesses the combustion status and location of the combustion fire line within the furnace.This real-time understanding of furnace flame combustion conditions guides adjustments to the grate and air volume.Integrating AI technology into the waste incineration sector empowers the environmental protection industry with the potential to leverage big data.This development holds practical significance in optimizing the harmless and resource-oriented treatment of urban domestic waste,reducing operational costs,and increasing efficiency.
文摘The extraction behavior of heavy metals from municipal waste incineration (MWI) fly ash was investigated systematically. The extraction process includes two steps, namely, fly ash was firstly washed with water, and then subjected to hydrochloric acid leaching. The main parameters for water washing process were tested, and under the optimal conditions, about 86% Na, 70% K and 12% Ca were removed from fly ash, respectively. Hydrochloric acid was used for the extraction of valuable elements from the water-washed fly ash, and the optimal extraction was achieved for each heavy metal as follows: 86% for Pb, 98% for Zn, 82% for Fe, 96% for Cd, 62% for Cu, 80% for Al, respectively. And the main compositions of the finally obtained solid residue are Ca2PbO4, CaSi2Os, PbsSiO7, Ca3A12Si3012 and SiO2.
基金supported by the National Natural Science Foundation of China (No. 50776007)the Beijing Municipal Science and Technology Commission under the Municipal Solid Waste Development Program(No. H020620330120)
文摘The impact of moisture on the partitioning of the heavy metals including Pb,Zn,Cu and Cd in municipal solid waste (MSW) was studied in a laboratory tubular furnace.A thermodynamic investigation using CHEMKIN software was performed to compare the experimental results.Simulated waste,representative of typical MSW with and without chlorine compounds,was burned at the background temperature of 700 and 950°C,respectively.In the absence of chlorine,the moisture content has no evident effect on the volatility of Pb,Zn and Cu at either 700 or 950°C,however,as flue gas moisture increasing the Cd distribution in the bottom ash increased at 700°C and reduced at 950°C,respectively.In the presence of chlorine,the flue gas moisture reduced the volatility of Pb,Zn and Cu due to the transformation of the more volatile metal chlorides into less volatile metal oxides,and the reduction became significant as chlorine content increase.For Cd,the chlorine promotes its volatility through the formation of more volatile CdCl 2.As a result,the increased moisture content increases the Pb,Zn,Cu and Cd concentrations in the bottom ash,which limits the utilization of the bottom ash as a construction material.Therefore,in order to accumulate heavy metals into the fly ash,MSW should be dried before incineration.
基金the Ministry of Science, Technology and Innovation (MOSTI), Government of Malaysia and University of Malaya for providing the funds to support this research work
文摘The performance of industrial waste incineration bottom ash in controlled low-strength material (CLSM) was investigated in this paper, as the quarry dust was added. CLSM mixtures were made from the industrial waste incineration bottom ash, quarry dust, and cement. Tests for fresh density, bleeding, compressive strength, shear strength, hydraulic conductivity, and excavatability were carried out. The com- pressive strength ranges from 60 kPa to 6790 kPa, the friction angle varies from 5°to 19°, and the cohesion is from 4 to 604 kPa. Most of the mixtures are found to be non-excavatable. It is indicated that the quarry dust addition increases the compressive strength and shear parame- ters, decreases bleeding, and increases the removability modulus.
基金Funded by the National Natural Science Foundation of China(No.20806051)the Key Laboratory of Education Ministry for Solid Waste Management and Environment Safety(No.SWMES-2010-07)the Science and Technology Project of Housing and Urban-Rural Ministry(No.2010-K4-2)
文摘Production of glass-ceramics by sintering the molten slag obtained from electric arc furnace treatment of fly ash was investigated. The effect of washing pretreatment prior to melting the fly ash on the microstructure and properties of the glass-ceramics was examined. The results show that washing pretreatment of fly ash can decrease alkali metal chloride and increase network former in fly ash, which results in the increase of peak crystallization temperature of parent glass and strengthening of properties of bending strength and chemical stability of the glass-ceramics. The optimal heat treatment temperature for parent glass of washed fly ash is 1 173 K, at which the crystalline phase of glass-ceramics is composed of gelignite (Ca2A12SiO7) and akermanite (Ca2MgSi207). Glass-ceramics produced at optimal heat treatment temperature are excellent in term of the physical and chemical properties and leaching characteristics, indicating attractive potential as substitute of nature materials.
基金Project(50808184) supported by the National Natural Science Foundation of China
文摘To analyze the feasibility of utilization of thermal technology in fly ash treatment, thermal properties and microstructures of municipal solid waste incineration (MSW1) fly ash were studied by measuring the chemical element composition, specific surface area, pore sizes, functional groups, TEM image, mineralogy and DSC-TG curves of raw and sintered fly ash specimens. The results show that MSWI fly ash particles mostly have irregular shapes and non-typical pore structure, and the supersonic treatment improves the pore structure; MSWI fly ash consists of Such crystals as SiO2, CaSO4 and silica-aluminates, and some soluble salts like KCl and NaCl. During the sintering process, mineralogy changes largely and novel solid solutions are produced gradually with the rise of temperature. Therefore, the utilization of a proper thermal technology not only destructs those persistent organic toxicants but also stabilizes hazardous heavy metals in MSWI fly ash.