期刊文献+
共找到102篇文章
< 1 2 6 >
每页显示 20 50 100
Multi-Model Approach for Assessing the Influence of Calibration Criteria on the Water Balance in Ouémé Basin
1
作者 Aymar Yaovi Bossa Mahutin Aristide Oluwatobi Kpossou +1 位作者 Jean Hounkpè Félicien Djigbo Badou 《Journal of Water Resource and Protection》 CAS 2024年第3期207-218,共12页
Hydrological models are very useful tools for evaluating water resources, and the hydroclimatic hazards associated with the water cycle. However, their calibration and validation require the use of performance criteri... Hydrological models are very useful tools for evaluating water resources, and the hydroclimatic hazards associated with the water cycle. However, their calibration and validation require the use of performance criteria which choice is not straightforward. This paper aims to evaluate the influence of the performance criteria on water balance components and water extremes using two global rainfall-runoff models (HBV and GR4J) over the Ouémé watershed at the Bonou and Savè outlets. Three (3) Efficacy criteria (Nash, coefficient of determination, and KGE) were considered for calibration and validation. The results show that the Nash criterion provides a good assessment of the simulation of the different parts of the hydrograph. KGE is better for simulating peak flows and water balance elements than other efficiency criteria. This study could serve as a basis for the choice of performance criteria in hydrological modelling. 展开更多
关键词 Hydrological Modelling Performance Criteria water balance Ouémé Basin
下载PDF
Study on the Water Balance in Three Dominant Plants with Simulated Precipitation Change in Maowusu Sandland 被引量:9
2
作者 肖春旺 周广胜 《Acta Botanica Sinica》 CSCD 2001年第1期82-88,共7页
The distribution pattern and productivity of Maowusu sandland terrestrial ecosystem are greatly affected with the future severe global change, especially global precipitation change. Considering the predicative global... The distribution pattern and productivity of Maowusu sandland terrestrial ecosystem are greatly affected with the future severe global change, especially global precipitation change. Considering the predicative global precipitation change and the appropriate relevant strategy for the sustainable development of the China dry territory, the authors have investigated the response of water balance to global precipitation change by creating an artificial control of four levels of water supply treating 3 dominant plants in Mauwusu sandland. The results showed that the seasonal changes of water storage and moisture of different sandland layer depths were affected by different water supply treatments and different plants. The water storage of the three plant growing sandlands and the moisture of different sandland layer depths increased as water supply was increased. The moisture of different water supply treatments and plants increased with the increase of sandland layer depth. The water storage and moisture of the same layer depth of Hedysarum mongolicum Turcz. growing sandland were larger than that of Salix psammophila C. Wang et Ch. Y. Yang growing sandland, which were in turn higher than that of Artemisia ordosica Krasch. growing sandland in the same water supply treatment. Water supply significantly affected the seasonal changes of evaporation and transpiration of the three plant growing sandlands. With the increased levels of water supply, viz. 157.5 mm, 315.0 mm, 472.5 mm and 630.0 mm, the total evaporation was 123.66 mm, 258.68 mm, 376.30 mm, 458.57 mm, respectively, and the total transpiration of A. ordosica was 50.80 mm, 68.93 mm, 108.39 mm, 163.36 mm, respectively, and that of S. psammophila , 47.37 mm, 68.17 mm, 93.65 mm, 135.97 mm, respectively, and that of H. mongolicum 46.73 mm, 67.37 mm, 86.07 mm, 109.64 mm, respectively. Evaporation was significantly higher than transpiration in the experiment. 展开更多
关键词 global change simulated precipitation Maowusu sandland dominant plants water balance
下载PDF
Balance of Water Supply-demand in Paddy Fields in Hilly Regions in Sichuan Province
3
作者 张鸿 姜心禄 +1 位作者 樊红柱 郑家国 《Agricultural Science & Technology》 CAS 2012年第7期1489-1492,共4页
[Objective] The aim was to study the effects of water supply and consumption on water saving and drought resistance. [Method] Controlling field experiment was conducted to explore water balance between supply and dema... [Objective] The aim was to study the effects of water supply and consumption on water saving and drought resistance. [Method] Controlling field experiment was conducted to explore water balance between supply and demand in paddy fields in hilly regions in Sichuan Province. [Result] Rainfall in hilly areas was 3 611.10 m3/hm2; water for irrigation was 6 299.25 m3/hm2; evapotranspiration of rice was 6 424.95 m3/hm2; deep leakage was 2 459.55 m3/hm2; overflowing amount was 1 026.00 m3/hm2. In addition, water consumption totaled 8 884.50 m3/hm2 during rice production; water use was 0.99 kg/m3 and use efficiency of irrigated water was 1.40 kg/m3. [Conclusion] Water supply and consumption should be further organized to save water and fight against drought in hilly areas in Sichuan Province. 展开更多
关键词 RICE water balance between supply and demand Sichuan Province Hilly areas
下载PDF
Energy Balance-Based SWAT Model to Simulate the Mountain Snowmelt and Runoff——Taking the Application in Juntanghu Watershed(China) as an Example 被引量:10
4
作者 MENG Xian-Yong YU Dan-Lin LIU Zhi-Hui 《Journal of Mountain Science》 SCIE CSCD 2015年第2期368-381,共14页
In order to predict long-term flooding under extreme weather conditions in central Asia, an energy balance-based distributed snowmelt runoff model was developed and coupled with the Soil and Water Assessment Tool(SWAT... In order to predict long-term flooding under extreme weather conditions in central Asia, an energy balance-based distributed snowmelt runoff model was developed and coupled with the Soil and Water Assessment Tool(SWAT) model. The model was tested at the Juntanghu watershed on the northern slope of the Tian Shan Mountains, Xinjiang,China. We compared the performances of temperature-index method and energy balanced method in SWAT model by taking Juntanghu river basin as an application example(as the simulation experiment was conducted in Juntanghu River, we call the energy balanced method as SWAT-JTH). The results suggest that the SWAT snowmelt model had overall Nash-Sutcliffe efficiency(NSE) coefficients ranging from 0.61 to 0.85 while the physical based approach had NSE coefficients ranging from 0.58 to0.69. Overall, on monthly scale, the SWAT model provides better results than that from the SWAT-JTH model. However, results generated from both methods seem to be fairly close at a daily scale. Thestructure of the temperature-index method is simple and produces reasonable simulation results if the parameters are well within empirical ranges. Although the data requirement for the energy balance method in current observation is difficult to meet and the existence of uncertainty is associated with the experimental approaches of physical processes, the SWAT-JTH model still produced a reasonably high NSE. We conclude that using temperature-index methods to simulate the snowmelt process is sufficient, but the energy balance-based model is still a good choice to simulate extreme weather conditions especially when the required data input for the model is acquired. 展开更多
关键词 SWAT Snowmelt model The physical process Energy balance Temperature-index water balance
下载PDF
A Distributed Monthly Water Balance Model for Analyzing Impacts of Land Cover Change on Flow Regimes 被引量:10
5
作者 XIA Jun WANG Gang-Sheng +1 位作者 YE Ai-Zhong NIU Cun-Wen 《Pedosphere》 SCIE CAS CSCD 2005年第6期761-767,共7页
The Miyun Reservoir is the most important water source for Beijing Municipality, the capital of China with a population of more than 12 million. In recent decades, the inflow to the reservoir has shown a decreasing tr... The Miyun Reservoir is the most important water source for Beijing Municipality, the capital of China with a population of more than 12 million. In recent decades, the inflow to the reservoir has shown a decreasing trend, which has seriously threatened water use in Beijing. In order to analyze the influents of land use and cover change (LUCC) upon inflow to Miyun Reservoir, terrain and land use information from remote sensing were utilized with a revised evapotranspiration estimation formula; a water loss model under conditions of human impacts was introduced; and a distributed monthly water balance model was established and applied to the Chaobai River Basin controlled by the Miyun Reservoir. The model simulation suggested that not only the impact of land cover change on evapotranspiration, but also the extra water loss caused by human activities, such as the water and soil conservation development projects should be considered. Although these development projects were of great benefit to human and ecological protection, they could reallocate water resources in time and space, and in a sense thereby influence the stream flow. 展开更多
关键词 distributed monthly water balance model land use and cover change (LUCC) remote sensing scenario analysis
下载PDF
Estimation of water balance in the source region of the Yellow River based on GRACE satellite data 被引量:8
6
作者 Min XU BaiSheng YE +2 位作者 QiuDong ZHAO ShiQing ZHANG Jiang WANG 《Journal of Arid Land》 SCIE CSCD 2013年第3期384-395,共12页
Water storage has important significance for understanding water cycles of global and local domains and for monitoring climate and environmental changes. As a key variable in hydrology, water storage change represents... Water storage has important significance for understanding water cycles of global and local domains and for monitoring climate and environmental changes. As a key variable in hydrology, water storage change represents the sum of precipitation, evaporation, surface runoff, soil water and groundwater exchanges. Water storage change data during the period of 2003-2008 for the source region of the Yellow River were collected from Gravity Recovery and Climate Experiment (GRACE) satellite data. The monthly actual evaporation was estimated according to the water balance equation. The simulated actual evaporation was significantly consistent and correlative with not only the observed pan (20 cm) data, but also the simulated results of the version 2 of Simple Biosphere model. The average annual evaporation of the Tangnaihai Basin was 506.4 mm, where evaporation in spring, summer, autumn and winter was 130.9 mm, 275.2 mm, 74.3 mm and 26.1 mm, and accounted for 25.8%, 54.3%, 14.7% and 5.2% of the average annual evaporation, respectively, The precipitation increased slightly and the actual evaporation showed an obvious decrease. The water storage change of the source region of the Yellow River displayed an increase of 0.51 mm per month from 2003 to 2008, which indicated that the storage capacity has significantly increased, probably caused by the degradation of permafrost and the increase of the thickness of active layers. The decline of actual evaporation and the increase of water storage capacity resulted in the increase of river runoff. 展开更多
关键词 actual evaporation GRACE satellite data water storage change water balance equation source region of the Yellow River
下载PDF
Understanding the impact of mountain landscapes on water balance in the upper Heihe River watershed in northwestern China 被引量:6
7
作者 Jia QIN YongJian DING +6 位作者 JinKui WU MingJie GAO ShuHua YI ChuanCheng ZHAO BaiSheng YE Man LI ShengXia WANG 《Journal of Arid Land》 SCIE CSCD 2013年第3期366-383,共18页
Estimating the impact of mountain landscape on hydrology or water balance is essential for the sus- tainable development strategies of water resources. Specifically, understanding how the change of each landscape infl... Estimating the impact of mountain landscape on hydrology or water balance is essential for the sus- tainable development strategies of water resources. Specifically, understanding how the change of each landscape influences hydrological components will greatly improve the predictability of hydrological responses to mountain landscape changes and thus can help the government make sounder decisions. In the paper, we used the VIC (Variable Infiltration Capacity) model to conduct hydrological modeling in the upper Heihe River watershed, along with a frozen-soil module and a glacier melting module to improve the simulation. The improved model performed satisfactorily. We concluded that there are differences in the runoff generation of mountain landscape both in space and time. About 50% of the total runoff at the catchment outlet were generated in mid-mountain zone (2,900-4,000 m asl), and water was mainly consumed in low mountain region (1,700-2,900 m asl) because of the higher requirements of trees and grasses. The runoff coefficient was 0.37 in the upper Heihe River watershed. Barren landscape produced the largest runoff yields (52.46% of the total runoff) in the upper Heihe River watershed, fol- lowed by grassland (34.15%), shrub (9.02%), glacier (3.57%), and forest (0.49%). In order to simulate the impact of landscape change on hydrological components, three landscape change scenarios were designed in the study. Scenario 1, 2 and 3 were to convert all shady slope landscapes at 2,000-3,300 m, 2,000-3,700 m, and 2,000-4,000 m asl respectively to forest lands, with forest coverage rate increased to 12.4%, 28.5% and 42.0%, respectively. The runoff at the catchment outlet correspondingly declined by 3.5%, 13.1% and 24.2% under the three scenarios. The forest landscape is very important in water conservation as it reduced the flood peak and increased the base flow. The mountains as "water towers" play important roles in water resources generation and the impact of mountain landscapes on hydrology is significant. 展开更多
关键词 mountain landscape runoff modeling water balance VIC model Heihe River watershed
下载PDF
Hydrological behaviour and water balance analysis for Xitiaoxi catchment of Taihu Basin 被引量:3
8
作者 Xue Lijuan Li Lijiao Zhang Qi 《Water Science and Engineering》 EI CAS 2008年第3期44-53,共10页
With the rapid social and economic development of the Taihu region, Taihu Lake now faces an increasingly severe eutrophication problem. Pollution from surrounding catchments contributes greatly to the eutrophication o... With the rapid social and economic development of the Taihu region, Taihu Lake now faces an increasingly severe eutrophication problem. Pollution from surrounding catchments contributes greatly to the eutrophication of water bodies in the region. Investigation of surface flow and associated mass transport for the Xitiaoxi catchment is of a significant degree of importance as the Xitiaoxi catchment is one of the major catchments within the Taihu region. A SWAT-based distributed hydrological model was established for the Xitiaoxi catchment. The model was calibrated and verified using hydrometeorological data from 1988 to 2001. The results indicate that the modeled daily and annual stream flow match the observed data both in the calibration period and the verification period, with a linear regression coefficient R2 and a coefficient e for modeled daily stream flow greater than 0.8 at Hengtangcun and Fanjiacun gauge stations. The results show that the runoff process in the Xitiaoxi catchment is affected both by rainfall and human activities (e.g., reservoirs and polder areas). Moreover, the human activities weaken flood peaks more noticeably during rainstorms. The Water balance analysis reveals the percentages of precipitation made up by surface flow, evapotranspiration, groundwater recharge' and the change of soil storage, all of which are considered useful to the further understanding of the hydrological processes in the Xitiaoxi catchment. This study provides a good base for further studies in mass transport modeling and comparison of modeling results from similar hydrological models. 展开更多
关键词 water balance analysis distributed hydrological model SWAT model Xitiaoxi catchment Taihu Lake
下载PDF
The Impact of Soil Freezing/Thawing Processes on Water and Energy Balances 被引量:5
9
作者 张霞 孙菽芬 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第1期169-177,共9页
A frozen soil parameterization coupling of thermal and hydrological processes is used to investigate how frozen soil processes affect water and energy balances in seasonal frozen soil. Simulation results of soil liqui... A frozen soil parameterization coupling of thermal and hydrological processes is used to investigate how frozen soil processes affect water and energy balances in seasonal frozen soil. Simulation results of soil liquid water content and temperature using soil model with and without the inclusion of freezing and thawing processes are evaluated against observations at the Rosemount field station. By comparing the simulated water and heat fluxes of the two cases, the role of phase change processes in the water and energy balances is analyzed. Soil freezing induces upward water flow towards the freezing front and increases soil water content in the upper soil layer. In particular, soil ice obviously prevents and delays the infiltration during rain at Rosemount. In addition, soil freezingthawing processes alter the partitioning of surface energy fluxes and lead the soil to release more sensible heat into the atmosphere during freezing periods. 展开更多
关键词 frozen soil water and energy balances freezing/thawing processes surface flux
下载PDF
Soil Water Balance Measurement in Field Scale 被引量:1
10
作者 CHEN ZHI-XIONGInstitute of Soil Science, A cademia Sinica, P.O.Box 821. Nanjing 210008 (China) 《Pedosphere》 SCIE CAS CSCD 1992年第2期115-124,共10页
A 5-year experiment on water balance has been conducted in a flat rainfed wheat field with an area of 66 × 100 m2 in Fengqiu, Henan Province in China. Based on the analysis of semi-variance functions conducted wi... A 5-year experiment on water balance has been conducted in a flat rainfed wheat field with an area of 66 × 100 m2 in Fengqiu, Henan Province in China. Based on the analysis of semi-variance functions conducted with soil moisture samples taken from 77 nodes of a 10 × 10m2 grid, the soil moisture distribution in the field was structural with a temporal stability. According to the autocorrelation range of the semi-variance function, S sites were selected for the determination of soil water conditions. The characteristic of probability density function of the differences of water storage in two sets of measurements showed that the distribution of these variables in the field was a normal one. The error in the estimation of the average of S random samples was 14% (α = 0.10), and the errors of water consumption by wheat during the experiments were estimated to be 6-13%.Since the experimental field was large enough to avoid any edge effect, the results obtained should tally with the actual situation. Yet the soil system was heterogeneous, so we must follow the principles of statistics and geostatistics when describing the system 's status with the average of the samples. 展开更多
关键词 field scale water balance
下载PDF
Hydrological Impact Assessment of Climate Change on Lake Tana’s Water Balance, Ethiopia 被引量:1
11
作者 Zemede Mulushewa Nigatu Tom Rientjes Alemseged Tamiru Haile 《American Journal of Climate Change》 2016年第1期27-37,共11页
The aim of this study is to evaluate the hydrological impacts of climate change on the water balance of Lake Tana in Ethiopia. Impact assessments are by downscaled General Circulation Model (GCM) output and hydrologic... The aim of this study is to evaluate the hydrological impacts of climate change on the water balance of Lake Tana in Ethiopia. Impact assessments are by downscaled General Circulation Model (GCM) output and hydrological modeling. For A2 and B2 emission scenarios, precipitation, maximum and minimum temperature estimates from the HadCM3 GCM were used. GCM output was downscaled using the Statistical DownScaling Model (SDSM 4.2). Impact analyses were applied for three future time periods: early, mid and late 21st century. Over-lake evaporation is estimated by Hardgrave’s method, and over-lake precipitation is estimated by inverse distance weighing interpolation, whereas inflows from gauged and ungauged catchments are simulated by the HBV hydrological model. Findings indicate increases in maximum and minimum temperature on annual base for both emission scenarios. The projection of mean annual over lake precipitation for both A2 and B2 emission scenarios shows increasing pattern for 21st century in comparison to the baseline period. The increase of mean annual precipitation for A2 emission scenario is 9% (112 mm/year), 10% (125 mm/year) and 11% (137 mm/year) for the three future periods respectively. B2 emission scenario mean annual precipitation shows increase by 9% (111 mm/year), 10% (122 mm/year) and 10% (130 mm/year) respectively for the three future periods. Findings indicate consistent increases of lake storage for all three future periods for both A2 and B2 emission scenarios. 展开更多
关键词 Climate Change water balance SDSM Statistical Downscaling Lake Tana
下载PDF
High Elevation Energy and Water Balance:the Roles of Surface Albedo and Temperature 被引量:4
12
作者 Massimo MENENTI Li JIA +13 位作者 Marco MANCINI Xin LI Francesca PELLICCIOTTI Kun YANG Jiancheng SHI Maria Jose ESCORIHUELA Chiara CORBARI Shaoting REN Chunfeng MA Chaolei ZHENG Lian LIU Thomas SHAW Baohong DING Wei YANG 《Journal of Geodesy and Geoinformation Science》 2020年第4期70-78,共9页
Observation and modeling of the coupled energy and water balance is the key to understand hydrospheric and cryospheric processes at high elevation.The paper summarizes the progress to address this aspect in relation w... Observation and modeling of the coupled energy and water balance is the key to understand hydrospheric and cryospheric processes at high elevation.The paper summarizes the progress to address this aspect in relation with different earth system elements,from glaciers to wetlands.The energy budget of two glaciers,i.e.Xiao Dongkemadi and Parlung No.4,was studied by means of extended field measurements and a distributed model of the coupled energy and mass balance was developed and evaluated.The need for accurate characterization of surface albedo was further documented for the entire Qinghai Tibet Plateau by numerical experiments with Weather Research and Forecast(WRF)on the sensitivity of the atmospheric boundary layer to the parameterization of land surface processes.A new approach to the calibration of a coupled distributed watershed model of the energy and water balance was demonstrated by a case study on the Heihe River Basin in northwestern China.The assimilation of land surface temperature did lead to the retrieval of critical soil and vegetation properties as the soil permeability and the canopy resistance to the exchange of vapour and carbon dioxide.The retrievals of actual Evapo-Transpiration(ET)were generated by the ETMonitor system and evaluated against eddy covariance measurements at sites spread throughout Asia.As regards glacier response to climate variability,the combined findings based on satellite data and model experiments showed that the spatial variability of surface albedo and temperature is significant and controls both glacier mass balance and flow.Experiments with both atmospheric and hydrosphere-cryosphere models documented the need and advantages of using accurate retrievals of land surface albedo to capture lan-atmosphere interactions at high elevation. 展开更多
关键词 ICE SNOW ALBEDO energy water balance
下载PDF
Thermodynamic Evaluation of Mineral Balance in Water Thickness of the Soda Lake Doroninskoe(Eastern Transbaikalia,Russia) 被引量:1
13
作者 Svetlana V.BORZENKO Leonid V.ZAMANA Daria S.SUVOROVA 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第S1期123-124,共2页
In recent years,lakes,including salted,attract the attention of researchers,also when reconstructing last climate changes using the bottom sediments(Solotchina et al.,2008,et al.).In this case the different geochemical
关键词 Thermodynamic Evaluation of Mineral balance in water Thickness of the Soda Lake Doroninskoe Eastern Transbaikalia Russia
下载PDF
On the Downscaling of Meteorological Fields Using Recurrent Networks for Modelling the Water Balance in a Meso-Scale Catchment Area of Saxony,Germany 被引量:1
14
作者 Rico Kronenberg Klemens Barfus +1 位作者 Johannes Franke Christian Bernhofer 《Atmospheric and Climate Sciences》 2013年第4期552-561,共10页
In this study, recurrent networks to downscale meteorological fields of the ERA-40 re-analysis dataset with focus on the meso-scale water balance were investigated. Therefore two types of recurrent neural networks wer... In this study, recurrent networks to downscale meteorological fields of the ERA-40 re-analysis dataset with focus on the meso-scale water balance were investigated. Therefore two types of recurrent neural networks were used. The first approach is a coupling between a recurrent neural network and a distributed watershed model and the second a nonlinear autoregressive with exogenous inputs (NARX) network, which directly predicted the component of the water balance. The approaches were deployed for a meso-scale catchment area in the Free State of Saxony, Germany. The results show that the coupled approach did not perform as well as the NARX network. But the meteorological output of the coupled approach already reaches an adequate quality. However the coupled model generates as input for the watershed model insufficient daily precipitation sums and not enough wet days were predicted. Hence the long-term annual cycle of the water balance could not be preserved with acceptable quality in contrary to the NARX approach. The residual storage change term indicates physical restrictions of the plausibility of the neural networks, whereas the physically based correlations among?the components of the water balance were preserved more accurately by the coupled approach. 展开更多
关键词 DOWNSCALING Recurrent Neural Networks NARX WaSim-ETH water balance ERA-40 Re-Analysis
下载PDF
Impacts of forestation on the annual and seasonal water balance of a tropical catchment under climate change
15
作者 Hero Marhaento Martijn J.Booij +1 位作者 Noorhadi Rahardjo Naveed Ahmed 《Forest Ecosystems》 SCIE CSCD 2021年第4期856-871,共16页
Background:This study aims to assess the effects of a forestation program and climate change on the annual and seasonal water balance of the Bogowonto catchment(597 km^(2))in Java,Indonesia.The catchment study is rare... Background:This study aims to assess the effects of a forestation program and climate change on the annual and seasonal water balance of the Bogowonto catchment(597 km^(2))in Java,Indonesia.The catchment study is rare example in Indonesia where forestation has been applied at the catchment level.However,since the forestation program has been initiated,evaluations of the program only focus on the planting area targets,while the environmental success e.g.,impacts on the hydrological processes have never been assessed.This study used a calibrated Soil and Water Assessment Tool(SWAT)model to diagnose the isolated and combined effects of forestation and climate change on five water balance components,namely streamflow(Q),evapotranspiration(ET),surface runoff(Q_(s)),lateral flow(Q_(l))and base flow(Q_(b)).Results:The results show that from 2006 to 2019,forest cover has increased from 2.7% to 12.8% of the total area,while in the same period there was an increase in the mean annual and seasonal temperature,rainfall,and streamflow.Results of SWAT simulations show that changes in the mean annual and seasonal water balance under the forestation only scenario were relatively minor,while changes were more pronounced under the climate change only scenario.Based on the combined impacts scenario,it was observed that the effects of a larger forest area on the water balance were smaller than the effects of climate change.Conclusions:Although we found that forestation program has minor impacts compared to that of climate change on the hydrological processes in the Bogowonto catchment,seasonally,forestation activity has decreased the streamflow and surface runoff during the wet season which may reduce the risk of moderate floods.However,much attention should be paid to the way how forestation may result in severe drought events during the dry season.Finally,we urge the importance of accounting for the positive and negative effects in future forestation programs. 展开更多
关键词 Forestation Land use change Climate change SWAT model water balance Bogowonto catchment
下载PDF
SimET: An open-source tool for estimating crop evapotranspiration and soil water balance for plants with multiple growth cycles
16
作者 Minguo Liu Mei Yang Huimin Yang 《The Crop Journal》 SCIE CSCD 2023年第5期1579-1585,共7页
Accurate estimation of crop evapotranspiration(ETc) and soil water balance, which is vital for optimizing water management strategy in crop production, can be performed by simulation. But existing software has many de... Accurate estimation of crop evapotranspiration(ETc) and soil water balance, which is vital for optimizing water management strategy in crop production, can be performed by simulation. But existing software has many deficiencies, including complex operation, limited scalability, lack of batch processing, and a single ETc model. Here we present simET, an open-source software package written in the R programming language. Many concepts involved in crop ETc simulation are condensed into functions in the package. It includes three widely used crop ETc models built on these functions: the single-crop coefficient,double-crop coefficient, and Shuttleworth–Wallace models, along with tools for preparing model data and comparing estimates. SimET supports ETc simulation in crops with repeated growth cycles such as alfalfa, a perennial forage crop that is cut multiple times annually. 展开更多
关键词 Crop evapotranspiration Soil water balance Evapotranspiration model R package
下载PDF
Study on the Balance of Agricultural Water and Land Resources on Ningxia Plain
17
作者 Zhang Jing Feng Zhiming Yang Yanzhao 《Chinese Journal of Population,Resources and Environment》 北大核心 2006年第2期33-40,共8页
The article puts forward the process and means of regional water and land balance research, and then from two scenarios which are the balances under natural regulation and human intervention, calculated and analysed t... The article puts forward the process and means of regional water and land balance research, and then from two scenarios which are the balances under natural regulation and human intervention, calculated and analysed the balance between water and land on Ningxia Plain. For the balance under natural regulation named farmland water balance, using farmland water resource balance equation, the research estimated the monthly farmland water balance of 8 major crops for all of the 12 counties on Ningxia Plain in the period of 1960-2001; for the balance under human intervention, the research estimated land-use water balance equation of the counties in 2000, and calculated the balance between land use and water resources including irrigating water of all the 12 counties on Ningxia Plain. Results showed that①precipitation can not meet the water demand of the crops for growth and development on Ningxia Plain, and water shortage is the primary character of farmland water balance under natural regulation,②the diversity of water and land balance of different counties is distinctly influenced by the crop structure, water quantity for irrigation and irrigation level.③Irrigation water could meet the crop water demand on Ningxia Plain in 2000, but there was not much space to expand irrigating cultivated land. 展开更多
关键词 farmland water balance water and land balance sustainable development Ningxia Plain.
下载PDF
The evolution and enlightenment of water resourcesaccounting from accounts to balance sheet
18
作者 FuHui Jian XiaoYu Song +1 位作者 LiLi Li WenQi Gao 《Research in Cold and Arid Regions》 CSCD 2016年第2期156-162,共7页
The Third Plenary Session of the 18 th Central Committee of the Communist Party of China has proposed an important national strategic decision: to explore and establish the balance sheet of natural resources, to imple... The Third Plenary Session of the 18 th Central Committee of the Communist Party of China has proposed an important national strategic decision: to explore and establish the balance sheet of natural resources, to implement leaders’ of-office auditing system about natural resources assets. Water is one of the most essential nature resources of human beings; water resources accounting, as an important water resources management tool, is an essential part of compiling the natural resources balance sheet. In this paper, we provide a summary of the historic evolution of water resources accounting and analyze its application in some typical countries. Although water resources accounting and water resources balance sheet reflect different implications and focus, both require water resources accounts as the basis in system establishment. 展开更多
关键词 water resources water accounts water accounting water balance sheet
下载PDF
Impacts of Systematic Precipitation Bias on Simulations of Water and Energy Balances in Northwest America
19
作者 Youlong XIA 徐国强 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第5期739-749,共11页
At high latitudes and in mountainous areas, evaluation and validation of water and energy flux simu-lations are greatly affected by systematic precipitation errors. These errors mainly come from topographic effects an... At high latitudes and in mountainous areas, evaluation and validation of water and energy flux simu-lations are greatly affected by systematic precipitation errors. These errors mainly come from topographic effects and undercatch of precipitation gauges. In this study, the Land Dynamics (LAD) land surface model is used to investigate impacts of systematic precipitation bias from topography and wind-blowing on water and energy flux simulation in Northwest America. The results show that topographic and wind adjustment reduced bias of streamflow simulations when compared with observed streamflow at 14 basins. These systematic biases resulted in a -50%-100% bias for runoff simulations, a -20%-20% bias for evapotranspiration, and a -40%-40% bias for sensible heat flux, subject to different locations and adjustments, when compared with the control run. Uncertain gauge adjustment leads to a 25% uncertainty for precipitation, a 20% 100% uncertainty for runoff simulation, a less-than-10% uncertainty for evapotranspiration, and a less-than-20% uncertainty for sensible heat flux. 展开更多
关键词 LaD model bias adjustment water and energy balance Northwest America
下载PDF
Investigation of Water Balance and Map Crisis Preparation in the Recent Two Decades of Kalacho Plain,Dehdasht,Iran
20
作者 KhShafiei Motlagh NEbadati 《Journal of Geological Resource and Engineering》 2020年第3期90-100,共11页
Considering the water restrictions,it is important to check the water balance in each area.These restrictions are even more important in arid and semi-arid regions.The purpose of this study was to study the water bala... Considering the water restrictions,it is important to check the water balance in each area.These restrictions are even more important in arid and semi-arid regions.The purpose of this study was to study the water balance in the Kalacho plain of Kohgiluyeh city.Kalacho plain is about 15 km east of Dehdasht city.In recent years,due to the excessive extraction of lowland wells,the quality of groundwater has also declined steadily.Therefore,hydrogeological assessment and aquifer management seems necessary.Groundwater management requires understanding and functioning of the aquifer under natural conditions(firstly)and then predicting the effects of harvesting or feeding.Undoubtedly,understanding the actual behaviors of a natural system requires some research for each particular area.The average annual temperature and precipitation in the meteorological stations is about 18.1°C and 394 mm,respectively.The water crisis map of this plain has been prepared based on the data of 45 km2 area during the 1991-1992 blue water year.Groundwater Balance Range of the Kalacho Plain is selected based on available statistics and distribution of piezometers,wells and agricultural areas.According to the long-term hydrograph,the plain faces an average loss of 0.15 m and a reservoir deficit of 2.5 million m3.Also during the 20-year period,a total of 24 m of drop and 68 million cubic meters of reservoir deficits were created in the plain.By calculating the effective parameters in the general water balance equation(inputs and outputs),the plain was finally divided into five critical areas.Zones 1,2 and 3 are the most critical lowland areas in the vicinity of the hydraulic connection with the Gachsaran Fm.,and areas 4 and 5 are less critical because of the adjacent Asmari Formation,which feed on this karstic aquifer.Overall,this negative balance indicates an increasing drop in groundwater level and its reservoir deficit. 展开更多
关键词 water balance crisis map Kalacho Plain
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部