To our knowledge,precise data concerning the pollution in terms of qualitative and quantitative fluctuations in discharge water from the laundry sector have seldom been reported.This study investigated the chemical co...To our knowledge,precise data concerning the pollution in terms of qualitative and quantitative fluctuations in discharge water from the laundry sector have seldom been reported.This study investigated the chemical composition of the discharge water from a laundry industry.Over 160 chemical substances and 15 standard water parameters were monitored.The results showed that the discharge water presented both inorganic and organic polycontamination with a high degree of qualitative and quantitative variability.However,of all monitored substances,only five metals(Al,Cu,Fe,Sr,and Zn),five minerals(P,Ca,K,Na,and S),and alkylphenols were systematically present and quantifiable.For a daily average water flow of 129 m^(3),the released metal flux was 356 g/d.Substances,such as trichloromethane,brominated diphenyl ether(BDE)47,and fluorides,were occasionally found and quantified.Other substances,such as chlorophenols,organo-tins,and pesticides were never identified.All the samples had quantifiable levels in the chemical oxygen demand(COD),biological oxygen demand(BOD),and hydrocarbons.Only the concentrations of Zn(8.3 g/d),Cu(21.4 g/d),and BOD(57.4 g/d)were close to or above the regulatory values:74.0 g/d for Zn,9.0 g/d for Cu,and 57.0 kg/d for BOD.The data obtained from this study are useful to the choice of additional treatments for the reduction of pollutant fluxes.展开更多
Based on the data from gauging stations, the changes in water discharge and sediment load of the Huanghe (Yellow) River were analyzed by using the empirical mode decomposition (EMD) method. The results show that t...Based on the data from gauging stations, the changes in water discharge and sediment load of the Huanghe (Yellow) River were analyzed by using the empirical mode decomposition (EMD) method. The results show that the periodic oscillation of water discharge and sediment load of the Huanghe River occurs at the interannual, decadal, and multi-decadal scales, caused by the periodic oscillations of precipitation, and E1 Nifio/Southern Oscillation (ENSO) af- fects water discharge by influencing precipitation distribution and contributes to periodic varations in precipitation and water discharge at interannual timescale. The water discharge and sediment load of the Huanghe River have decreased since the 1960s under the influence of precipitation and huamn activities, and human activities attribute more than precipitation to the reduction in the water discharge and sediment load, furthermore, water abstraction and water-soil conservation practices are the main causes of the decrease in water discharge and sediment load, respectively. The reduction in sediment load has directly impacted on the lower reaches of the Huanghe River and the river delta, causing considerable erosion of the river channel in the lower reaches since the 1970s along with River Delta changing siltation into erosion around 2000.展开更多
As critical component of hydrologic cycle, basin discharge is a key issue for understanding the hydrological and climatologic related to water and energy cycles. Combining GRACE gravity field models with ET from GLDAS...As critical component of hydrologic cycle, basin discharge is a key issue for understanding the hydrological and climatologic related to water and energy cycles. Combining GRACE gravity field models with ET from GLDAS models and precipitation from GPCP, discharge of the Yellow River basin are estimated from the water balance equation. While comparing the results with discharge from GLDAS model and in situ measurements, the results reveal that discharge from Mosaic and CLM GLDAS model can partially represent the river discharge and the discharge estimation from water balance equation could reflect the discharge from precipitation over the Yellow River basin.展开更多
Effective removal of adhesive and fine dusts from flue gas is very difficult. A new method of electrostatic precipitation of the corona discharges with spraying water(CDSW) was introduced. A new electrode configuratio...Effective removal of adhesive and fine dusts from flue gas is very difficult. A new method of electrostatic precipitation of the corona discharges with spraying water(CDSW) was introduced. A new electrode configuration and the circulation spraying of water were employed in the method. The efficient electrostatic precipitation for adhesive and fine dusts can be accomplished without any drain water during a long operating period. The fundamental structure, discharge characteristics, mechanism of spraying and precipitation principle of the electrostatic precipitation using CDSW were described and analyzed. The V I characteristics, spraying state, supplying water quantity, influence of temperature and clean of the electrodes were researched in series experiments. The treating effects of circulating spraying using the corona plasma at the same time of electrostatic precipitation were investigated. The fundamental theories and experimental data were proposed, in order to effectively remove the adhesive dusts from flue gas using CDSW in practice.展开更多
Influences of large-scale climatic phenomena, such as the E1Nifio/La Nifia-Southem Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO), on the temporal variations of the annual water discharge at the Liji...Influences of large-scale climatic phenomena, such as the E1Nifio/La Nifia-Southem Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO), on the temporal variations of the annual water discharge at the Lijin station in the Huanghe (Yellow) River and at the Datong station in the Changjiang (Yangtze) River were examined. Using the empirical mode decomposition-maximum entropy spectral analysis (EMD- MESA) method, the 2- to 3-year, 8- to 14-year, and 23-year cyclical variations of the annual water discharge at the two stations were discovered. Based on the analysis results, the hydrological time series on the inter- annual to interdecadal scales were constructed. The results indicate that from 1950 to 2011, a significant downward trend occurred in the natural annual water discharge in Huanghe River. However, the changes in water discharge in Changjiang River basin exhibited a slightly upward trend. It indicated that the changes in the river discharge in the Huanghe basin were driven primarily by precipitation. Other factors, such as the precipitation over the Changjiang River tributaries, ice melt and evaporation contributed much more to the increase in the Changjiang River basin. Especially, the impacts of the inter-annual and inter-decadal climate oscillations such as ENSO and PDO could change the long-term patterns of precipitation over the basins of the two major rivers. Generally, low amounts of basin-wide precipitation on interannual to interdecadal scales over the two rivers corresponded to most of the warm ENSO events and the warm phases of the PDO, and vice versa. The positive phases of the PDO and ENSO could lead to reduced precipitation and consequently affect the long-term scale water discharges at the two rivers.展开更多
In order to determine how the subaqueous delta evolution depends on the water and sediment processes in the Yangtze Estuary, the amounts of water and sediment discharged into the estuary were studied. The results show...In order to determine how the subaqueous delta evolution depends on the water and sediment processes in the Yangtze Estuary, the amounts of water and sediment discharged into the estuary were studied. The results show that, during the period from 1950 to 2010, there was no significant change in the annual water discharge, and the multi-annual mean water discharge increased in dry seasons and decreased in flood seasons. However, the annual sediment discharge and the multi-annual mean sediment discharge in flood and dry seasons took on a decreasing trend, and the intra-annual distribution of water and sediment discharges tended to be uniform. The evolution process from deposition to erosion occurred at the -10 m and -20 m isobaths of the subaqueous delta. The enhanced annual water and sediment discharges had a silting-up effect on the delta, and the effect of sediment was greater than that of water. Based on data analysis, empirical curves were built to present the relationships between the water and sediment discharges over a year or in dry and flood seasons and the erosion/deposition rates in typical regions of the suhaqueous delta, whose evolution followed the pattern of silting in flood seasons and scouring in dry seasons. Notably, the Three Gorges Dam has changed the distribution processes of water and sediment discharges, and the dam's regulating and reserving functions can benefit the subaqueous delta deposition when the annual water and sediment discharges are not affected.展开更多
Based on hydrometric data and extensive investigations on water-extracting projects, this paper presents a preliminary study on water discharge changes between Datong and Xuliujing during dry season. The...Based on hydrometric data and extensive investigations on water-extracting projects, this paper presents a preliminary study on water discharge changes between Datong and Xuliujing during dry season. The natural hydrological processes and human factors that influence the water discharge are analyzed with the help of GIS method. The investigations indicate that the water-extracting projects downstream from Datong to Xuliujing had amounted to 64 in number by the end of 2000, with a water-extracting capacity up to 4,626 m 3 /s averaged in a tidal cycle. The water extraction from the Changjiang River has become the most important factor influencing the water discharge downstream Datong during dry season. The potential magnitude in water discharge changes are estimated based on historical records of water extraction and a water balance model. The computational results were calibrated with the actual data. The future trend in changes of water discharge into the sea during dry season was discussed by taking into consideration of newly built hydro-engineering projects. The water extraction downstream Datong in dry season before 2000 had a great influence on discharges into the sea in the extremely dry year like 1978-1979. It produced a net decrease of more than 490 m 3 /s in monthly mean discharges from the Changjiang into the sea. It is expected that the water extraction will continually increase in the coming decades, especially in dry years, when the net decrease in monthly mean water discharge will increase to more than 1000 m 3 /s and will give a far-reaching effect on the changes of water discharge from the Changjiang into the sea.展开更多
In order to realize the prediction of a chaotic time series of mine water discharge,an approach incorporating phase space reconstruction theory and statistical learning theory was studied.A differential entropy ratio ...In order to realize the prediction of a chaotic time series of mine water discharge,an approach incorporating phase space reconstruction theory and statistical learning theory was studied.A differential entropy ratio method was used to determine embedding parameters to reconstruct the phase space.We used a multi-layer adaptive best-fitting parameter search algorithm to estimate the LS-SVM optimal parameters which were adopted to construct a LS-SVM prediction model for the mine water chaotic time series.The results show that the simulation performance of a single-step prediction based on this LS-SVM model is markedly superior to that based on a RBF model.The multi-step prediction results based on LS-SVM model can reflect the development of mine water discharge and can be used for short-term forecasting of mine water discharge.展开更多
This paper presents the results of a theoretical and experimental study of the use of a pulsed discharge in water to obtain a strong acoustic wave in a liquid medium.A discharge with a current amplitude of 10 kA,a dur...This paper presents the results of a theoretical and experimental study of the use of a pulsed discharge in water to obtain a strong acoustic wave in a liquid medium.A discharge with a current amplitude of 10 kA,a duration of 400 ns,and an amplitude pulsed power of 280 MW in water at atmospheric pressure created an expanding acoustic wave with an amplitude of more than 100 MPa.To describe the formation of the discharge channel,an isothermal plasma model has been developed,which made it possible to calculate both the expansion dynamics of a high-current channel and the strong acoustic wave generated by it.Our calculations show that the number density of plasma in the channel reaches 10^(20) cm^(-3),while the degree of water vapor ionization is about 10%,and the channel wall extends with a velocity of 500 m s^(−1).The calculations for the acoustic wave are in good agreement with measurements.展开更多
Thermal power plants are generally constructed near to sea coast to meet their requirement of coolingwater. The warm water discharge from the thermal power plant is one of the major environmentalconcerns in view of th...Thermal power plants are generally constructed near to sea coast to meet their requirement of coolingwater. The warm water discharge from the thermal power plant is one of the major environmentalconcerns in view of the thermal pollution in the sea water. The temperature limit for the warm waterdischarge from the thermal power plant has to be monitored and controlled. Coastal Gujarat PowerLimited (CGPL) operates (24×7) at an “once-through system” based sea water circulation for powergeneration. The used sea water is then discharged into the sea through an outlet channel. As per environmental norms, the discharge water temperature needs to be maintained below the stipulated “delta”rise (+7 ℃) with respect to ambient sea surface temperature at the inlet. We demonstrate the applicability of thermal remote sensing data in understanding the seasonal and temporal variations of thetemperature difference between the discharge water and the ambient sea water. We used thermal banddata from Landsat-8 satellite imagery to map water surface temperature and create temperature profilesalong the intake and outflow channels (till the sea), to understand the variation of temperature andestimate the “DT” between intake point and various observation points along the outflow. This analysiswas carried out for all 11 months (except June) of the year 2018 to correlate temperature variations withseasonal changes. Tidal conditions during the time of data acquisition were also considered to accountfor the effect of tides on DT. The result shows that the average temperature rise between intake andoutflow are maintained at ~3 ℃ across all the months of 2018, with minor variations in the months ofJuly and August. Further, average temperature drop from outflow to cooling channel (before diaphragm)is seen to be ~2 ℃ across all the months with similar seasonal fluctuations.展开更多
River-dominated deltas are commonly developed at modern bays and lakes and ancient petroliferous basins.Water discharge is an important variable at pay zone scales in river-dominated delta reservoirs,which affects del...River-dominated deltas are commonly developed at modern bays and lakes and ancient petroliferous basins.Water discharge is an important variable at pay zone scales in river-dominated delta reservoirs,which affects deltaic sand distributions and evolutions.However,it's unclear how it influences riverdominated delta growth.This paper integrates Delft3 D simulations and modern analogs to analyze the effects of water discharge,considering growth time,sediment supply,and coupled effects of sediment properties.High water discharges lead to the formation of lobate deltas,and the water discharge of 1,000 m~3/s is a referenced threshold value.Fine-grained,highly-cohesive sediments increase the threshold values of water discharge at which the deltas become lobate from digitate,and vice versa.For the same simulation time,high water discharges favor more rugose shorelines,more distributary channels(especially secondary distributaries),and longer and wider deltas with more land areas.However,for the same sediment supply,high water discharges have few effects on shoreline roughness and the number of distributary channels.展开更多
Industrial discharge water, and especially that from the surface treatment industry (ST), contains non-negligible amounts of pollutants even though the legislation is fully respected. In spite of this, no detailed stu...Industrial discharge water, and especially that from the surface treatment industry (ST), contains non-negligible amounts of pollutants even though the legislation is fully respected. In spite of this, no detailed studies list the exact chemical composition of these effluents. The present study reports the results of analyses performed over a 6-month period involving 15 standard water parameters. Over 160 substances including 33 metals, 58 volatile organic compounds (VOCs), 16 polycyclic aromatic hydrocarbons (PAHs), 24 chlorophenols (CPs), 16 alkylphenols (APs), 5 chloroanilines (CAs) and 7 polychlorobiphenyls (PCBs) were monitored. The industrial effluents presented polycontamination involving metals, minerals and organics with a high degree of qualitative and quantitative variability. Of the 160 substances monitored, 46 were regularly found: 25 inorganics including 8 metals (Co, Cr, Cu, Fe, Ni, Pb, Sn, Zn) and 21 organics (4 PAHs, 10 VOCs, 4 CPs and 3 APs). Eighteen were systematically presented at quantifiable levels.展开更多
Groundwater extraction is used to alleviate drought in many habitats. However, widespread drought decreases spring discharge and there is a need to integrate climate change research into resource management and action...Groundwater extraction is used to alleviate drought in many habitats. However, widespread drought decreases spring discharge and there is a need to integrate climate change research into resource management and action. Accurate estimates of groundwater discharge may be valuable in improving decision support systems of hydrogeological resource exploitation. The present study performs a forecast for groundwater discharge in Aquifer?s Cervialto Mountains(southern Italy). A time series starting in 1883 was the basis for longterm predictions. An Ensemble Discharge Prediction(EDis P) was applied, and the progress of the discharge ensemble forecast was inferred with the aid of an Exponential Smoothing(ES) model initialized at different annual times. EDisP-ES hindcast model experiments were tested, and discharge plume-patterns forecast was assessed with horizon placed in the year 2044. A 46-year cycle pattern was identified by comparing simulations and observations, which is essential for the forecasting purpose. ED is P-ES performed an ensemble mean path for the coming decades that indicates a discharge regime within ± 1 standard deviation around the mean value of 4.1 m^3 s^(-1). These fluctuations are comparable with those observed in the period 1961-1980 and further back, with changepoints detectable around the years 2025 and 2035. Temporary drought conditions are expected after the year 2030.展开更多
The release of nuclear wastewater by Japan has generated strong opposition from Japanese citizens,governments of neighboring countries,and global environmental advocates.China,representing the concerns of neighboring ...The release of nuclear wastewater by Japan has generated strong opposition from Japanese citizens,governments of neighboring countries,and global environmental advocates.China,representing the concerns of neighboring countries,has underscored the illicit and detrimental nature of this action.This study explores the metaphors employed in Chinese media regarding the discharge of Fukushima nuclear-contaminated water.Based on the self-built corpus,we reveal the rhetorical motives underlying the metaphors,drawing on the framework of critical metaphor analysis.The study centers on two major metaphors-war and liar metaphors-in the discourse of two Chinese official media,China Daily and People’s Daily Online.It is found that according to Chinese media,initiating and protesting the discharge of Fukushima nuclear-contaminated water is a war;and that the Japanese government and TEPCO are liars.The metaphor choices reflect China’s stance of opposition and condemnation against the discharge and its intention of uncovering deceptive and misleading information.展开更多
In order to find out the variation process of water-sediment and its effect on the Yellow River Delta, the water discharge and sediment load at Lijin from 1950 to 2007 and the decrease of water discharge and sediment ...In order to find out the variation process of water-sediment and its effect on the Yellow River Delta, the water discharge and sediment load at Lijin from 1950 to 2007 and the decrease of water discharge and sediment load in the Yellow River Basin caused by human disturbances were analyzed by means of statistics. It was shown that the water discharge and sediment load into the sea were decreasing from 1950 to 2007 with serious fluctuation. The human activities were the main cause for decrease of water discharge and sediment load into the sea. From 1950 to 2005, the average annual reduction of water discharge and sediment load by means of water-soil conservation practices were 2.02×10^9 m^3 and 3.41×10^8 t respectively, and the average annual volume by water abstraction for industry and agriculture were 2.52×10^10 m^3 and 2.42×10^8 t respectively. The average sediment trapped by Sanmenxia Reservoir was 1.45×10^8 t from 1960 to 2007, and the average sediment retention of Xiaolangdi Reservoir was 2.398×10^8t from 1997 to 2007. Compared to the data records at Huanyuankou, the water discharge and sediment load into the sea decreased with siltation in the lower reaches and increased with scouring in the lower reaches. The coastline near river mouth extended and the delta area increased when the ratio of accumulative sediment load and accumulative water discharge into the sea (SSCT) is 25.4-26.0 kg/m^3 in different time periods. However, the sharp decrease of water discharge and sediment load into the sea in recent years, especially the Yellow River into the sea at Qing 8, the entire Yellow River Delta has turned into erosion from siltation, and the time for a reversal of the state was about 1997.展开更多
Via the valuable opportunity of the Three Gorges Reservoir (TGR) 135-m filling in June 2003, the Yangtze discharge and suspended sediment concentration (SSC) entering the estuary during the period from 15 May to 15 Ju...Via the valuable opportunity of the Three Gorges Reservoir (TGR) 135-m filling in June 2003, the Yangtze discharge and suspended sediment concentration (SSC) entering the estuary during the period from 15 May to 15 July 2003 were analyzed to examine the instant effects of the filling on them. The Yangtze discharge and SSC entering the estuary in the periods before, during and after the filling clearly indicated three phases: 1) the pre-storage phase characterized by natural conditions, in which the SSC increased with increasing water discharge; 2) the storage phase, during which the SSC decreased dramatically with decreasing water discharge; and 3) the post-storage phase, during which both the SSC and water discharge remained at relatively low levels first until the end of June, then the SSC increased gradually with increasing water discharge. It seems that the times for the instant effects of the decreasing discharge downstream from the upper Yangtze on the Yangtze discharge and SSC entering the estuary due to the TGR 135-m filling to take place were about 5 d and 1 d respectively, while both were about 18 d for those of the increasing discharge. This probably reflects the buffering and resultantly hysteresis of the 1800-km stretch from the upper Yangtze to the estuary. The results are helpful for scientific and hydrological investigation of the Yangtze mainstream downstream from the TGR Dam and of the estuarine and adjacent coastal waters.展开更多
A new sparker system based on pulsed spark discharge with a single electrode has already been utilized for oceanic seismic exploration. However, the electro-acoustic energy efficiency of this system is lower than that...A new sparker system based on pulsed spark discharge with a single electrode has already been utilized for oceanic seismic exploration. However, the electro-acoustic energy efficiency of this system is lower than that of arc discharge based systems. A simple electrode structure was investigated in order to improve the electro-acoustic energy efficiency of the spark discharge. Experiments were carried out on an experimental setup with discharge in water driven by a pulsed power source. The voltage-current waveform, acoustic signal and bubble oscillation were recorded when the relative position of the electrode varied. The electro-acoustic energy , efficiency was also calculated. The load voltage had a saltation for the invaginated electrode tip, namely an obvious voltage remnant. The more the electrode tip was invaginated, the larger the pressure peaks and first period became. The results show that electrode recessing into the insulating layer is a simple and effective way to improve the electro-acoustic energy efficiency from 2% to about 4%.展开更多
Plasma processing induced by discharge offers a unique way to activate nitrogen molecules. Direct nitrogen fixation into water can be realized through this approach. In this study, air or pure nitrogen gas was used as...Plasma processing induced by discharge offers a unique way to activate nitrogen molecules. Direct nitrogen fixation into water can be realized through this approach. In this study, air or pure nitrogen gas was used as the major nitrogen source bubbled into the discharge reactor. When a discharge occurred, nitrogen was dissociated to active species to take part in the aqueous chemical process. HNO3 and HNO2 were produced. The nitrogen fixation process was influenced distinctly by the presence of hydroxyl radicals. During a discharge of 21 min, HNO3 was the main product and occupied 95% of the total nitrogen content in water. Its concentration was 1.36 × 10^-3 mol/L^-1 with bubbling air and was 1.53 × 10^-3 mol L^-1 with bubbling nitrogen, while the yield was 2.32 × 10^-3 mol J^-1S^-1 and 2.06 × 10^-8 mol J^-1S^-1, respectively.展开更多
Electric discharge in and in contact with water can accompany ultraviolet(UV)radiation and electron impact, which can generate a large number of active species such as hydroxyl radicals(OH), oxygen radical(O), o...Electric discharge in and in contact with water can accompany ultraviolet(UV)radiation and electron impact, which can generate a large number of active species such as hydroxyl radicals(OH), oxygen radical(O), ozone(O_3) and hydrogen peroxide(H_2O_2). In this paper, a nonthermal plasma processing system was established by means of dielectric barrier discharge(DBD)arrays in water mist spray. The relationship between droplet size and water content was examined,and the effects of the concentrations of oxides in both treated water and gas were investigated under different water content and discharge time. The relative intensity of UV spectra from DBD in water mist was a function of water content. The concentrations of both O_3 and nitrogen dioxide(NO_2) in DBD room decreased with increasing water content. Moreover, the concentrations of H_2O_2, O_3 and nitrogen oxides(NOx) in treated water decreased with increasing water content,and all the ones enhanced after discharge. The experimental results were further analyzed by chemical reaction equations and commented by physical principles as much as possible. At last,the water containing phenol was tested in this system for the concentration from 100 mg/L to9.8 mg/L in a period of 35 min.展开更多
文摘To our knowledge,precise data concerning the pollution in terms of qualitative and quantitative fluctuations in discharge water from the laundry sector have seldom been reported.This study investigated the chemical composition of the discharge water from a laundry industry.Over 160 chemical substances and 15 standard water parameters were monitored.The results showed that the discharge water presented both inorganic and organic polycontamination with a high degree of qualitative and quantitative variability.However,of all monitored substances,only five metals(Al,Cu,Fe,Sr,and Zn),five minerals(P,Ca,K,Na,and S),and alkylphenols were systematically present and quantifiable.For a daily average water flow of 129 m^(3),the released metal flux was 356 g/d.Substances,such as trichloromethane,brominated diphenyl ether(BDE)47,and fluorides,were occasionally found and quantified.Other substances,such as chlorophenols,organo-tins,and pesticides were never identified.All the samples had quantifiable levels in the chemical oxygen demand(COD),biological oxygen demand(BOD),and hydrocarbons.Only the concentrations of Zn(8.3 g/d),Cu(21.4 g/d),and BOD(57.4 g/d)were close to or above the regulatory values:74.0 g/d for Zn,9.0 g/d for Cu,and 57.0 kg/d for BOD.The data obtained from this study are useful to the choice of additional treatments for the reduction of pollutant fluxes.
基金Under the auspices of Major State Basic Research Development Program of China(No.2010CB951202)Ocean Public Welfare Scientific Research Project,State Oceanic Administration of the People's Republic of China(No.200805063)
文摘Based on the data from gauging stations, the changes in water discharge and sediment load of the Huanghe (Yellow) River were analyzed by using the empirical mode decomposition (EMD) method. The results show that the periodic oscillation of water discharge and sediment load of the Huanghe River occurs at the interannual, decadal, and multi-decadal scales, caused by the periodic oscillations of precipitation, and E1 Nifio/Southern Oscillation (ENSO) af- fects water discharge by influencing precipitation distribution and contributes to periodic varations in precipitation and water discharge at interannual timescale. The water discharge and sediment load of the Huanghe River have decreased since the 1960s under the influence of precipitation and huamn activities, and human activities attribute more than precipitation to the reduction in the water discharge and sediment load, furthermore, water abstraction and water-soil conservation practices are the main causes of the decrease in water discharge and sediment load, respectively. The reduction in sediment load has directly impacted on the lower reaches of the Huanghe River and the river delta, causing considerable erosion of the river channel in the lower reaches since the 1970s along with River Delta changing siltation into erosion around 2000.
基金funded by the National 973 Project China (2013CB733302)National Natural Science Foundation of China (41504014, 41474019)
文摘As critical component of hydrologic cycle, basin discharge is a key issue for understanding the hydrological and climatologic related to water and energy cycles. Combining GRACE gravity field models with ET from GLDAS models and precipitation from GPCP, discharge of the Yellow River basin are estimated from the water balance equation. While comparing the results with discharge from GLDAS model and in situ measurements, the results reveal that discharge from Mosaic and CLM GLDAS model can partially represent the river discharge and the discharge estimation from water balance equation could reflect the discharge from precipitation over the Yellow River basin.
文摘Effective removal of adhesive and fine dusts from flue gas is very difficult. A new method of electrostatic precipitation of the corona discharges with spraying water(CDSW) was introduced. A new electrode configuration and the circulation spraying of water were employed in the method. The efficient electrostatic precipitation for adhesive and fine dusts can be accomplished without any drain water during a long operating period. The fundamental structure, discharge characteristics, mechanism of spraying and precipitation principle of the electrostatic precipitation using CDSW were described and analyzed. The V I characteristics, spraying state, supplying water quantity, influence of temperature and clean of the electrodes were researched in series experiments. The treating effects of circulating spraying using the corona plasma at the same time of electrostatic precipitation were investigated. The fundamental theories and experimental data were proposed, in order to effectively remove the adhesive dusts from flue gas using CDSW in practice.
基金Supported by the National Basic Research Program of China(973 Program)(No.2010CB951202)the National Natural Science Foundation of China(Nos.41376055,41030856)
文摘Influences of large-scale climatic phenomena, such as the E1Nifio/La Nifia-Southem Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO), on the temporal variations of the annual water discharge at the Lijin station in the Huanghe (Yellow) River and at the Datong station in the Changjiang (Yangtze) River were examined. Using the empirical mode decomposition-maximum entropy spectral analysis (EMD- MESA) method, the 2- to 3-year, 8- to 14-year, and 23-year cyclical variations of the annual water discharge at the two stations were discovered. Based on the analysis results, the hydrological time series on the inter- annual to interdecadal scales were constructed. The results indicate that from 1950 to 2011, a significant downward trend occurred in the natural annual water discharge in Huanghe River. However, the changes in water discharge in Changjiang River basin exhibited a slightly upward trend. It indicated that the changes in the river discharge in the Huanghe basin were driven primarily by precipitation. Other factors, such as the precipitation over the Changjiang River tributaries, ice melt and evaporation contributed much more to the increase in the Changjiang River basin. Especially, the impacts of the inter-annual and inter-decadal climate oscillations such as ENSO and PDO could change the long-term patterns of precipitation over the basins of the two major rivers. Generally, low amounts of basin-wide precipitation on interannual to interdecadal scales over the two rivers corresponded to most of the warm ENSO events and the warm phases of the PDO, and vice versa. The positive phases of the PDO and ENSO could lead to reduced precipitation and consequently affect the long-term scale water discharges at the two rivers.
基金supported by the National Basic Research Program of China(the 973 Program,Grant No.2010CB429002)
文摘In order to determine how the subaqueous delta evolution depends on the water and sediment processes in the Yangtze Estuary, the amounts of water and sediment discharged into the estuary were studied. The results show that, during the period from 1950 to 2010, there was no significant change in the annual water discharge, and the multi-annual mean water discharge increased in dry seasons and decreased in flood seasons. However, the annual sediment discharge and the multi-annual mean sediment discharge in flood and dry seasons took on a decreasing trend, and the intra-annual distribution of water and sediment discharges tended to be uniform. The evolution process from deposition to erosion occurred at the -10 m and -20 m isobaths of the subaqueous delta. The enhanced annual water and sediment discharges had a silting-up effect on the delta, and the effect of sediment was greater than that of water. Based on data analysis, empirical curves were built to present the relationships between the water and sediment discharges over a year or in dry and flood seasons and the erosion/deposition rates in typical regions of the suhaqueous delta, whose evolution followed the pattern of silting in flood seasons and scouring in dry seasons. Notably, the Three Gorges Dam has changed the distribution processes of water and sediment discharges, and the dam's regulating and reserving functions can benefit the subaqueous delta deposition when the annual water and sediment discharges are not affected.
基金National Natural Science Foundation of China No. 49971071 Shanghai Priority Academic Discipline
文摘Based on hydrometric data and extensive investigations on water-extracting projects, this paper presents a preliminary study on water discharge changes between Datong and Xuliujing during dry season. The natural hydrological processes and human factors that influence the water discharge are analyzed with the help of GIS method. The investigations indicate that the water-extracting projects downstream from Datong to Xuliujing had amounted to 64 in number by the end of 2000, with a water-extracting capacity up to 4,626 m 3 /s averaged in a tidal cycle. The water extraction from the Changjiang River has become the most important factor influencing the water discharge downstream Datong during dry season. The potential magnitude in water discharge changes are estimated based on historical records of water extraction and a water balance model. The computational results were calibrated with the actual data. The future trend in changes of water discharge into the sea during dry season was discussed by taking into consideration of newly built hydro-engineering projects. The water extraction downstream Datong in dry season before 2000 had a great influence on discharges into the sea in the extremely dry year like 1978-1979. It produced a net decrease of more than 490 m 3 /s in monthly mean discharges from the Changjiang into the sea. It is expected that the water extraction will continually increase in the coming decades, especially in dry years, when the net decrease in monthly mean water discharge will increase to more than 1000 m 3 /s and will give a far-reaching effect on the changes of water discharge from the Changjiang into the sea.
基金supported by the Science and Research projects for Ph.D. candidates in the faculty of Xuzhou Normal University (No.08XLR12)Natural Science Foundation of Xuzhou Normal University (No.09XLA10)
文摘In order to realize the prediction of a chaotic time series of mine water discharge,an approach incorporating phase space reconstruction theory and statistical learning theory was studied.A differential entropy ratio method was used to determine embedding parameters to reconstruct the phase space.We used a multi-layer adaptive best-fitting parameter search algorithm to estimate the LS-SVM optimal parameters which were adopted to construct a LS-SVM prediction model for the mine water chaotic time series.The results show that the simulation performance of a single-step prediction based on this LS-SVM model is markedly superior to that based on a RBF model.The multi-step prediction results based on LS-SVM model can reflect the development of mine water discharge and can be used for short-term forecasting of mine water discharge.
基金carried out within the framework of the state assignment of the Ministry of Science and Higher Education of the Russian Federation on the topic(No.FWRM-20210001)the grant of the Russian Foundation for Basic Research(RFBR),project No.18-29-24079 mk。
文摘This paper presents the results of a theoretical and experimental study of the use of a pulsed discharge in water to obtain a strong acoustic wave in a liquid medium.A discharge with a current amplitude of 10 kA,a duration of 400 ns,and an amplitude pulsed power of 280 MW in water at atmospheric pressure created an expanding acoustic wave with an amplitude of more than 100 MPa.To describe the formation of the discharge channel,an isothermal plasma model has been developed,which made it possible to calculate both the expansion dynamics of a high-current channel and the strong acoustic wave generated by it.Our calculations show that the number density of plasma in the channel reaches 10^(20) cm^(-3),while the degree of water vapor ionization is about 10%,and the channel wall extends with a velocity of 500 m s^(−1).The calculations for the acoustic wave are in good agreement with measurements.
文摘Thermal power plants are generally constructed near to sea coast to meet their requirement of coolingwater. The warm water discharge from the thermal power plant is one of the major environmentalconcerns in view of the thermal pollution in the sea water. The temperature limit for the warm waterdischarge from the thermal power plant has to be monitored and controlled. Coastal Gujarat PowerLimited (CGPL) operates (24×7) at an “once-through system” based sea water circulation for powergeneration. The used sea water is then discharged into the sea through an outlet channel. As per environmental norms, the discharge water temperature needs to be maintained below the stipulated “delta”rise (+7 ℃) with respect to ambient sea surface temperature at the inlet. We demonstrate the applicability of thermal remote sensing data in understanding the seasonal and temporal variations of thetemperature difference between the discharge water and the ambient sea water. We used thermal banddata from Landsat-8 satellite imagery to map water surface temperature and create temperature profilesalong the intake and outflow channels (till the sea), to understand the variation of temperature andestimate the “DT” between intake point and various observation points along the outflow. This analysiswas carried out for all 11 months (except June) of the year 2018 to correlate temperature variations withseasonal changes. Tidal conditions during the time of data acquisition were also considered to accountfor the effect of tides on DT. The result shows that the average temperature rise between intake andoutflow are maintained at ~3 ℃ across all the months of 2018, with minor variations in the months ofJuly and August. Further, average temperature drop from outflow to cooling channel (before diaphragm)is seen to be ~2 ℃ across all the months with similar seasonal fluctuations.
基金financially supported by the National Natural Science Foundation of China(No.41772101)China Scholarship Council。
文摘River-dominated deltas are commonly developed at modern bays and lakes and ancient petroliferous basins.Water discharge is an important variable at pay zone scales in river-dominated delta reservoirs,which affects deltaic sand distributions and evolutions.However,it's unclear how it influences riverdominated delta growth.This paper integrates Delft3 D simulations and modern analogs to analyze the effects of water discharge,considering growth time,sediment supply,and coupled effects of sediment properties.High water discharges lead to the formation of lobate deltas,and the water discharge of 1,000 m~3/s is a referenced threshold value.Fine-grained,highly-cohesive sediments increase the threshold values of water discharge at which the deltas become lobate from digitate,and vice versa.For the same simulation time,high water discharges favor more rugose shorelines,more distributary channels(especially secondary distributaries),and longer and wider deltas with more land areas.However,for the same sediment supply,high water discharges have few effects on shoreline roughness and the number of distributary channels.
基金the Agence de l’Eau Rhone-Mediter-ranee&Corse for financial support(NIRHOFEX 2013-2016 Program:“Extraction,Quantification,Removal and Risk Evaluation of Emerging Compounds in Water Discharge from Treatment Surface Industries”).
文摘Industrial discharge water, and especially that from the surface treatment industry (ST), contains non-negligible amounts of pollutants even though the legislation is fully respected. In spite of this, no detailed studies list the exact chemical composition of these effluents. The present study reports the results of analyses performed over a 6-month period involving 15 standard water parameters. Over 160 substances including 33 metals, 58 volatile organic compounds (VOCs), 16 polycyclic aromatic hydrocarbons (PAHs), 24 chlorophenols (CPs), 16 alkylphenols (APs), 5 chloroanilines (CAs) and 7 polychlorobiphenyls (PCBs) were monitored. The industrial effluents presented polycontamination involving metals, minerals and organics with a high degree of qualitative and quantitative variability. Of the 160 substances monitored, 46 were regularly found: 25 inorganics including 8 metals (Co, Cr, Cu, Fe, Ni, Pb, Sn, Zn) and 21 organics (4 PAHs, 10 VOCs, 4 CPs and 3 APs). Eighteen were systematically presented at quantifiable levels.
文摘Groundwater extraction is used to alleviate drought in many habitats. However, widespread drought decreases spring discharge and there is a need to integrate climate change research into resource management and action. Accurate estimates of groundwater discharge may be valuable in improving decision support systems of hydrogeological resource exploitation. The present study performs a forecast for groundwater discharge in Aquifer?s Cervialto Mountains(southern Italy). A time series starting in 1883 was the basis for longterm predictions. An Ensemble Discharge Prediction(EDis P) was applied, and the progress of the discharge ensemble forecast was inferred with the aid of an Exponential Smoothing(ES) model initialized at different annual times. EDisP-ES hindcast model experiments were tested, and discharge plume-patterns forecast was assessed with horizon placed in the year 2044. A 46-year cycle pattern was identified by comparing simulations and observations, which is essential for the forecasting purpose. ED is P-ES performed an ensemble mean path for the coming decades that indicates a discharge regime within ± 1 standard deviation around the mean value of 4.1 m^3 s^(-1). These fluctuations are comparable with those observed in the period 1961-1980 and further back, with changepoints detectable around the years 2025 and 2035. Temporary drought conditions are expected after the year 2030.
文摘The release of nuclear wastewater by Japan has generated strong opposition from Japanese citizens,governments of neighboring countries,and global environmental advocates.China,representing the concerns of neighboring countries,has underscored the illicit and detrimental nature of this action.This study explores the metaphors employed in Chinese media regarding the discharge of Fukushima nuclear-contaminated water.Based on the self-built corpus,we reveal the rhetorical motives underlying the metaphors,drawing on the framework of critical metaphor analysis.The study centers on two major metaphors-war and liar metaphors-in the discourse of two Chinese official media,China Daily and People’s Daily Online.It is found that according to Chinese media,initiating and protesting the discharge of Fukushima nuclear-contaminated water is a war;and that the Japanese government and TEPCO are liars.The metaphor choices reflect China’s stance of opposition and condemnation against the discharge and its intention of uncovering deceptive and misleading information.
基金Special Expenses Program of Scientific Research in Marine Commonweal Industry, No.200805063Scien-tific Research Program of State Key Laboratory of Estuarine and Coastal Research, No.2008KYYW06Open-end Foundation of State Oceanic Administration Key Laboratory of Marine Sedimentology & Envi-ronmental Geology, No.MASEG200608
文摘In order to find out the variation process of water-sediment and its effect on the Yellow River Delta, the water discharge and sediment load at Lijin from 1950 to 2007 and the decrease of water discharge and sediment load in the Yellow River Basin caused by human disturbances were analyzed by means of statistics. It was shown that the water discharge and sediment load into the sea were decreasing from 1950 to 2007 with serious fluctuation. The human activities were the main cause for decrease of water discharge and sediment load into the sea. From 1950 to 2005, the average annual reduction of water discharge and sediment load by means of water-soil conservation practices were 2.02×10^9 m^3 and 3.41×10^8 t respectively, and the average annual volume by water abstraction for industry and agriculture were 2.52×10^10 m^3 and 2.42×10^8 t respectively. The average sediment trapped by Sanmenxia Reservoir was 1.45×10^8 t from 1960 to 2007, and the average sediment retention of Xiaolangdi Reservoir was 2.398×10^8t from 1997 to 2007. Compared to the data records at Huanyuankou, the water discharge and sediment load into the sea decreased with siltation in the lower reaches and increased with scouring in the lower reaches. The coastline near river mouth extended and the delta area increased when the ratio of accumulative sediment load and accumulative water discharge into the sea (SSCT) is 25.4-26.0 kg/m^3 in different time periods. However, the sharp decrease of water discharge and sediment load into the sea in recent years, especially the Yellow River into the sea at Qing 8, the entire Yellow River Delta has turned into erosion from siltation, and the time for a reversal of the state was about 1997.
基金supported by the National Basic Research Program of China (2002CB412400)the Natural Science Foundation of Shandong Province (Y2007E14)+1 种基金the Doctoral Fund of Ministry of Education of China (200804231011)the Key Lab of Submarine Geosciences and Prospecting Techniques of the Ministry of Education
文摘Via the valuable opportunity of the Three Gorges Reservoir (TGR) 135-m filling in June 2003, the Yangtze discharge and suspended sediment concentration (SSC) entering the estuary during the period from 15 May to 15 July 2003 were analyzed to examine the instant effects of the filling on them. The Yangtze discharge and SSC entering the estuary in the periods before, during and after the filling clearly indicated three phases: 1) the pre-storage phase characterized by natural conditions, in which the SSC increased with increasing water discharge; 2) the storage phase, during which the SSC decreased dramatically with decreasing water discharge; and 3) the post-storage phase, during which both the SSC and water discharge remained at relatively low levels first until the end of June, then the SSC increased gradually with increasing water discharge. It seems that the times for the instant effects of the decreasing discharge downstream from the upper Yangtze on the Yangtze discharge and SSC entering the estuary due to the TGR 135-m filling to take place were about 5 d and 1 d respectively, while both were about 18 d for those of the increasing discharge. This probably reflects the buffering and resultantly hysteresis of the 1800-km stretch from the upper Yangtze to the estuary. The results are helpful for scientific and hydrological investigation of the Yangtze mainstream downstream from the TGR Dam and of the estuarine and adjacent coastal waters.
基金supported by the National Key Research and Development Plan (No. 2016YFC0303901)National Natural Science Foundation of China (Nos. 41476080 and 51377145)the Natural Science Foundation of Zhejiang Province (No. LQ14D060004)
文摘A new sparker system based on pulsed spark discharge with a single electrode has already been utilized for oceanic seismic exploration. However, the electro-acoustic energy efficiency of this system is lower than that of arc discharge based systems. A simple electrode structure was investigated in order to improve the electro-acoustic energy efficiency of the spark discharge. Experiments were carried out on an experimental setup with discharge in water driven by a pulsed power source. The voltage-current waveform, acoustic signal and bubble oscillation were recorded when the relative position of the electrode varied. The electro-acoustic energy , efficiency was also calculated. The load voltage had a saltation for the invaginated electrode tip, namely an obvious voltage remnant. The more the electrode tip was invaginated, the larger the pressure peaks and first period became. The results show that electrode recessing into the insulating layer is a simple and effective way to improve the electro-acoustic energy efficiency from 2% to about 4%.
基金partially supported by key Academic Discipline of Organic Chemistry of Jiangsu Province
文摘Plasma processing induced by discharge offers a unique way to activate nitrogen molecules. Direct nitrogen fixation into water can be realized through this approach. In this study, air or pure nitrogen gas was used as the major nitrogen source bubbled into the discharge reactor. When a discharge occurred, nitrogen was dissociated to active species to take part in the aqueous chemical process. HNO3 and HNO2 were produced. The nitrogen fixation process was influenced distinctly by the presence of hydroxyl radicals. During a discharge of 21 min, HNO3 was the main product and occupied 95% of the total nitrogen content in water. Its concentration was 1.36 × 10^-3 mol/L^-1 with bubbling air and was 1.53 × 10^-3 mol L^-1 with bubbling nitrogen, while the yield was 2.32 × 10^-3 mol J^-1S^-1 and 2.06 × 10^-8 mol J^-1S^-1, respectively.
基金supported by National Natural Science Foundation of China(Nos.11274092,51107033,11404092,11274091)the Nantong Science and Technology Project,China(No.BK2014024)+1 种基金the Open Project of Jiangsu Province Key Laboratory of Environmental Engineering,China(No.KF2014001)the Fundamental Research Funds for the Central Universities,China(No.2014B11414)
文摘Electric discharge in and in contact with water can accompany ultraviolet(UV)radiation and electron impact, which can generate a large number of active species such as hydroxyl radicals(OH), oxygen radical(O), ozone(O_3) and hydrogen peroxide(H_2O_2). In this paper, a nonthermal plasma processing system was established by means of dielectric barrier discharge(DBD)arrays in water mist spray. The relationship between droplet size and water content was examined,and the effects of the concentrations of oxides in both treated water and gas were investigated under different water content and discharge time. The relative intensity of UV spectra from DBD in water mist was a function of water content. The concentrations of both O_3 and nitrogen dioxide(NO_2) in DBD room decreased with increasing water content. Moreover, the concentrations of H_2O_2, O_3 and nitrogen oxides(NOx) in treated water decreased with increasing water content,and all the ones enhanced after discharge. The experimental results were further analyzed by chemical reaction equations and commented by physical principles as much as possible. At last,the water containing phenol was tested in this system for the concentration from 100 mg/L to9.8 mg/L in a period of 35 min.