Quantitatively assessing the carrying capacity of water and land resources systems in arid and semi-arid areas is crucial for achieving the 2030 Sustainable Development Goals.In this work,taking Yulin City in China as...Quantitatively assessing the carrying capacity of water and land resources systems in arid and semi-arid areas is crucial for achieving the 2030 Sustainable Development Goals.In this work,taking Yulin City in China as a case study and employing the Criteria Importance Through Intercriteria Correlation(CRITIC)method,a modified model of coupling degree was developed to evaluate the car-rying capacity of water and land resources systems endowment and utilization,as well as their coupling coordination degree from 2013 to 2020.Our findings indicate that the water and land resources of Yulin are diminishing due to declines in agriculture,higher industrial water use,and wetland shrinkage.However,reallocating domestic water for ecological sustainability and reducing sloping farmland can mitigate this trend of decline.Temporally,as the coupling coordination between water and land resources system endowment in Yulin continuously improved,the coupling coordination between water and land resources system utilization first decreased and then in-creased with 2016 as the turning point.Spatially,the carrying capacity of water and land resources systems,the coupling coordination degree between water and land resources system endowment,and the coupling coordination degree between water and land resources system utilization in Yulin exhibited the same pattern of being higher in the six northern counties than in the six southern counties.Improving the water resources endowment is vital for the highly efficient use of water and land resources.展开更多
This study provides a comprehensive analysis of the concepts and assessment processes of water resources in China,focusing on the characteristics of water resources and variations in water cycle fluxes.It reveals that...This study provides a comprehensive analysis of the concepts and assessment processes of water resources in China,focusing on the characteristics of water resources and variations in water cycle fluxes.It reveals that the distribution of water resources in China is uneven,with more south and less north,and human activities have led to a decline in water resources,particularly in northern arid and semi-arid regions.Further analysis shows that duplicated measurements of surface water and groundwater significantly affect water balance calculation and water resource assessments,serving as a crucial factor guiding water resource development and utilization.The study also finds that consistency correction of runoff series is insufficient to meet the requirements of accurate water resource assessment.It is urgent to strengthen fundamental research in hydrology and hydrogeology,and to establish a dynamic assessment system for the efficient management and rational use of surface water and groundwater in the current changing environment.展开更多
At present,the major problems facing the water resource environment worldwide include water pollution,water resource shortage,and water ecosystem degradation.The discharge of industrial wastewater,agricultural non-poi...At present,the major problems facing the water resource environment worldwide include water pollution,water resource shortage,and water ecosystem degradation.The discharge of industrial wastewater,agricultural non-point source pollution,and the discharge of urban sewage lead to a serious decline in water quality,which directly affects the safety of human drinking water and the living environment of aquatic organisms.Additionally,the unbalanced distribution and excessive exploitation of water resources lead to the problem of water shortage in many areas,which then leads to social and economic contradictions and ecological crises.In terms of ecosystems,the phenomena of water ecological degradation and reduction of biodiversity are increasingly obvious,and the carrying capacity of aquatic ecosystems are gradually declining.This paper aims to analyze the natural,social,and economic factors affecting the water resource environment,and propose effective strategies to protect the water ecology.To provide a theoretical basis and practical guidance for the sustainable utilization of water resources and the long-term development of the water ecosystem.展开更多
Living fishery resources, although rich and important for human populations, are subject to strong anthropization, thus causing a change in the environmental parameters of aquatic ecosystems. These multiple combined p...Living fishery resources, although rich and important for human populations, are subject to strong anthropization, thus causing a change in the environmental parameters of aquatic ecosystems. These multiple combined pressures: chemical, hydro-morphological, thermal or trophic, affect and disrupt the functioning of aquatic organisms. The objective of this study was to assess the main human pressures influencing the surface water resources of the Kamsar sub-prefecture, in order to propose mitigation measures. The following methodological approach was adopted: 1) Survey of managers and analysis records;2) Survey of stakeholders;3) Assessment of the effect of human activities on surface water resources;4) Data processing;5) Corrective measures. The survey farmers working near aquatic environments, revealed a low use of chemical substances, in particular 3 to 11 kg of fertilizer and 0 to 3 boxes of herbicide on fields of 40 m2 to 2 ha. Some physico-chemical parameters have been determined: Temperature (28.5˚C, 23.7˚C, 22.8˚C, 21.3˚C, 21.6˚C), Salinity (26.9‰, 21.9‰, 21.5‰, 15‰, 15.3‰) and Turbidity (21.3 UTN, 19.3 UTN, 17.8 UTN, 16.7 UTN, 17 UTN). These values show a fluctuation in the environmental parameters of aquatic ecosystems, which constitutes an obstacle to the development and survival of the resources.展开更多
Cropping structure has a close relationship with the optimal allocation of agricultural water resources. Based on the analysis of the relationship between agricultural water resources and sustainable development, this...Cropping structure has a close relationship with the optimal allocation of agricultural water resources. Based on the analysis of the relationship between agricultural water resources and sustainable development, this paper presents a multi objective fuzzy optimization model for cropping structure and water allocation, which overcomes the shortcoming of current models that only considered the economic objective,and ignored the social and environmental objectives. During the process, a new method named fuzzy deciding weight is developed to decide the objective weight. A case study shows that the model is reliable, the method is simple and objective, and the results are reasonable. This model is useful for agricultural management and sustainable development.展开更多
[Objective] The research aimed to assess the water resources carrying capacity in Guizhou Province based on the cosine vector included angle method. [Method] By using the cosine vector included angle method, the index...[Objective] The research aimed to assess the water resources carrying capacity in Guizhou Province based on the cosine vector included angle method. [Method] By using the cosine vector included angle method, the index weight was determined. The projection value of water resources carrying capacity in Guizhou Province was counted by using the multi-objective gray relational projection method. Moreover, the projection value which was counted by the index weight determined by the mean-variance method was as the control. [Result] The projection values which were obtained by two kinds of methods were very close, and the ordering result was consistent. [Conclusion] In the assessment of water resources carrying capacity, it was feasible to use the cosine vector included angle method to determine the index weight.展开更多
Based on the water resource balance,the correlation between both the Liaoning water resource and precipitation and total amount of water resource from 1991 to 2004 was analyzed by assuming Liaoning to be an enclosed r...Based on the water resource balance,the correlation between both the Liaoning water resource and precipitation and total amount of water resource from 1991 to 2004 was analyzed by assuming Liaoning to be an enclosed region.And the calculation methods were developed to quantitatively determine the increase of rainfall due to artificial precipitation,and consequently ascertain the contribution of artificial rainfall amount to water resources.展开更多
[Objective] The aim was to study on RBF model about evaluation on carrying capacity of water resources based on standardized indices. [Method] The indices were transformed and the averages of standard values in differ...[Objective] The aim was to study on RBF model about evaluation on carrying capacity of water resources based on standardized indices. [Method] The indices were transformed and the averages of standard values in different levels were taken as the standardized values of components of central vectors for basic functions of RBF hidden nodes. Hence, the basic functions are suitable for most indices, simplifying expression and calculation of basic functions. [Result] RBF models concluded through Monkey-king Genetic Algorithm with weights optimization are used in evaluation on water carrying capacity in three districts in Changwu County in Shaanxi Province, which were in consistent with that through fuzzy evaluation. [Conclusion] RBF, simple and practical, is universal and popular.展开更多
In order to quantitatively evaluate the sustainable development status of water resources in Jiangxi Province, the dynamic changes in ecological footprint, carrying capacity and load index of water resources in Jiangx...In order to quantitatively evaluate the sustainable development status of water resources in Jiangxi Province, the dynamic changes in ecological footprint, carrying capacity and load index of water resources in Jiangxi Province during 2009-2013 were analyzed according to the primary principle and calculation model of ecological footprint. The results showed that in Jiangxi Province during 2009- 2013, the water resources ecological footprint per capita was relatively low; the wa- ter resources utilization level was relatively low; the overall development potential of water resources was great; the water resources ecological carrying capacity per capita and ecological footprint per capita were trended to be increased overall. The changes in water resources ecological footprint are closely related to the social and economic development. Therefore, the industrial structure should be fully adjusted, and the water resources should be scheduled and utilized reasonably so as to pro- mote the protection of water resources and sustainable development of society and economic in Jiangxi Province.展开更多
The potential evapotranspiration of main ecosystems and its relationship with precipitation during the same period were studied,the results showed that precipitation did not meet the water requirement of main ecosyste...The potential evapotranspiration of main ecosystems and its relationship with precipitation during the same period were studied,the results showed that precipitation did not meet the water requirement of main ecosystems influencing ecosystem construction.Based on the data from Liaoning Provincial Department of Water Resources and Liaoning Meteorological Archives,the characteristics of water inflow and each component were analyzed,and it showed that the imbalance between supply and demand of water resource in main ecosystems was improved by means of developing cloud water resource to increase atmospheric precipitation.展开更多
[Objective] This study aimed to establish the multi-dimensional evaluation index system of agricultural water resources in Liaoning Province. [Method] Delphi method in conjunction with AHP method was adopted to establ...[Objective] This study aimed to establish the multi-dimensional evaluation index system of agricultural water resources in Liaoning Province. [Method] Delphi method in conjunction with AHP method was adopted to establish the multi-dimensional evaluation index system of agricultural water resources in Liaoning Province, and all the indexes in each hierarchy were ranked overall according to their weights. [Result] There were three hierarchies in this index system, totally including 21 indexes, among which water resource exploitation and utilization rate, sewage treatment rate and utilization of available water resources were the three crucial factors influencing the sustainable development. [Conclusion] This evaluation index system can reflect the true sustainable situation of the agricultural water resources in Liaoning Province.展开更多
This paper explores the method of comprehensive evaluation of water resources carrying capacity and sets up an evaluation model applying the fuzzy comprehensive evaluation method. Based on the data of nature,society,e...This paper explores the method of comprehensive evaluation of water resources carrying capacity and sets up an evaluation model applying the fuzzy comprehensive evaluation method. Based on the data of nature,society,economics and water resources of the Tarim River Basin in 2002,we evaluated the water resources carrying capacity of the basin by means of the model. The results show that the comprehensive grades are 0.438 and 0.454 for Aksu and Kashi prefectures respectively,where the current water resources exploitation and utilization has reached a relative high degree and there is only a very limited water carrying capacity,0.620 for Kizilsu Kirgiz Autonomous Prefecture,where water resources carrying capacity is much higher,and in between for Hotan Prefecture and Bayingolin Mongo-lian Autonomous Prefecture. As a whole,the comprehensive grade of the Tarim River Basin is 0.508 and the current water resources exploitation and utilization has reached a relative high degree. Thus,we suggest that the integrated management of the water resources in the basin should be strengthened in order to utilize water resources scientifically and sustainably.展开更多
The efficient use of water resources directly affects environmental, social, and economic development; therefore, it has a significant impact on urban populations. A slacks-based measure for data envelopment analysis ...The efficient use of water resources directly affects environmental, social, and economic development; therefore, it has a significant impact on urban populations. A slacks-based measure for data envelopment analysis (SBM-DEA) has been widely used in energy efficiency and environmental efficiency analyses in recent years. Based on this model, data from 316 cities were examined and a category method was employed involving three different sorting techniques to empirically evaluate the efficiency of urban water re- source utilization in China between 2000 and 2012. The overall efficiency (OE) of urban water resource utilization in China was initially low, but has improved over the past decade. The scale efficiency (SE) was higher than the pure technological efficiency (PTE); PTE is a major determining factor of OE, and has had an increasingly significant effect. The efficiency of water resource utilization varied ac- cording to the region, urban scale, and economic function. The OE score for the eastern China was higher than for the rest of the region, and the OE score for the western China was higher than for the central China. The OE score for urban water resource utilization has improved with urban expansion, except in the case of small cities. The SE showed an inverted U-shaped' trend with increasing urban expansion. The OE of urban water utilization in comprehensive functional cities was greater than in economic specialization cities, and was greater in heavy industry specialization cities than in other specialization cities. This study contributes to the field of urban water resource management by examining variations in efficiency with urban ~ezle展开更多
Water is the important resource to guarantee the existence and development of oases in arid areas. To improve the utilization efficiency of water resources in Manas River Basin, this paper investigated the trends and ...Water is the important resource to guarantee the existence and development of oases in arid areas. To improve the utilization efficiency of water resources in Manas River Basin, this paper investigated the trends and periods of runoff based on the runoff and climate data for the past 50 years. Subsequently, with the socioeconomic and water resources data, we studied a comprehensive evaluation on the water security in this area. The results indicated that the stream flows in the three hydrological stations of Hongshanzui, Kensiwat and Bajiahu have sig- nificantly increased and undergone abrupt changes, with periods of 18 and 20 years. According to assessment, water security in the Manas River Basin was at an unsafe level in 2008. In criterion layer, the ecological security index and the index of supply-demand situation are both at the relatively secure level; the quantity index and so- cioeconomic index of water resources are at the unsafe level and basic security level, respectively. Therefore, in order to achieve sustainable economic and social development within the Manas River Basin, it is vital to take a series of effective measures to improve the status of water security.展开更多
The Manas River Basin in Xinjiang Uygur autonomous region, similar to other arid regions, is facing water constraints which challenge decision-makers as to how to rationally allocate the available water resources to m...The Manas River Basin in Xinjiang Uygur autonomous region, similar to other arid regions, is facing water constraints which challenge decision-makers as to how to rationally allocate the available water resources to meet the demands from industries and natural ecosystems. Policies which integrate the supply and demand are needed to address the water stress issues. An object-oriented system dynamics model was developed to capture the interrelationships between water availability and increasing water demands from the growth of industries, agri- cultural production and the population through modeling the decision-making process of the water exploration ex- plicitly, in which water stress is used as a major indicator. The model is composed of four sectors: 1 ) natural surface and groundwater resources; 2) water demand; 3) the water exploitation process, including the decision to build reservoirs, canals and pumps; 4) water stress to which political and social systems respond through increasing the supply, limiting the growth or improving the water use efficiency. The model was calibrated using data from 1949 to 2009 for population growth, irrigated land area, industry output, perceived water stress, groundwater resources availability and the drying-out process of Manas River; and simulations were carried out from 2010 to 2050 on an annual time step. The comparison of results from calibration and observation showed that the model corresponds to observed behavior, and the simulated values fit the observed data and trends accurately. Sensitivity analysis showed that the model is robust to changes in model parameters related to population growth, land reclamation, pumping capacity and capital contribution to industry development capacity. Six scenarios were designed to inves- tigate the effectiveness of policy options in the area of reservoir relocation, urban water recycling, water demand control and groundwater pumping control. The simulation runs demonstrated that the technical solutions for im- proving water availability and water use efficiency are not sustainable. Acknowledging the carrying capacity of water resources and eliminating a growth-orientated value system are crucial for the sustainability of the Manas River Basin.展开更多
Based on the surface runoff, temperature and precipitation data over the last 50 years from eight representative rivers in Xinjiang, using Mann-Kendall trend and jump detection method, the paper investigated the long-...Based on the surface runoff, temperature and precipitation data over the last 50 years from eight representative rivers in Xinjiang, using Mann-Kendall trend and jump detection method, the paper investigated the long-term trend and jump point of time series, the surface runoff, mean annual temperature and annual precipitation. Meanwhile, the paper analyzed the relationship between runoff and temperature and precipitation, and the flood frequency and peak flow. Results showed that climate of all parts of Xinjiang conformably has experienced an increase in temperature and precipitation since the mid-1980s. Northern Xinjiang was the area that changed most significantly followed by southern and eastern Xinjiang. Affected by temperature and precipitation variation, river runoff had changed both inter-annually and intra-annually. The surface runoff of most rivers has increased significantly since the early 1990s, and some of them have even witnessed the earlier spring floods, later summer floods and increasing flood peaks. The variation characteristics were closely related with the replenishment types of rivers. Flood frequency and peak flow increased all over Xinjiang. Climate warming has had an effect on the regional hydrological cycle.展开更多
To manage water resources effectively, a multiscale assessment of the vulnerability of water resources on the basis of political boundaries and watersheds is necessary. This study addressed issues on the vulnerability...To manage water resources effectively, a multiscale assessment of the vulnerability of water resources on the basis of political boundaries and watersheds is necessary. This study addressed issues on the vulnerability of water resources and provided a multiscale comparison of spatial heterogeneity under a climate change background. Using improved quantitative evaluation methods of vulnerabil- ity, the Theil index and the Shannon-Weaver index, we evaluated the vulnerability of water resources and its spatial heterogeneity in the Haihe River Basin in four scales, namely, second-class water resource regions (Class II WRRs), third-class water resource regions (Class III WRRs), Province-Class II WRRs, and Province-Class III WRRs. Results show that vulnerability enhances from the north to south in the different scales, and shows obvious spatial heterogeneity instead of moving toward convergence in multiscale assessment results. Among the Class II WRRs, the Tuhai-Majia River is the most vulnerable area, and the vulnerability of the Luanhe River is lower than that of the north of the Haihe River Basin, which in turn is lower than that of the south of the Haihe River Basin. In the scales of Class III WRRs and Province-Class III WRRs, the vulnerability shows obvious spatial heterogeneity and diversity measured by the Theil index and the Shannon-Weaver index. Multiscale vulnerability assessment results based on political boundaries and the watersheds of the Haihe River Basin innovatively provided in this paper are important and useful to characterize the real spatial pattern of the vulnerability of water resources and improve water resource management.展开更多
Based on the regional water resources carrying capacity(WRCC)evaluation principles and evaluation index system in the National Technical Outline of Water Resources Carrying Capacity Monitoring and Early Warning(hereaf...Based on the regional water resources carrying capacity(WRCC)evaluation principles and evaluation index system in the National Technical Outline of Water Resources Carrying Capacity Monitoring and Early Warning(hereafter referred to as the Technical Outline),this paper elaborates on the collection and sorting of the basic data of water resources conditions,water resources development and utilization status,social and economic development in basins,analysis and examination of integrity,consistency,normativeness,and rationality of the basic data,and the necessity of WRCC evaluation.This paper also describes the technique of evaluating the WRCC in prefecture-level cities and city-level administrative divisions in the District of the Taihu Lake Basin,which is composed of the Taihu Lake Basin and the Southeastern River Basin.The evaluation process combines the binary index evaluation method and reduction index evaluation method.The former,recommended by the Technical Outline,uses the total water use and the amount of exploited groundwater as evaluation indices,showing stronger operability,while the latter is developed by simplifying and optimizing the comprehensive index system with greater systematicness and completeness.The mutual validation and adjustment of the results of the above-mentioned two evaluation methods indicate that the WRCC of the District of the Taihu Lake Basin is overloaded in general because some prefecture-level cities and city-level administrative divisions in the Taihu Lake Basin and the Southeastern River Basin are in a severely overloaded state.In order to explain this conclusion,this paper analyzes the causes of WRCC overloading from the aspects of basin water environment,water resources development and utilization,water resources regulation and control ability,water resources utilization efficiency,and water resources management.展开更多
In the context of climate, water resources and areas of farmland suffered from drought and flood data, features and changes of climate and water resources as well as correlation between them are analyzed for the past ...In the context of climate, water resources and areas of farmland suffered from drought and flood data, features and changes of climate and water resources as well as correlation between them are analyzed for the past 50 years in North China. Assessment models of water resources are developed. Impacts of extreme climate events on water resources and impacts of drought and flood on agriculture are further studied. In the end, possible impacts of climate change in coming years are discussed on the basis of climate model simulation. Countermeasures and suggestions are put forward for realizing water resources sustainable utilization.展开更多
Based on the data for meteorology, hydrology, soil, planting, vegetation, and socio-economic development of the irrigation region in the middle reaches of the Heihe River basin, Northwest China, the model of balance o...Based on the data for meteorology, hydrology, soil, planting, vegetation, and socio-economic development of the irrigation region in the middle reaches of the Heihe River basin, Northwest China, the model of balance of water supply and demand in the region was established, and the security of water resource was assessed, from which the results that the effects of unified management of water resources in the Heihe River basin between Gansu Province and Inner Mongolia on regional hydrology are significant with a decrease in water supply diverted from Heihe River and an increase in groundwater extracted. In addition, it was found that the groundwater level has been steadily decreasing due to over pumping and decrease in recharges. In present year (2003), the volume of potential groundwater in the irrigation districts is far small because of the groundwater overdraft; even in the particular regions, there is no availability of groundwater resources for use. By 2003, water supply is not sufficient to meet the water demand in the different irrigation districts, the sustainable development and utilization of water resources are not secured, and the water supply crisis occurs in Pingchuan irrigation district. Achieving water security for the sustainable development of society, agriculture, economy, industry, and livelihoods while maintaining or improving the abilities of the management and planning of water resources, determining of the reasonable percentage between water supply and groundwater utilization and water saving in agricultural irrigation are taken into account. If this does not occur, it is feared that the present performance of water development and planning may further aggravate the problem of scarcities of water resources and further damage the fragile ecological system.展开更多
基金Under the auspices of the National Natural Science Foundation of China(No.42271279,41931293,41801175)。
文摘Quantitatively assessing the carrying capacity of water and land resources systems in arid and semi-arid areas is crucial for achieving the 2030 Sustainable Development Goals.In this work,taking Yulin City in China as a case study and employing the Criteria Importance Through Intercriteria Correlation(CRITIC)method,a modified model of coupling degree was developed to evaluate the car-rying capacity of water and land resources systems endowment and utilization,as well as their coupling coordination degree from 2013 to 2020.Our findings indicate that the water and land resources of Yulin are diminishing due to declines in agriculture,higher industrial water use,and wetland shrinkage.However,reallocating domestic water for ecological sustainability and reducing sloping farmland can mitigate this trend of decline.Temporally,as the coupling coordination between water and land resources system endowment in Yulin continuously improved,the coupling coordination between water and land resources system utilization first decreased and then in-creased with 2016 as the turning point.Spatially,the carrying capacity of water and land resources systems,the coupling coordination degree between water and land resources system endowment,and the coupling coordination degree between water and land resources system utilization in Yulin exhibited the same pattern of being higher in the six northern counties than in the six southern counties.Improving the water resources endowment is vital for the highly efficient use of water and land resources.
基金supported by China Geological Survey(DD20221773-3,DD20230459).
文摘This study provides a comprehensive analysis of the concepts and assessment processes of water resources in China,focusing on the characteristics of water resources and variations in water cycle fluxes.It reveals that the distribution of water resources in China is uneven,with more south and less north,and human activities have led to a decline in water resources,particularly in northern arid and semi-arid regions.Further analysis shows that duplicated measurements of surface water and groundwater significantly affect water balance calculation and water resource assessments,serving as a crucial factor guiding water resource development and utilization.The study also finds that consistency correction of runoff series is insufficient to meet the requirements of accurate water resource assessment.It is urgent to strengthen fundamental research in hydrology and hydrogeology,and to establish a dynamic assessment system for the efficient management and rational use of surface water and groundwater in the current changing environment.
基金The Knowledge Innovation Program of Wuhan-Shuguang Project(Project No.2023020201020361).
文摘At present,the major problems facing the water resource environment worldwide include water pollution,water resource shortage,and water ecosystem degradation.The discharge of industrial wastewater,agricultural non-point source pollution,and the discharge of urban sewage lead to a serious decline in water quality,which directly affects the safety of human drinking water and the living environment of aquatic organisms.Additionally,the unbalanced distribution and excessive exploitation of water resources lead to the problem of water shortage in many areas,which then leads to social and economic contradictions and ecological crises.In terms of ecosystems,the phenomena of water ecological degradation and reduction of biodiversity are increasingly obvious,and the carrying capacity of aquatic ecosystems are gradually declining.This paper aims to analyze the natural,social,and economic factors affecting the water resource environment,and propose effective strategies to protect the water ecology.To provide a theoretical basis and practical guidance for the sustainable utilization of water resources and the long-term development of the water ecosystem.
文摘Living fishery resources, although rich and important for human populations, are subject to strong anthropization, thus causing a change in the environmental parameters of aquatic ecosystems. These multiple combined pressures: chemical, hydro-morphological, thermal or trophic, affect and disrupt the functioning of aquatic organisms. The objective of this study was to assess the main human pressures influencing the surface water resources of the Kamsar sub-prefecture, in order to propose mitigation measures. The following methodological approach was adopted: 1) Survey of managers and analysis records;2) Survey of stakeholders;3) Assessment of the effect of human activities on surface water resources;4) Data processing;5) Corrective measures. The survey farmers working near aquatic environments, revealed a low use of chemical substances, in particular 3 to 11 kg of fertilizer and 0 to 3 boxes of herbicide on fields of 40 m2 to 2 ha. Some physico-chemical parameters have been determined: Temperature (28.5˚C, 23.7˚C, 22.8˚C, 21.3˚C, 21.6˚C), Salinity (26.9‰, 21.9‰, 21.5‰, 15‰, 15.3‰) and Turbidity (21.3 UTN, 19.3 UTN, 17.8 UTN, 16.7 UTN, 17 UTN). These values show a fluctuation in the environmental parameters of aquatic ecosystems, which constitutes an obstacle to the development and survival of the resources.
文摘Cropping structure has a close relationship with the optimal allocation of agricultural water resources. Based on the analysis of the relationship between agricultural water resources and sustainable development, this paper presents a multi objective fuzzy optimization model for cropping structure and water allocation, which overcomes the shortcoming of current models that only considered the economic objective,and ignored the social and environmental objectives. During the process, a new method named fuzzy deciding weight is developed to decide the objective weight. A case study shows that the model is reliable, the method is simple and objective, and the results are reasonable. This model is useful for agricultural management and sustainable development.
基金Supported by Guizhou Province Science and Technology Fund Item(Guizhou Science Together (2009) 2251)High-level PersonnelSpecial Assistance Fund in Guizhou Province (TZJF (2009) 25)Ministry of Education Science and Technology Research Key Item(210201)~~
文摘[Objective] The research aimed to assess the water resources carrying capacity in Guizhou Province based on the cosine vector included angle method. [Method] By using the cosine vector included angle method, the index weight was determined. The projection value of water resources carrying capacity in Guizhou Province was counted by using the multi-objective gray relational projection method. Moreover, the projection value which was counted by the index weight determined by the mean-variance method was as the control. [Result] The projection values which were obtained by two kinds of methods were very close, and the ordering result was consistent. [Conclusion] In the assessment of water resources carrying capacity, it was feasible to use the cosine vector included angle method to determine the index weight.
文摘Based on the water resource balance,the correlation between both the Liaoning water resource and precipitation and total amount of water resource from 1991 to 2004 was analyzed by assuming Liaoning to be an enclosed region.And the calculation methods were developed to quantitatively determine the increase of rainfall due to artificial precipitation,and consequently ascertain the contribution of artificial rainfall amount to water resources.
基金Supported by National Natural Science Foundation of China (51179110)~~
文摘[Objective] The aim was to study on RBF model about evaluation on carrying capacity of water resources based on standardized indices. [Method] The indices were transformed and the averages of standard values in different levels were taken as the standardized values of components of central vectors for basic functions of RBF hidden nodes. Hence, the basic functions are suitable for most indices, simplifying expression and calculation of basic functions. [Result] RBF models concluded through Monkey-king Genetic Algorithm with weights optimization are used in evaluation on water carrying capacity in three districts in Changwu County in Shaanxi Province, which were in consistent with that through fuzzy evaluation. [Conclusion] RBF, simple and practical, is universal and popular.
基金Supported by Science and Technology Project of Jiangxi Provincial Department of Education(GJJ14671)Tender Project of Gannan Normal University(14ZB19)~~
文摘In order to quantitatively evaluate the sustainable development status of water resources in Jiangxi Province, the dynamic changes in ecological footprint, carrying capacity and load index of water resources in Jiangxi Province during 2009-2013 were analyzed according to the primary principle and calculation model of ecological footprint. The results showed that in Jiangxi Province during 2009- 2013, the water resources ecological footprint per capita was relatively low; the wa- ter resources utilization level was relatively low; the overall development potential of water resources was great; the water resources ecological carrying capacity per capita and ecological footprint per capita were trended to be increased overall. The changes in water resources ecological footprint are closely related to the social and economic development. Therefore, the industrial structure should be fully adjusted, and the water resources should be scheduled and utilized reasonably so as to pro- mote the protection of water resources and sustainable development of society and economic in Jiangxi Province.
文摘The potential evapotranspiration of main ecosystems and its relationship with precipitation during the same period were studied,the results showed that precipitation did not meet the water requirement of main ecosystems influencing ecosystem construction.Based on the data from Liaoning Provincial Department of Water Resources and Liaoning Meteorological Archives,the characteristics of water inflow and each component were analyzed,and it showed that the imbalance between supply and demand of water resource in main ecosystems was improved by means of developing cloud water resource to increase atmospheric precipitation.
文摘[Objective] This study aimed to establish the multi-dimensional evaluation index system of agricultural water resources in Liaoning Province. [Method] Delphi method in conjunction with AHP method was adopted to establish the multi-dimensional evaluation index system of agricultural water resources in Liaoning Province, and all the indexes in each hierarchy were ranked overall according to their weights. [Result] There were three hierarchies in this index system, totally including 21 indexes, among which water resource exploitation and utilization rate, sewage treatment rate and utilization of available water resources were the three crucial factors influencing the sustainable development. [Conclusion] This evaluation index system can reflect the true sustainable situation of the agricultural water resources in Liaoning Province.
基金Under the auspices of Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-127)National Natural Science Foundation of China (No. 40671014, 90502007)
文摘This paper explores the method of comprehensive evaluation of water resources carrying capacity and sets up an evaluation model applying the fuzzy comprehensive evaluation method. Based on the data of nature,society,economics and water resources of the Tarim River Basin in 2002,we evaluated the water resources carrying capacity of the basin by means of the model. The results show that the comprehensive grades are 0.438 and 0.454 for Aksu and Kashi prefectures respectively,where the current water resources exploitation and utilization has reached a relative high degree and there is only a very limited water carrying capacity,0.620 for Kizilsu Kirgiz Autonomous Prefecture,where water resources carrying capacity is much higher,and in between for Hotan Prefecture and Bayingolin Mongo-lian Autonomous Prefecture. As a whole,the comprehensive grade of the Tarim River Basin is 0.508 and the current water resources exploitation and utilization has reached a relative high degree. Thus,we suggest that the integrated management of the water resources in the basin should be strengthened in order to utilize water resources scientifically and sustainably.
基金Key Research Program of Chinese Academy of Sciences(No.KZZD-EW-06-03-03)
文摘The efficient use of water resources directly affects environmental, social, and economic development; therefore, it has a significant impact on urban populations. A slacks-based measure for data envelopment analysis (SBM-DEA) has been widely used in energy efficiency and environmental efficiency analyses in recent years. Based on this model, data from 316 cities were examined and a category method was employed involving three different sorting techniques to empirically evaluate the efficiency of urban water re- source utilization in China between 2000 and 2012. The overall efficiency (OE) of urban water resource utilization in China was initially low, but has improved over the past decade. The scale efficiency (SE) was higher than the pure technological efficiency (PTE); PTE is a major determining factor of OE, and has had an increasingly significant effect. The efficiency of water resource utilization varied ac- cording to the region, urban scale, and economic function. The OE score for the eastern China was higher than for the rest of the region, and the OE score for the western China was higher than for the central China. The OE score for urban water resource utilization has improved with urban expansion, except in the case of small cities. The SE showed an inverted U-shaped' trend with increasing urban expansion. The OE of urban water utilization in comprehensive functional cities was greater than in economic specialization cities, and was greater in heavy industry specialization cities than in other specialization cities. This study contributes to the field of urban water resource management by examining variations in efficiency with urban ~ezle
基金supported by the National Natural Science Foundation of China (41001066)the National Basic Research Program of China (Program 973) (2009CB421308)the Ministry of Water Resources’ Special Funds for Scientific Research on Public Causes (201101049)
文摘Water is the important resource to guarantee the existence and development of oases in arid areas. To improve the utilization efficiency of water resources in Manas River Basin, this paper investigated the trends and periods of runoff based on the runoff and climate data for the past 50 years. Subsequently, with the socioeconomic and water resources data, we studied a comprehensive evaluation on the water security in this area. The results indicated that the stream flows in the three hydrological stations of Hongshanzui, Kensiwat and Bajiahu have sig- nificantly increased and undergone abrupt changes, with periods of 18 and 20 years. According to assessment, water security in the Manas River Basin was at an unsafe level in 2008. In criterion layer, the ecological security index and the index of supply-demand situation are both at the relatively secure level; the quantity index and so- cioeconomic index of water resources are at the unsafe level and basic security level, respectively. Therefore, in order to achieve sustainable economic and social development within the Manas River Basin, it is vital to take a series of effective measures to improve the status of water security.
基金supported by the National Basic Research Program of China (2010CB951004)a project of Xinjiang Key Lab of Water Cycle and Utilization in Arid Zone,Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences (XJYS0907-2009-02)
文摘The Manas River Basin in Xinjiang Uygur autonomous region, similar to other arid regions, is facing water constraints which challenge decision-makers as to how to rationally allocate the available water resources to meet the demands from industries and natural ecosystems. Policies which integrate the supply and demand are needed to address the water stress issues. An object-oriented system dynamics model was developed to capture the interrelationships between water availability and increasing water demands from the growth of industries, agri- cultural production and the population through modeling the decision-making process of the water exploration ex- plicitly, in which water stress is used as a major indicator. The model is composed of four sectors: 1 ) natural surface and groundwater resources; 2) water demand; 3) the water exploitation process, including the decision to build reservoirs, canals and pumps; 4) water stress to which political and social systems respond through increasing the supply, limiting the growth or improving the water use efficiency. The model was calibrated using data from 1949 to 2009 for population growth, irrigated land area, industry output, perceived water stress, groundwater resources availability and the drying-out process of Manas River; and simulations were carried out from 2010 to 2050 on an annual time step. The comparison of results from calibration and observation showed that the model corresponds to observed behavior, and the simulated values fit the observed data and trends accurately. Sensitivity analysis showed that the model is robust to changes in model parameters related to population growth, land reclamation, pumping capacity and capital contribution to industry development capacity. Six scenarios were designed to inves- tigate the effectiveness of policy options in the area of reservoir relocation, urban water recycling, water demand control and groundwater pumping control. The simulation runs demonstrated that the technical solutions for im- proving water availability and water use efficiency are not sustainable. Acknowledging the carrying capacity of water resources and eliminating a growth-orientated value system are crucial for the sustainability of the Manas River Basin.
基金National Natural Science Foundation of China, No.40671014Knowledge Innovation Project of the Chinese Academy of Sciences, No.KZCX2-YW-127+1 种基金Open Foundation of Key Laboratory of Oasis Ecology and De-sert Environment, CAS, No.200901-07Doctor Research Foundation of Xinjiang University, No.BS080131
文摘Based on the surface runoff, temperature and precipitation data over the last 50 years from eight representative rivers in Xinjiang, using Mann-Kendall trend and jump detection method, the paper investigated the long-term trend and jump point of time series, the surface runoff, mean annual temperature and annual precipitation. Meanwhile, the paper analyzed the relationship between runoff and temperature and precipitation, and the flood frequency and peak flow. Results showed that climate of all parts of Xinjiang conformably has experienced an increase in temperature and precipitation since the mid-1980s. Northern Xinjiang was the area that changed most significantly followed by southern and eastern Xinjiang. Affected by temperature and precipitation variation, river runoff had changed both inter-annually and intra-annually. The surface runoff of most rivers has increased significantly since the early 1990s, and some of them have even witnessed the earlier spring floods, later summer floods and increasing flood peaks. The variation characteristics were closely related with the replenishment types of rivers. Flood frequency and peak flow increased all over Xinjiang. Climate warming has had an effect on the regional hydrological cycle.
基金Under the auspices of National Natural Science Foundation of China(No.51279140,51249010)National Basic Research Program of China(No.2010CB428406)
文摘To manage water resources effectively, a multiscale assessment of the vulnerability of water resources on the basis of political boundaries and watersheds is necessary. This study addressed issues on the vulnerability of water resources and provided a multiscale comparison of spatial heterogeneity under a climate change background. Using improved quantitative evaluation methods of vulnerabil- ity, the Theil index and the Shannon-Weaver index, we evaluated the vulnerability of water resources and its spatial heterogeneity in the Haihe River Basin in four scales, namely, second-class water resource regions (Class II WRRs), third-class water resource regions (Class III WRRs), Province-Class II WRRs, and Province-Class III WRRs. Results show that vulnerability enhances from the north to south in the different scales, and shows obvious spatial heterogeneity instead of moving toward convergence in multiscale assessment results. Among the Class II WRRs, the Tuhai-Majia River is the most vulnerable area, and the vulnerability of the Luanhe River is lower than that of the north of the Haihe River Basin, which in turn is lower than that of the south of the Haihe River Basin. In the scales of Class III WRRs and Province-Class III WRRs, the vulnerability shows obvious spatial heterogeneity and diversity measured by the Theil index and the Shannon-Weaver index. Multiscale vulnerability assessment results based on political boundaries and the watersheds of the Haihe River Basin innovatively provided in this paper are important and useful to characterize the real spatial pattern of the vulnerability of water resources and improve water resource management.
基金supported by the National Natural Science Foundation of China(Grant No.51379181)Phase Ⅲ Project(2018-2021)of the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Based on the regional water resources carrying capacity(WRCC)evaluation principles and evaluation index system in the National Technical Outline of Water Resources Carrying Capacity Monitoring and Early Warning(hereafter referred to as the Technical Outline),this paper elaborates on the collection and sorting of the basic data of water resources conditions,water resources development and utilization status,social and economic development in basins,analysis and examination of integrity,consistency,normativeness,and rationality of the basic data,and the necessity of WRCC evaluation.This paper also describes the technique of evaluating the WRCC in prefecture-level cities and city-level administrative divisions in the District of the Taihu Lake Basin,which is composed of the Taihu Lake Basin and the Southeastern River Basin.The evaluation process combines the binary index evaluation method and reduction index evaluation method.The former,recommended by the Technical Outline,uses the total water use and the amount of exploited groundwater as evaluation indices,showing stronger operability,while the latter is developed by simplifying and optimizing the comprehensive index system with greater systematicness and completeness.The mutual validation and adjustment of the results of the above-mentioned two evaluation methods indicate that the WRCC of the District of the Taihu Lake Basin is overloaded in general because some prefecture-level cities and city-level administrative divisions in the Taihu Lake Basin and the Southeastern River Basin are in a severely overloaded state.In order to explain this conclusion,this paper analyzes the causes of WRCC overloading from the aspects of basin water environment,water resources development and utilization,water resources regulation and control ability,water resources utilization efficiency,and water resources management.
文摘In the context of climate, water resources and areas of farmland suffered from drought and flood data, features and changes of climate and water resources as well as correlation between them are analyzed for the past 50 years in North China. Assessment models of water resources are developed. Impacts of extreme climate events on water resources and impacts of drought and flood on agriculture are further studied. In the end, possible impacts of climate change in coming years are discussed on the basis of climate model simulation. Countermeasures and suggestions are put forward for realizing water resources sustainable utilization.
基金This work was supported by the Knowledge Innovation Program from the Cold and Add Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences (CACX2003102)the Chinese Academy of Sciences (KZCX 1 - 10-03-01)the National Natural Science Foundation of China (40401012).
文摘Based on the data for meteorology, hydrology, soil, planting, vegetation, and socio-economic development of the irrigation region in the middle reaches of the Heihe River basin, Northwest China, the model of balance of water supply and demand in the region was established, and the security of water resource was assessed, from which the results that the effects of unified management of water resources in the Heihe River basin between Gansu Province and Inner Mongolia on regional hydrology are significant with a decrease in water supply diverted from Heihe River and an increase in groundwater extracted. In addition, it was found that the groundwater level has been steadily decreasing due to over pumping and decrease in recharges. In present year (2003), the volume of potential groundwater in the irrigation districts is far small because of the groundwater overdraft; even in the particular regions, there is no availability of groundwater resources for use. By 2003, water supply is not sufficient to meet the water demand in the different irrigation districts, the sustainable development and utilization of water resources are not secured, and the water supply crisis occurs in Pingchuan irrigation district. Achieving water security for the sustainable development of society, agriculture, economy, industry, and livelihoods while maintaining or improving the abilities of the management and planning of water resources, determining of the reasonable percentage between water supply and groundwater utilization and water saving in agricultural irrigation are taken into account. If this does not occur, it is feared that the present performance of water development and planning may further aggravate the problem of scarcities of water resources and further damage the fragile ecological system.