Parkinson’s disease(PD)is one of the primary vital degenerative diseases that affect the Central Nervous System among elderly patients.It affect their quality of life drastically and millions of seniors are diagnosed...Parkinson’s disease(PD)is one of the primary vital degenerative diseases that affect the Central Nervous System among elderly patients.It affect their quality of life drastically and millions of seniors are diagnosed with PD every year worldwide.Several models have been presented earlier to detect the PD using various types of measurement data like speech,gait patterns,etc.Early identification of PD is important owing to the fact that the patient can offer important details which helps in slowing down the progress of PD.The recently-emerging Deep Learning(DL)models can leverage the past data to detect and classify PD.With this motivation,the current study develops a novel Colliding Bodies Optimization Algorithm with Optimal Kernel Extreme Learning Machine(CBO-OKELM)for diagnosis and classification of PD.The goal of the proposed CBO-OKELM technique is to identify whether PD exists or not.CBO-OKELM technique involves the design of Colliding Bodies Optimization-based Feature Selection(CBO-FS)technique for optimal subset of features.In addition,Water Strider Algorithm(WSA)with Kernel Extreme Learning Machine(KELM)model is also developed for the classification of PD.CBO algorithm is used to elect the optimal set of fea-tures whereas WSA is utilized for parameter tuning of KELM model which alto-gether helps in accomplishing the maximum PD diagnostic performance.The experimental analysis was conducted for CBO-OKELM technique against four benchmark datasets and the model portrayed better performance such as 95.68%,96.34%,92.49%,and 92.36%on Speech PD,Voice PD,Hand PD Mean-der,and Hand PD Spiral datasets respectively.展开更多
As the population ages, Alzheimer’s disease is rapidly increasing, and the diagnosis of the disease is still poorly understood. In comparison to cancer, 90% of patients become aware of their diagnosis, but only 45% o...As the population ages, Alzheimer’s disease is rapidly increasing, and the diagnosis of the disease is still poorly understood. In comparison to cancer, 90% of patients become aware of their diagnosis, but only 45% of the people with Alzheimer’s are aware. Thus, the need for biomarkers for reliable diagnosis is tremendous to help in finding treatment for this serious disease. Hence, the main aim of this paper is to utilize information from baseline measurements to develop a statistical prediction model using multiple logistic regression to distinguish Alzheimer’s disease patients from cognitively normal individuals. Our optimal predictive model includes six risk factors and two interaction terms and has been evaluated using classification accuracy, sensitivity, specificity values and area under the curve.展开更多
In order to diagnose the cerebral infarction, a classification system based on the ARMA model and BP (Back-Propagation) neural network is presented to analyze blood flow Doppler signals from the carotid artery. In thi...In order to diagnose the cerebral infarction, a classification system based on the ARMA model and BP (Back-Propagation) neural network is presented to analyze blood flow Doppler signals from the carotid artery. In this system, an ARMA model is first used to analyze the audio Doppler blood flow signals from the carotid artery. Then several characteristic parameters of the pole's distribution are estimated. After studies of these characteristic parameters' sensitivity to the textcolor cerebral infarction diagnosis, a BP neural network using sensitive parameters is established to classify the normal or abnormal state of the cerebral vessel. With 474 cases used to establish the appropriate neural network, and 52 cases used to test the network, the results show that the correct classification rate of both training and testing are over 94%. Thus this system is useful to diagnose the cerebral infarction.展开更多
基金Taif University Researchers Supporting Project number(TURSP-2020/161),Taif University,Taif,Saudi Arabia.
文摘Parkinson’s disease(PD)is one of the primary vital degenerative diseases that affect the Central Nervous System among elderly patients.It affect their quality of life drastically and millions of seniors are diagnosed with PD every year worldwide.Several models have been presented earlier to detect the PD using various types of measurement data like speech,gait patterns,etc.Early identification of PD is important owing to the fact that the patient can offer important details which helps in slowing down the progress of PD.The recently-emerging Deep Learning(DL)models can leverage the past data to detect and classify PD.With this motivation,the current study develops a novel Colliding Bodies Optimization Algorithm with Optimal Kernel Extreme Learning Machine(CBO-OKELM)for diagnosis and classification of PD.The goal of the proposed CBO-OKELM technique is to identify whether PD exists or not.CBO-OKELM technique involves the design of Colliding Bodies Optimization-based Feature Selection(CBO-FS)technique for optimal subset of features.In addition,Water Strider Algorithm(WSA)with Kernel Extreme Learning Machine(KELM)model is also developed for the classification of PD.CBO algorithm is used to elect the optimal set of fea-tures whereas WSA is utilized for parameter tuning of KELM model which alto-gether helps in accomplishing the maximum PD diagnostic performance.The experimental analysis was conducted for CBO-OKELM technique against four benchmark datasets and the model portrayed better performance such as 95.68%,96.34%,92.49%,and 92.36%on Speech PD,Voice PD,Hand PD Mean-der,and Hand PD Spiral datasets respectively.
文摘As the population ages, Alzheimer’s disease is rapidly increasing, and the diagnosis of the disease is still poorly understood. In comparison to cancer, 90% of patients become aware of their diagnosis, but only 45% of the people with Alzheimer’s are aware. Thus, the need for biomarkers for reliable diagnosis is tremendous to help in finding treatment for this serious disease. Hence, the main aim of this paper is to utilize information from baseline measurements to develop a statistical prediction model using multiple logistic regression to distinguish Alzheimer’s disease patients from cognitively normal individuals. Our optimal predictive model includes six risk factors and two interaction terms and has been evaluated using classification accuracy, sensitivity, specificity values and area under the curve.
基金This work was supported by the KeyTeacherFundsofEducationMinistryofChina.
文摘In order to diagnose the cerebral infarction, a classification system based on the ARMA model and BP (Back-Propagation) neural network is presented to analyze blood flow Doppler signals from the carotid artery. In this system, an ARMA model is first used to analyze the audio Doppler blood flow signals from the carotid artery. Then several characteristic parameters of the pole's distribution are estimated. After studies of these characteristic parameters' sensitivity to the textcolor cerebral infarction diagnosis, a BP neural network using sensitive parameters is established to classify the normal or abnormal state of the cerebral vessel. With 474 cases used to establish the appropriate neural network, and 52 cases used to test the network, the results show that the correct classification rate of both training and testing are over 94%. Thus this system is useful to diagnose the cerebral infarction.