Cordierite precursor was obtained through a process, which involved the decomposition of metal nitrates on the surface of ultrafine carbon black powder between 100-300℃ and the gasification of the carbon black at hig...Cordierite precursor was obtained through a process, which involved the decomposition of metal nitrates on the surface of ultrafine carbon black powder between 100-300℃ and the gasification of the carbon black at higher temperature in air. The average size of the particles, which were heat-treated at 700℃ for 10h, is about 1020nm, and the specific surface area is about 129m 2/g. The experimental results show that the ultrafine particles of cordierite precursor can be produced by this process. The precursor powder was calcined at different temperatures. X-ray diffraction examination indicates that β-quartz is crystallized from the amorphous matrix around 850℃ firstly and then MgO-Al 2O 3 spinel and α-cordierite appears. Above 1000℃, MgO-Al 2O 3 spinel and cristobalite disappear gradually and form an intermediate phase (sapphirine). At around 1300℃, the main phase is α-cordierite, and no other phase is detected.展开更多
Si2N2O ceramics were prepared using amorphous Si3N4 as the raw material and Li2CO3 as the sintering additive through vacuum multi-stage sintering.The influence of the Li2CO3 addition(0%,1%,2%,3%,and 5%,by mass)on the ...Si2N2O ceramics were prepared using amorphous Si3N4 as the raw material and Li2CO3 as the sintering additive through vacuum multi-stage sintering.The influence of the Li2CO3 addition(0%,1%,2%,3%,and 5%,by mass)on the phase composition,the microstructure,the porosity,the mechanical properties,the dielectric constant and the tangent of the dielectric loss angle of the porous Si2N2O ceramics was investigated.The results reveal that a suitable addition of Li2CO3 can promote the generation of Si2N2O but excessive or inadequate Li2CO3 causes decomposition of Si2N2O ceramics.The prepared porous Si2N2O ceramics have good mechanical properties,good thermal shock resistance,and low dielectric properties,which have excellent potential for application in microwave sintering furnaces.展开更多
The BaAl2Si2O8:Eu2+blue emitting phosphor was obtained through the one-step calcination process of precursors prepared bychemical co-precipitation method. The phase structure and luminescence propertied of the phospho...The BaAl2Si2O8:Eu2+blue emitting phosphor was obtained through the one-step calcination process of precursors prepared bychemical co-precipitation method. The phase structure and luminescence propertied of the phosphor were investigated usingX-ray diffraction (XRD) and a fluorescence spectrophotometer. The excitation spectrum exhibited a broad band between 230nm and 400 nm and the emission peaking at about 470 nm was observed, which originated from the allowed f-d transition ofEu2+ions at Ba2+sites. Owing to the different optimal concentrations under different excitation wavelengths (254 nm and 365nm), the energy-transfer mechanism in this phosphor has changed from the dipole-dipole interaction to the exchange interac-tion of Eu2+ions.展开更多
以硅烷偶联剂作为白炭黑(SiO_2)的表面改性剂,以改性SiO_2/炭黑作为天然橡胶(NR)的混合填料,采用半有效硫化体系制备了NR基复合材料。研究结果表明:当m(SiO_2)∶m(炭黑)=20∶40时,硫化胶中混合填料分散均匀,并且硫化胶的撕裂强度(62 k N...以硅烷偶联剂作为白炭黑(SiO_2)的表面改性剂,以改性SiO_2/炭黑作为天然橡胶(NR)的混合填料,采用半有效硫化体系制备了NR基复合材料。研究结果表明:当m(SiO_2)∶m(炭黑)=20∶40时,硫化胶中混合填料分散均匀,并且硫化胶的撕裂强度(62 k N/m)相对最高、交联密度相对最大且佩恩效应相对较弱。展开更多
文摘Cordierite precursor was obtained through a process, which involved the decomposition of metal nitrates on the surface of ultrafine carbon black powder between 100-300℃ and the gasification of the carbon black at higher temperature in air. The average size of the particles, which were heat-treated at 700℃ for 10h, is about 1020nm, and the specific surface area is about 129m 2/g. The experimental results show that the ultrafine particles of cordierite precursor can be produced by this process. The precursor powder was calcined at different temperatures. X-ray diffraction examination indicates that β-quartz is crystallized from the amorphous matrix around 850℃ firstly and then MgO-Al 2O 3 spinel and α-cordierite appears. Above 1000℃, MgO-Al 2O 3 spinel and cristobalite disappear gradually and form an intermediate phase (sapphirine). At around 1300℃, the main phase is α-cordierite, and no other phase is detected.
基金The authors would like to thank the National Key R&D Program of China(2017YFB0304000)National Natural Science Foundation of China(51932008,51772277)Central China Thousand Talents Project(2042005100111).
文摘Si2N2O ceramics were prepared using amorphous Si3N4 as the raw material and Li2CO3 as the sintering additive through vacuum multi-stage sintering.The influence of the Li2CO3 addition(0%,1%,2%,3%,and 5%,by mass)on the phase composition,the microstructure,the porosity,the mechanical properties,the dielectric constant and the tangent of the dielectric loss angle of the porous Si2N2O ceramics was investigated.The results reveal that a suitable addition of Li2CO3 can promote the generation of Si2N2O but excessive or inadequate Li2CO3 causes decomposition of Si2N2O ceramics.The prepared porous Si2N2O ceramics have good mechanical properties,good thermal shock resistance,and low dielectric properties,which have excellent potential for application in microwave sintering furnaces.
基金supported by the Scientific and Technological Project of Chongqing, China (Grant No. CSTC, 2009AB4171)the Innovation Foundation for Technology Based Firms of Ministry of Science and Technology, China (Grant No. 04C26225100807)
文摘The BaAl2Si2O8:Eu2+blue emitting phosphor was obtained through the one-step calcination process of precursors prepared bychemical co-precipitation method. The phase structure and luminescence propertied of the phosphor were investigated usingX-ray diffraction (XRD) and a fluorescence spectrophotometer. The excitation spectrum exhibited a broad band between 230nm and 400 nm and the emission peaking at about 470 nm was observed, which originated from the allowed f-d transition ofEu2+ions at Ba2+sites. Owing to the different optimal concentrations under different excitation wavelengths (254 nm and 365nm), the energy-transfer mechanism in this phosphor has changed from the dipole-dipole interaction to the exchange interac-tion of Eu2+ions.
文摘以硅烷偶联剂作为白炭黑(SiO_2)的表面改性剂,以改性SiO_2/炭黑作为天然橡胶(NR)的混合填料,采用半有效硫化体系制备了NR基复合材料。研究结果表明:当m(SiO_2)∶m(炭黑)=20∶40时,硫化胶中混合填料分散均匀,并且硫化胶的撕裂强度(62 k N/m)相对最高、交联密度相对最大且佩恩效应相对较弱。