期刊文献+
共找到8,411篇文章
< 1 2 250 >
每页显示 20 50 100
Winter wheat yield improvement by genetic gain across different provinces in China 被引量:1
1
作者 Wei Chen Jingjuan Zhang Xiping Deng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期468-483,共16页
The replacement of winter wheat varieties has contributed significantly to yield improvement worldwide,with remarkable progress in China.Drawing on two sets of data,production yield from the National Bureau of Statist... The replacement of winter wheat varieties has contributed significantly to yield improvement worldwide,with remarkable progress in China.Drawing on two sets of data,production yield from the National Bureau of Statistics of China and experimental yield from literature,this study aims to(1)illustrate the increasing patterns of production yield among different provinces from 1978 to 2018 in China,(2)explore the genetic gain in yield and yield relevant traits through the variety replacement based on experimental yield from 1937 to 2016 in China,and(3)compare the yield gap between experimental yield and production yield.The results show that both the production and experimental yields significantly increased along with the variety replacement.The national annual yield increase ratio for the production yield was 1.67%from 1978 to 2018,varying from 0.96%in Sichuan Province to 2.78%in Hebei Province;such ratio for the experimental yield was 1.13%from 1937 to 2016.The yield gap between experimental and production yields decreased from the 1970s to the 2010s.This study reveals significant increases in some yield components consequent to variety replacement,including thousand-grain weight,kernel number per spike,and grain number per square meter;however,no change is shown in spike number per square meter.The biomass and harvest index consistently and significantly increased,whereas the plant height decreased significantly. 展开更多
关键词 genetic gain winter wheat YIELD yield components
下载PDF
Spectral purification improves monitoring accuracy of the comprehensive growth evaluation index for film-mulched winter wheat
2
作者 Zhikai Cheng Xiaobo Gu +5 位作者 Yadan Du Zhihui Zhou Wenlong Li Xiaobo Zheng Wenjing Cai Tian Chang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第5期1523-1540,共18页
In order to further improve the utility of unmanned aerial vehicle(UAV)remote-sensing for quickly and accurately monitoring the growth of winter wheat under film mulching, this study examined the treatments of ridge m... In order to further improve the utility of unmanned aerial vehicle(UAV)remote-sensing for quickly and accurately monitoring the growth of winter wheat under film mulching, this study examined the treatments of ridge mulching,ridge–furrow full mulching, and flat cropping full mulching in winter wheat.Based on the fuzzy comprehensive evaluation (FCE) method, four agronomic parameters (leaf area index, above-ground biomass, plant height, and leaf chlorophyll content) were used to calculate the comprehensive growth evaluation index (CGEI) of the winter wheat, and 14 visible and near-infrared spectral indices were calculated using spectral purification technology to process the remote-sensing image data of winter wheat obtained by multispectral UAV.Four machine learning algorithms, partial least squares, support vector machines, random forests, and artificial neural network networks(ANN), were used to build the winter wheat growth monitoring model under film mulching, and accuracy evaluation and mapping of the spatial and temporal distribution of winter wheat growth status were carried out.The results showed that the CGEI of winter wheat under film mulching constructed using the FCE method could objectively and comprehensively evaluate the crop growth status.The accuracy of remote-sensing inversion of the CGEI based on the ANN model was higher than for the individual agronomic parameters, with a coefficient of determination of 0.75,a root mean square error of 8.40, and a mean absolute value error of 6.53.Spectral purification could eliminate the interference of background effects caused by mulching and soil, effectively improving the accuracy of the remotesensing inversion of winter wheat under film mulching, with the best inversion effect achieved on the ridge–furrow full mulching area after spectral purification.The results of this study provide a theoretical reference for the use of UAV remote-sensing to monitor the growth status of winter wheat with film mulching. 展开更多
关键词 mulched winter wheat machine learning fuzzy comprehensive evaluation comprehensive growth evaluation index unmanned aerial vehicle
下载PDF
The first factor affecting dryland winter wheat grain yield under various mulching measures: Spike number
3
作者 Yingxia Dou Hubing Zhao +4 位作者 Huimin Yang Tao Wang Guanfei Liu Zhaohui Wang Sukhdev Malhi 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期836-848,共13页
Water is the key factor limiting dryland wheat grain yield.Mulching affects crop yield and yield components by affecting soil moisture.Further research is needed to determine the relationships between yield components... Water is the key factor limiting dryland wheat grain yield.Mulching affects crop yield and yield components by affecting soil moisture.Further research is needed to determine the relationships between yield components and soil moisture with yield,and to identify the most important factor affecting grain yield under various mulching measures.A long-term 9-yearifeld experiment in the Loess Plateau of Northwest China was carried out with three treatments:no mulch (CK),plastic mulch (M_(P)) and straw mulch (M_(S)).Yield factors and soil moisture were measured,and the relationships between them were explored by correlation analysis,structural equation modeling and significance analysis.The results showed that compared with CK,the average grain yields of M_(P) and M_(S) increased by 13.0and 10.6%,respectively.The average annual grain yield of the M_(P) treatment was 134 kg ha^(–1) higher than the M_(S) treatment.There were no significant differences in yield components among the three treatments (P<0.05).Soil water storage of the M_(S) treatment was greater than the M_(P) treatment,although the differences were not statistically signifiant.Soil water storage during the summer fallow period (SWSSF) and soil water storage before sowing (SWSS) of M_(S) were significantly higher than in CK,which increased by 38.5 and 13.6%,respectively.The relationship between M_(P) and CK was not statistically significant for SWSSF,but the SWSS in M_(P) was significantly higher than in CK.In terms of soil water storage after harvest (SWSH) and water consumption in the growth period(ET),there were no signi?cant differences among the three treatments.Based on the three analysis methods,we found that spike number and ET were positively correlated with grain yield.However,the relative importance of spike number to yield was the greatest in the M_(P )and M_(S) treatments,while that of ET was the greatest in CK.Suifcient SWSSF could indirectly increase spike number and ET in the three treatments.Based on these results,mulch can improve yield and soil water storage.The most important factor affecting the grain yield of dryland wheat was spike number under mulching,and ET with CK.These findings may help us to understand the main factors influencing dryland wheat grain yield under mulching conditions compared to CK. 展开更多
关键词 dryland winter wheat plastic mulch spike number straw mulch
下载PDF
Improved simulation of winter wheat yield in North China Plain by using PRYM-Wheat integrated dry matter distribution coefficient
4
作者 Xuan Li Shaowen Wang +6 位作者 Yifan Chen Danwen Zhang Shanshan Yang Jingwen Wang Jiahua Zhang Yun Bai Sha Zhang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1381-1392,共12页
The accurate simulation of regional-scale winter wheat yield is important for national food security and the balance of grain supply and demand in China.Presently,most remote sensing process models use the“biomass... The accurate simulation of regional-scale winter wheat yield is important for national food security and the balance of grain supply and demand in China.Presently,most remote sensing process models use the“biomass×harvest index(HI)”method to simulate regional-scale winter wheat yield.However,spatiotemporal differences in HI contribute to inaccuracies in yield simulation at the regional scale.Time-series dry matter partition coefficients(Fr)can dynamically reflect the dry matter partition of winter wheat.In this study,Fr equations were fitted for each organ of winter wheat using site-scale data.These equations were then coupled into a process-based and remote sensingdriven crop yield model for wheat(PRYM-Wheat)to improve the regional simulation of winter wheat yield over the North China Plain(NCP).The improved PRYM-Wheat model integrated with the fitted Fr equations(PRYM-Wheat-Fr)was validated using data obtained from provincial yearbooks.A 3-year(2000-2002)averaged validation showed that PRYM-Wheat-Fr had a higher coefficient of determination(R^(2)=0.55)and lower root mean square error(RMSE=0.94 t ha^(-1))than PRYM-Wheat with a stable HI(abbreviated as PRYM-Wheat-HI),which had R^(2) and RMSE values of 0.30 and 1.62 t ha^(-1),respectively.The PRYM-Wheat-Fr model also performed better than PRYM-Wheat-HI for simulating yield in verification years(2013-2015).In conclusion,the PRYM-Wheat-Fr model exhibited a better accuracy than the original PRYM-Wheat model,making it a useful tool for the simulation of regional winter wheat yield. 展开更多
关键词 dry matter partition remote sensing model winter wheat yield North China Plain
下载PDF
Winter Wheat Yield Estimation Based on Sparrow Search Algorithm Combined with Random Forest:A Case Study in Henan Province,China
5
作者 SHI Xiaoliang CHEN Jiajun +2 位作者 DING Hao YANG Yuanqi ZHANG Yan 《Chinese Geographical Science》 SCIE CSCD 2024年第2期342-356,共15页
Precise and timely prediction of crop yields is crucial for food security and the development of agricultural policies.However,crop yield is influenced by multiple factors within complex growth environments.Previous r... Precise and timely prediction of crop yields is crucial for food security and the development of agricultural policies.However,crop yield is influenced by multiple factors within complex growth environments.Previous research has paid relatively little attention to the interference of environmental factors and drought on the growth of winter wheat.Therefore,there is an urgent need for more effective methods to explore the inherent relationship between these factors and crop yield,making precise yield prediction increasingly important.This study was based on four type of indicators including meteorological,crop growth status,environmental,and drought index,from October 2003 to June 2019 in Henan Province as the basic data for predicting winter wheat yield.Using the sparrow search al-gorithm combined with random forest(SSA-RF)under different input indicators,accuracy of winter wheat yield estimation was calcu-lated.The estimation accuracy of SSA-RF was compared with partial least squares regression(PLSR),extreme gradient boosting(XG-Boost),and random forest(RF)models.Finally,the determined optimal yield estimation method was used to predict winter wheat yield in three typical years.Following are the findings:1)the SSA-RF demonstrates superior performance in estimating winter wheat yield compared to other algorithms.The best yield estimation method is achieved by four types indicators’composition with SSA-RF)(R^(2)=0.805,RRMSE=9.9%.2)Crops growth status and environmental indicators play significant roles in wheat yield estimation,accounting for 46%and 22%of the yield importance among all indicators,respectively.3)Selecting indicators from October to April of the follow-ing year yielded the highest accuracy in winter wheat yield estimation,with an R^(2)of 0.826 and an RMSE of 9.0%.Yield estimates can be completed two months before the winter wheat harvest in June.4)The predicted performance will be slightly affected by severe drought.Compared with severe drought year(2011)(R^(2)=0.680)and normal year(2017)(R^(2)=0.790),the SSA-RF model has higher prediction accuracy for wet year(2018)(R^(2)=0.820).This study could provide an innovative approach for remote sensing estimation of winter wheat yield.yield. 展开更多
关键词 winter wheat yield estimation sparrow search algorithm combined with random forest(SSA-RF) machine learning multi-source indicator optimal lead time Henan Province China
下载PDF
A combination of straw incorporation and polymer-coated urea offsets soil ammonia and nitrous oxide emissions in winter wheat fields
6
作者 Xiaoyun Wang Yajie Tian +3 位作者 Qianhui Zhang Zhengxin Zhao Rui Wang Huanjie Cai 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第5期1718-1736,共19页
The combined effects of straw incorporation(SI)and polymer-coated urea(PCU)application on soil ammonia(NH_(3))and nitrous oxide(N_(2)O)emissions from agricultural fields have not been comprehensively evaluated in Nort... The combined effects of straw incorporation(SI)and polymer-coated urea(PCU)application on soil ammonia(NH_(3))and nitrous oxide(N_(2)O)emissions from agricultural fields have not been comprehensively evaluated in Northwest China.We conducted a two-year field experiment to assess the effects of combining SI with either uncoated urea(U)or PCU on soil NH_(3)emissions,N_(2)O emissions,winter wheat yields,yield-scaled NH_(3)(/NH_(3)),and yield-scaled N_(2)O(/N_(2)O).Five treatments were investigated,no nitrogen(N)fertilizer(N_(0)),U application at 150 kg N ha-1 with and without SI(SI+U and S_(0)+U),and PCU application at 150 kg N ha^(-1) with and without SI(SI+PCU and S_(0)+PCU).The results showed that the NH_(3);emissions increased by 20.98-34.35%following Sl compared to straw removal,mainly due to increases in soil ammonium(NH_(4)^(+)-N)content and water-flled pore space(WFPS).SI resulted in higher N_(2)O emissions than under the So scenario by 13.31-49.23%due to increases in soil inorganic N(SIN)contents,WFPS,and soil microbial biomass.In contrast,the PCU application reduced the SIN contents compared to the U application,reducing the NH_(3)and N_(2)O emissions by 45.99-58.07 and 18.08-53.04%,respectively.Moreover,no significant positive effects of the SI or PCU applications on the winter wheat yield were observed.The lowest /NH_(3) and /N_(2)O values were observed under the S_(0)+PCU and SI+PCU treatments.Our results suggest that single PCU applications and their combination with straw are the optimal agricultural strategies for mitigating gaseous N emissions and maintaining optimal winter wheat yields in Northwest China. 展开更多
关键词 straw incorporation polymer-coated urea NH_(3)and N_(2)O emissions winter wheat yields
下载PDF
Integrating a novel irrigation approximation method with a process-based remote sensing model to estimate multi-years'winter wheat yield over the North China Plain 被引量:1
7
作者 ZHANG Sha YANG Shan-shan +5 位作者 WANG Jing-wen WU Xi-fang Malak HENCHIRI Tehseen JAVED ZHANG Jia-hua BAI Yun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第9期2865-2881,共17页
Accurate estimation of regional winter wheat yields is essential for understanding the food production status and ensuring national food security.However,using the existing remote sensing-based crop yield models to ac... Accurate estimation of regional winter wheat yields is essential for understanding the food production status and ensuring national food security.However,using the existing remote sensing-based crop yield models to accurately reproduce the inter-annual and spatial variations in winter wheat yields remains challenging due to the limited ability to acquire irrigation information in water-limited regions.Thus,we proposed a new approach to approximating irrigations of winter wheat over the North China Plain(NCP),where irrigation occurs extensively during the winter wheat growing season.This approach used irrigation pattern parameters(IPPs)to define the irrigation frequency and timing.Then,they were incorporated into a newly-developed process-based and remote sensing-driven crop yield model for winter wheat(PRYM–Wheat),to improve the regional estimates of winter wheat over the NCP.The IPPs were determined using statistical yield data of reference years(2010–2015)over the NCP.Our findings showed that PRYM–Wheat with the optimal IPPs could improve the regional estimate of winter wheat yield,with an increase and decrease in the correlation coefficient(R)and root mean square error(RMSE)of 0.15(about 37%)and 0.90 t ha–1(about 41%),respectively.The data in validation years(2001–2009 and 2016–2019)were used to validate PRYM–Wheat.In addition,our findings also showed R(RMSE)of 0.80(0.62 t ha–1)on a site level,0.61(0.91 t ha–1)for Hebei Province on a county level,0.73(0.97 t ha–1)for Henan Province on a county level,and 0.55(0.75 t ha–1)for Shandong Province on a city level.Overall,PRYM–Wheat can offer a stable and robust approach to estimating regional winter wheat yield across multiple years,providing a scientific basis for ensuring regional food security. 展开更多
关键词 approximating irrigations process-based model remote sensing winter wheat yield North China Plain
下载PDF
Identifying the critical phosphorus balance for optimizing phosphorus input and regulating soil phosphorus effectiveness in a typical winter wheat-summer maize rotation system in North China
8
作者 XU Meng-ze WANG Yu-hong +6 位作者 NIE Cai-e SONG Gui-pei XIN Su-ning LU Yan-li BAI You-lu ZHANG Yin-jie WANG Lei 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第12期3769-3782,共14页
Phosphorus(P)is a nonrenewable resource and a critical element for plant growth that plays an important role in improving crop yield.Excessive P fertilizer application is widespread in agricultural production,which no... Phosphorus(P)is a nonrenewable resource and a critical element for plant growth that plays an important role in improving crop yield.Excessive P fertilizer application is widespread in agricultural production,which not only wastes phosphate resources but also causes P accumulation and groundwater pollution.Here,we hypothesized that the apparent P balance of a crop system could be used as an indicator for identifying the critical P input in order to obtain a high yield with high phosphorus use efficiency(PUE).A 12-year field experiment with P fertilization rates of 0,45,90,135,180,and 225 kg P_(2)O_(5)ha^(-1)was conducted to determine the crop yield,PUE,and soil Olsen-P value response to P balance,and to optimize the P input.Annual yield stagnation occurred when the P fertilizer application exceeded a certain level,and high yield and PUE levels were achieved with annual P fertilizer application rates of 90-135 kg P_(2)O_(5)ha^(-1).A critical P balance range of 2.15-4.45 kg P ha^(-1)was recommended to achieve optimum yield with minimal environmental risk.The critical P input range estimated from the P balance was 95.7-101 kg P_(2)O_(5)ha^(-1),which improved relative yield(>90%)and PUE(90.0-94.9%).In addition,the P input-output balance helps in assessing future changes in Olsen-P values,which increased by 4.07 mg kg^(-1)of P for every 100 kg of P surplus.Overall,the P balance can be used as a critical indicator for P management in agriculture,providing a robust reference for limiting P excess and developing a more productive,efficient and environmentally friendly P fertilizer management strategy. 展开更多
关键词 yield of winter wheat and summer maize phosphorus balance phosphorus use efficiency OLSEN-P critical phosphorus application rate
下载PDF
Retrieval of Winter Wheat Canopy Carotenoid Content with Ground-and Airborne-Based Hyperspectral Data
9
作者 Ting Cui Xianfeng Zhou +4 位作者 Yufeng Huang Yanting Guo Yunrui Lin Leyi Song Jingcheng Zhang 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第9期2633-2648,共16页
Accurate assessment of canopy carotenoid content(CC_(x+c)C)in crops is central to monitor physiological conditions in plants and vegetation stress,and consequently supporting agronomic decisions.However,due to the ove... Accurate assessment of canopy carotenoid content(CC_(x+c)C)in crops is central to monitor physiological conditions in plants and vegetation stress,and consequently supporting agronomic decisions.However,due to the overlap of absorption peaks of carotenoid(C_(x+c))and chlorophyll(C_(a+b)),accurate estimation of carotenoid using reflectance where carotenoid absorb is challenging.The objective of present study was to assess CC_(x+c)C in winter wheat(Triticum aestivum L.)with ground-and aircraft-based hyperspectral measurements in the visible and near-infrared spectrum.In-situ hyperspectral reflectance were measured and airborne hyperspectral data were acquired during major growth stages of winter wheat in five consecutive field experiments.At the canopy level,a remarkable linear relationship(R^(2)=0.95,p<0.001)existed between C_(x+c) and Ca+b,and correlation between CC_(x+c)C and wavelengths within 400 to 1000 nm range indicated that CC_(x+c)C could be estimated using reflectance ranging from visible to near-infrared wavebands.Results of Cx+c assessment based on chlorophyll and carotenoid indices showed that red edge chlorophyll index(CI red edge)performed with the highest accuracy(R^(2)=0.77,RMSE=22.27μg/cm^(2),MAE=4.97μg/cm^(2)).Applying partial least square regression(PLSR)in CC_(x+c)C retrieval emphasized the significance of reflectance within 700 to 750 nm range in CC_(x+c)C assessment.Based on CI red edge index,use of airborne hyperspectral imagery achieved satisfactory results in mapping the spatial distribution of CC_(x+c)C.This study demonstrates that it is feasible to accurately assess CC_(x+c)C in winter wheat with red edge chlorophyll index provided that C_(x+c) correlated well with C_(a+b) at the canopy scale.it is therefore a promising method for CC_(x+c)C retrieval at regional scale from aerial hyperspectral imagery. 展开更多
关键词 Hyperspectra CAROTENOID spectral index partial least squares regression winter wheat
下载PDF
Fitting of Water Requirement and Yield of Winter Wheat in North China Plain Based on Artificial Neural Network
10
作者 Weibing Jia Zhengying Wei +2 位作者 Lei Zhang Yubin Zhang Haoran Wei 《Journal of Geoscience and Environment Protection》 2021年第4期21-32,共12页
<div style="text-align:justify;"> The fitting of water requirement and yield during the growth period of winter wheat can improve yield effectively and improve irrigation water use efficiency with a ce... <div style="text-align:justify;"> The fitting of water requirement and yield during the growth period of winter wheat can improve yield effectively and improve irrigation water use efficiency with a certain amount of resource input. This paper selects the irrigation amount, precipitation and yield of winter wheat at the Wuqiao Scientific Observation and Experimental Station. Fitting the water requirement and yield of winter wheat based on three types of artificial neural networks. This paper uses support vector machine (SVM), thought evolution algorithm to optimize BP neural network (MAE-BP) and generalized regression neural network (GRNN) to fit the water requirement and yield of two crops. The SVM is the model with the highest fitting accuracy among the three models, the RMSE, MAE, NS and R2 between predictive value and true value are 7.45 kg/hectares, 213.64 kg/hectares, 0.8086, 0.9409 respectively. </div> 展开更多
关键词 winter wheat Water Requirement winter wheat Yield Artificial Neural Networks
下载PDF
Effects of ground-level ozone (O_3) pollution on the yields of rice and winter wheat in the Yangtze River Delta 被引量:78
11
作者 FENG Zong-wei, JIN Ming-hong, ZHANG Fu-zhu, HUANG Yi-zong (Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing\ 100085, China.) 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2003年第3期360-362,共3页
Effects of elevated O_3 on the yields of rice and winter wheat were studied by using open-top chambers(OTCs). Results showed that compared to the control treatment, 200 ppb, 100 ppb, 50 ppb treatments caused a 80.4%, ... Effects of elevated O_3 on the yields of rice and winter wheat were studied by using open-top chambers(OTCs). Results showed that compared to the control treatment, 200 ppb, 100 ppb, 50 ppb treatments caused a 80.4%, 58.6% and 10.5% decrease in grain yields per winter wheat plant and a 49.1%, 26.1% and 8.2% decrease in grain yield per rice plant, respectively. According to the dose-response relation educed from OTCs experiment and the monitor data of O_3 concentrations in spots, it was estimated that the yield losses of rice and winter wheat resulted by O_3 pollution in the Yangtze River Delta region in 1999 were 0.599 million ton and 0.669 million ton, economic losses were 0.539 billion RMB Yuan and 0.936 billion RMB Yuan, respectively. 展开更多
关键词 RICE winter wheat O_3 Yangtze River Delta
下载PDF
Straw return and appropriate tillage method improve grain yield and nitrogen efficiency of winter wheat 被引量:44
12
作者 CHEN Jin ZHENG Meng-jing +7 位作者 PANG Dang-wei YIN Yan-ping HAN Ming-ming LI Yan-xia LUO Yong-li XU Xu LI Yong WANG Zhen-lin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第8期1708-1719,共12页
Straw return is an important management tool for tackling and promoting soil nutrient conservation and improving crop yield in Huang-Huai-Hai Plain, China. Although the incorporation of maize straw with deep plowing a... Straw return is an important management tool for tackling and promoting soil nutrient conservation and improving crop yield in Huang-Huai-Hai Plain, China. Although the incorporation of maize straw with deep plowing and rotary tillage practices are widespread in the region, only few studies have focused on rotation tillage. To determine the effects of maize straw return on the nitrogen (N) efficiency and grain yield of winter wheat (Triticum aestivum L.), we conducted experiments in this region for 3 years. Five treatments were tested: (i) rotary tillage without straw return (RT); (ii) deep plowing tillage without straw return (DT); (iii) rotary tillage with total straw return (RS); (iv) deep plowing tillage with total straw return (DS); (v) rotary tillage of 2 years and deep plowing tillage in the 3rd year with total straw return (TS). Treatments with straw return increased kernels no. ear-1, thousand-kernel weight (TKW), grain yields, ratio of dry matter accumulation post-anthesis, and nitrogen (N) efficiency whereas reduced the ears no. ha-1 in the 2011-2012 and 2012-2013 growing seasons. Compared with the rotary tillage, deep plowing tillage significantly increased the grain yield, yield components, total dry matter accumulation, and N efficiency in 2013-2014. RS had significantly higher straw N distribution, soil inorganic nitrogen content, and soil enzymes activities in the 0-10 cm soil layer compared with the DS and TS. However, significantly lower values were ob- served in the 10-20 and 20-30 cm soil layers. TS obtained approximately equal grain yield as DS, and it also reduced the resource costs. Therefore, we conclude that TS is the most economical method for increasing grain yield and N efficiency of winter wheat in Huang-Huai-Hai Plain. 展开更多
关键词 grain yield N efficiency straw return tillage method winter wheat
下载PDF
Monitoring Winter Wheat Freeze Injury Using Multi-Temporal MODIS Data 被引量:27
13
作者 FENG Mei-chen YANG Wu-de +1 位作者 CAO Liang-liang DING Guang-wei 《Agricultural Sciences in China》 CAS CSCD 2009年第9期1053-1062,共10页
Freeze injury is an usual disaster for winter wheat in Shanxi Province, China, and monitoring freeze injury is of important economic significance. The aim of this article is to monitor and analyze the winter wheat fre... Freeze injury is an usual disaster for winter wheat in Shanxi Province, China, and monitoring freeze injury is of important economic significance. The aim of this article is to monitor and analyze the winter wheat freeze injury using remote sensing data, to monitor the occurrence and spatial distribution of winter wheat freeze in time, as well as the severity of the damage. The winter wheat freeze injury was monitored using multi-temporal moderate-resolution imaging spectroradiometer (MODIS) data, combined with ground meteorological data and field survey data, the change of normalized difference vegetation index (NDVI) before and after freeze injury was analyzed, as well as the effect of winter wheat growth recovery rate on yield. The results showed that the NDVI of winter wheat decreased dramatically after the suffering from freeze injury, which was the prominent feature for the winter wheat freeze injury monitoring. The degrees of winter wheat freeze injury were different in the three regions, of which, Yuncheng was the worst severity and the largest freeze injury area, the severity of freeze injury correlates with the breeding stage of the winter wheat. The yield of winter wheat showed positive correlation with its growth recovery rate (r=0.659^** which can be utilized to monitor the severity of winter wheat freeze injury as well as its impact on yield. It can effectively monitor the occurrence and severity of winter wheat freeze injury using horizontal and vertical profile distribution and growth wheat freeze injury in Shanxi Province. recovery rate, and provide a basis for monitoring the winter 展开更多
关键词 winter wheat TM MODIS freeze injury growth recovery rate MONITORING
下载PDF
Effects of long-term organic fertilization on soil microbiologic characteristics,yield and sustainable production of winter wheat 被引量:28
14
作者 LI Chun-xi MA Shou-chen +2 位作者 SHAO Yun MA Shou-tian ZHANG Ling-ling 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第1期210-219,共10页
We investigated the soil microbiologic characteristics, and the yield and sustainable production of winter wheat, by conducting a long-term fertilization experiment. A single application of N, P and K (NPK) fertiliz... We investigated the soil microbiologic characteristics, and the yield and sustainable production of winter wheat, by conducting a long-term fertilization experiment. A single application of N, P and K (NPK) fertilizer was taken as the control (CK) and three organic fertilization treatments were used: NPK fertilizer+pig manure (T1), NPK fertilizer+straw return (T2), NPK fertilizer+pig manure+straw return (T3). The results showed that all three organic fertilization treatments (T1, T2 and T3) significantly increased both soil total N (STN) and soil organic carbon (SOC) from 2008 onwards. In 2016, the SOC content and soil C/N ratios for T1, T2 and T3 were significantly higher than those for CK. The three organic fertilization treatments increased soil microbial activity. In 2016, the activity of urease (sucrase) and the soil respiration rate (SRS) for T1, T2 and T3 were significantly higher than those under CK. The organic fertilization treatments also increased the content of soil microbial biomass carbon (SMBC) and microbial biomass nitrogen (SMBN), the SMBC/SMBN ratio and the microbial quotient (qMB). The yield for T1, T2 and T3 was significantly higher than that of CK, respectively. Over the nine years of the investigation, the average yield increased by 9.9, 13.2 and 17.4% for T1, T2 and T3, respectively, compared to the initial yield for each treatment, whereas the average yield of CK over the same period was reduced by 6.5%. T1, T2, and T3 lowered the coefficient of variation (CV) of wheat yield and increased the sustainable yield index (SYI). Wheat grain yield was significantly positively correlated with each of the soil microbial properties (P〈0.01). These results showed that the long-term application of combined organic and chemical fertilizers can stabilize crop yield and make it more sustainable by improving the properties of the soil. 展开更多
关键词 winter wheat long-term organic fertilization soil microbial features yield stability yield sustainability
下载PDF
Effects of Different Tillage Systems on Soil Properties,Root Growth,Grain Yield,and Water Use Efficiency of Winter Wheat (Triticum aestivum L.) in Arid Northwest China 被引量:27
15
作者 HUANG Gao-bao CHAI Qiang +1 位作者 FENG Fu-xue YU Ai-zhong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2012年第8期1286-1296,共11页
Studies on root development, soil physical properties, grain yield, and water-use efficiency are important for identifying suitable soil management practices for sustainable crop production. A field experiment was con... Studies on root development, soil physical properties, grain yield, and water-use efficiency are important for identifying suitable soil management practices for sustainable crop production. A field experiment was conducted from 2006 through 2008 in arid northwestern China to determine the effects of four tillage systems on soil properties, root development, water-use efficiency, and grain yield of winter wheat (Triticum aestivum L.). The cultivar Fan 13 was grown under four tillage systems:conventional tillage (CT) without wheat stubble, no-tillage without wheat stubble mulching (NT), no-tillage with wheat stubble standing (NTSS), and no-tillage with wheat stubble mulching (NTS). The soil bulk density (BD) under CT system increased gradually from sowing to harvest, but that in NT, NTSS, and NTS systems had little change. Compared to the CT system, the NTSS and NTS systems improved total soil water storage (0-150 cm) by 6.1-9.6 and 10.5- 15.3% before sowing, and by 2.2-8.9 and 13.0-15.1% after harvest, respectively. The NTSS and NTS systems also increased mean dry root weight density (DRWD) as compared to CT system. The NTS system significantly improved water-use efficiency by 17.2-17.5% and crop yield by 15.6-16.8%, and the NTSS system improved that by 7.8-9.6 and 7.0-12.8%, respectively, compared with the CT system. Our results suggested that Chinese farmers should consider adopting conservation tillage practices in arid northwestern China because of benefits to soil bulk density, water storage, root system, and winter wheat yield. 展开更多
关键词 conservation tillage soil water storage bulk density water use efficiency winter wheat (Triticum aestivumL.) root system grain yield
下载PDF
Slight shading after anthesis increases photosynthetic productivity and grain yield of winter wheat (Triticum aestivum L.) due to the delaying of leaf senescence 被引量:19
16
作者 XU Cai-long TAO Hong-bin +1 位作者 WANG Pu WANG Zhen-lin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第1期63-75,共13页
The solar radiation intensity and duration are continuously decreasing in the major wheat planting area of China. As a con- sequence, leaf senescence, photosynthesis, grain filling and thus wheat yield shall be affect... The solar radiation intensity and duration are continuously decreasing in the major wheat planting area of China. As a con- sequence, leaf senescence, photosynthesis, grain filling and thus wheat yield shall be affected by light deficiency. Therefore, two winter wheat (Triticum aestivum L.) cultivars, Tainong 18 (a large-spike cultivar) and Ji'nan 17 (a multiple-spike cultivar), were subjected to shading during anthesis and maturity under field condition in 2010-2011 and 2011-2012. Under the slight shading treatment ($1,88% of full sunshine), leaf senescence was delayed, net photosynthesis rate (Po) and canopy apparent photosynthesis rate (CAP) were improved, and thus thousand-kernel weight (TKW) and grain yield were higher as compared with the control. However, mid and severe shading (S2 andS3, 67 and 35% of full sunshine, respectively) led to negative effects on these traits substantially. Moreover, superoxide dismutase (SOD), peroxidase (POD) and cat- alase (CAT) activities in flag leaf were significantly greater under slight shading than those in other treatments, while the malondialdehyde (MDA) content was less than that under other treatments. In addition, the multiple-spike cultivar is more tolerant to shading than large-spike cultivar. In conclusion, slight shading after anthesis delayed leaf senescence, enhanced photosynthesis and grain filling, and thus resulted in higher grain yield. 展开更多
关键词 winter wheat SHADING PHOTOSYNTHESIS leaf senescence grain yield
下载PDF
Influences of Mo on Nitrate Reductase, Glutamine Synthetase and Nitrogen Accumulation and Utilization in Mo-Efficient and Mo-Inefficient Winter Wheat Cultivars 被引量:17
17
作者 YU Min HU Cheng-xiao +1 位作者 SUN Xue-cheng WANG Yun-hua 《Agricultural Sciences in China》 CAS CSCD 2010年第3期355-361,共7页
The objective is to study whether the accumulation and utilization of plant N are controlled by Mo status in winter wheat cultivars. Mo-efficient cultivar 97003 (eft) and Mo-inefficient cultivar 97014 (ineff) were... The objective is to study whether the accumulation and utilization of plant N are controlled by Mo status in winter wheat cultivars. Mo-efficient cultivar 97003 (eft) and Mo-inefficient cultivar 97014 (ineff) were grown in severely Mo-deficient acidic soil (Tamm-reagent-extractable Mo 0.112 mg kg^-1) with (+Mo) and without (-Mo) the application of 0.13 mg kg^-1 Mo. The accumulation and use efficiency of plant total N were significantly higher in +Mo than that in -Mo and in eft than that in ineff under Mo deficiency. N use efficiency was remarkably higher in maturity but it was forwarded to jointing stage after Mo supply, thus indicating that Mo supply promoted the N use efficiency besides N uptake and eff was efficient in N uptake and utilization. The overall activity of nitrate reductase (NR, EC 1.6.6.1) was significantly higher in +Mo than in -Mo and ratio of +Mo/-Mo was even to 14.8 at filleting stage for ineff. Activity of glutamine synthetase (GS, EC 6.3.1.2) was significantly lower in +Mo than in -Mo. Concentration of nitrate and glutamate were also significantly lower in +Mo than in -Mo, thus provided evidences for enhancing N use efficiency by Mo supply. Activities of NR and GS were significantly higher and concentrations of nitrate and glutamate were significantly lower in eff than ineff under Mo deficiency, thus indicated eff was more efficient in N reduction and utilization. It is therefore concluded that Mo could promote N accumulation and utilization in winter wheat which was directly related to NR and feedback regulated by GS. Higher Mo status also results in higher accumulation and utilization of plant N in eft. 展开更多
关键词 winter wheat MO N accumulation N use efficiency nitrate reductase glutamine synthetase
下载PDF
Effects of saline irrigation on soil salt accumulation and grain yield in the winter wheat-summer maize double cropping system in the low plain of North China 被引量:13
18
作者 LIU Xiu-wei Til Feike +3 位作者 CHEN Su-ying SHAO Li-wei SUN Hong-yong ZHANG Xi-ying 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第12期2886-2898,共13页
In the dominant winter wheat (WW)-summer maize (SM) double cropping system in the low plain located in the North China, limited access to fresh water, especially during dry season, constitutes a major obstacle to ... In the dominant winter wheat (WW)-summer maize (SM) double cropping system in the low plain located in the North China, limited access to fresh water, especially during dry season, constitutes a major obstacle to realize high crop productivity. Using the vast water resources of the saline upper aquifer for irrigation during WW jointing stage, may help to bridge the peak of dry season and relieve the tight water situation in the region. A field experiment was conducted during 2009-2012 to investigate the effects of saline irrigation during WW jointing stage on soil salt accumulation and productivity of WW and SM. The experiment treatments comprised no irrigation (T1), fresh water irrigation (T2), slightly saline water irrigation (T3:2.8 dS m-l), and strongly saline water irrigation (T4:8.2 dS m-1) at WW jointing stage. With regard to WW yields and aggregated annual WW-SM yields, clear benefits of saline water irrigation (T3 & T4) compared to no irrigation (T1), as well as insignificant yield losses compared to fresh water irrigation (T2) occurred in all three experiment years. However, the increased soil salinity in eady SM season in consequence of saline irrigation exerted a negative effect on SM photosynthesis and final yield in two of three experiment years. To avoid the negative aftereffects of saline irrigation, sufficient fresh water irrigation during SM sowing phase (i.e., increase from 60 to 90 mm) is recommended to guarantee good growth conditions during the sensitive early growing period of SM. The risk of long-term accumulation of salts as a result of saline irrigation during the peak of dry season is considered low, due to deep leaching of salts during regularly occurring wet years, as demonstrated in the 2012 experiment year. Thus, applying saline water irrigation at jointing stage of WW and fresh water at sowing of SM is most promising to realize high yield and fresh irrigation water saving. 展开更多
关键词 winter wheat summer maize soil salinity saline water irrigation salt balance
下载PDF
Mapping winter wheat using phenological feature of peak before winter on the North China Plain based on time-series MODIS data 被引量:16
19
作者 TAO Jian-bin WU Wen-bin +2 位作者 ZHOU Yong WANG Yu JIANG Yan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第2期348-359,共12页
By employing the unique phenological feature of winter wheat extracted from peak before winter (PBW) and the advantages of moderate resolution imaging spectroradiometer (MODIS) data with high temporal resolution a... By employing the unique phenological feature of winter wheat extracted from peak before winter (PBW) and the advantages of moderate resolution imaging spectroradiometer (MODIS) data with high temporal resolution and intermediate spatial resolution, a remote sensing-based model for mapping winter wheat on the North China Plain was built through integration with Landsat images and land-use data. First, a phenological window, PBW was drawn from time-series MODIS data. Next, feature extraction was performed for the PBW to reduce feature dimension and enhance its information. Finally, a regression model was built to model the relationship of the phenological feature and the sample data. The amount of information of the PBW was evaluated and compared with that of the main peak (MP). The relative precision of the mapping reached up to 92% in comparison to the Landsat sample data, and ranged between 87 and 96% in comparison to the statistical data. These results were sufficient to satisfy the accuracy requirements for winter wheat mapping at a large scale. Moreover, the proposed method has the ability to obtain the distribution information for winter wheat in an earlier period than previous studies. This study could throw light on the monitoring of winter wheat in China by using unique phenological feature of winter wheat. 展开更多
关键词 time-series MODIS data phenological feature peak before wintering winter wheat mapping
下载PDF
Quantifying the spatial variation in the potential productivity and yield gap of winter wheat in China 被引量:10
20
作者 ZHANG Shi-yuan ZHANG Xiao-hu +4 位作者 QIU Xiao-lei TANG Liang ZHU Yan CAO Wei-xing LIU Lei-lei 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第4期845-857,共13页
Despite the improvement in cultivar characters and management practices, large gaps between the attainable and potential yields still exist in winter wheat of China. Quantifying the crop potential yield is essential f... Despite the improvement in cultivar characters and management practices, large gaps between the attainable and potential yields still exist in winter wheat of China. Quantifying the crop potential yield is essential for estimating the food production capacity and improving agricultural policies to ensure food security. Gradually descending models and geographic infor- mation system (GIS) technology were employed to characterize the spatial variability of potential yields and yield gaps in winter wheat across the main production region of China. The results showed that during 2000-2010, the average potential yield limited by thermal resource (YGT) was 23.2 Mg ha-1, with larger value in the northern area relative to the southern area. The potential yield limited by the water supply (YGw) generally decreased from north to south, with an average value of 1.9 Mg ha-1 across the entire study region. The highest YGw in the north sub-region (NS) implied that the irrigation and drainage conditions in this sub-region must be improved. The averaged yield loss of winter wheat from nutrient deficiency (YGH) varied between 2.1 and 3.1 Mg ha-1 in the study area, which was greater than the yield loss caused by water limitation. The potential decrease in yield from photo-thermal-water-nutrient-limited production to actual yield (YGo) was over 6.0 Mg ha-1, ranging from 4.9 to 8.3 Mg ha^-1 across the entire study region, and it was more obvious in the southern area than in the northern area. These findings suggest that across the main winter wheat production region, the highest yield gap was induced by thermal resources, followed by other factors, such as the level of farming technology, social policy and economic feasibility. Furthermore, there are opportunities to narrow the yield gaps by making full use of climatic resources and developing a reasonable production plan for winter wheat crops. Thus, meeting the challenges of food security and sustainability in the coming decades is possible but will require considerable changes in water and nutrient management and socio-economic policies. 展开更多
关键词 spatial variation potential productivity yield gap winter wheat China
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部