期刊文献+
共找到64篇文章
< 1 2 4 >
每页显示 20 50 100
Quickly obtaining densely dispersed coherent particles in steel matrix and its related mechanical property
1
作者 Xiaoxiao Wang Qingsong Huang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期111-118,共8页
Densely distributed coherent nanoparticles(DCN)in steel matrix can enhance the work-hardening ability and ductility of steel simultaneously.All the routes to this end can be generally classified into the liquid-solid ... Densely distributed coherent nanoparticles(DCN)in steel matrix can enhance the work-hardening ability and ductility of steel simultaneously.All the routes to this end can be generally classified into the liquid-solid route and the solid-solid route.However,the formation of DCN structures in steel requires long processes and complex steps.So far,obtaining steel with coherent particle enhancement in a short time remains a bottleneck,and some necessary steps remain unavoidable.Here,we show a high-efficiency liquid-phase refining process reinforced by a dynamic magnetic field.Ti-Y-Mn-O particles had an average size of around(3.53±1.21)nm and can be obtained in just around 180 s.These small nanoparticles were coherent with the matrix,implying no accumulated dislocations between the particles and the steel matrix.Our findings have a potential application for improving material machining capacity,creep resistance,and radiation resistance. 展开更多
关键词 ferritic steels coherent particles MICROSTRUCTURE compression test work hardening
下载PDF
Effect of B_(4)C on strength coefficient,cold deformation and work hardening exponent characteristics of Mg composites 被引量:3
2
作者 S.Suresh M.Navaneetha Krishnan S.C.Vettivel 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第5期1381-1400,共20页
The emphasis of this exploration was to examine the workability and work hardening performance of Mg(Magnesium)specimen and Mg-B_(4)C composites created via the powder metallurgy technique.The pure Mg and Mg-B_(4)C co... The emphasis of this exploration was to examine the workability and work hardening performance of Mg(Magnesium)specimen and Mg-B_(4)C composites created via the powder metallurgy technique.The pure Mg and Mg-B_(4)C composites are made with distinct weight percentages(Mg-5%B_(4)C,Mg-10%B_(4)C,and Mg-15%B_(4)C)at the unit aspect ratio.The powders and composites characterization are executed by SEM(Scanning Electron Microscope),EDS(Energy Dispersive Spectrum)with an elemental map,and XRD(X-ray Diffraction)examination.It displays that,the B_(4)C particles were dispersed consistently with the Mg matrix.The workability and work hardening examination was conducted in triaxial stress conditions using the cold deformation process.The consequence of workability stress exponent factor(β_(σ)),distinct stress proportion factors(σ_(m)/σ_(eff)and σ_(θ)/σ_(eff)),instantaneous work hardening exponent(n_(1)),work hardening exponent(n),coefficient of strength(k)and instantaneous coefficient of strength(k_(1))are recognized.The outcome displays that Mg-15%B_(4)C specimen has greater workability and work hardening parameter,initial relative density,and triaxial stresses compared with the Mg specimen and Mg-(5–10%)B_(4)C composites. 展开更多
关键词 Powder metallurgy Cold deformation WORKABILITY Instantaneous work hardening exponent Workability stress exponent Triaxial stress
下载PDF
Deformation mechanisms and differential work hardening behavior of AZ31 magnesium alloy during biaxial deformation 被引量:3
3
作者 Yuanjie Fu Yao Cheng +3 位作者 Yun Cui Yunchang Xin Shouwen Shi Gang Chen 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第2期515-529,共15页
Magnesium alloys are frequently subjected to biaxial stress during manufacturing process,however,the work hardening behavior under such circumstance are not well understood.In this study,the deformation mechanisms and... Magnesium alloys are frequently subjected to biaxial stress during manufacturing process,however,the work hardening behavior under such circumstance are not well understood.In this study,the deformation mechanisms and differential work hardening behavior of rolled AZ31 magnesium alloy sheets under biaxial loading are investigated.The change of plastic work contours with increasing plastic strain indicates the differential work hardening behavior of AZ31 magnesium alloy under biaxial stress state,resulting in higher macroscopic work hardening rates of biaxial loading than uniaxial loading,with the elastic-plastic transition part of work hardening extended and stage Ⅲ hardly emerged.Electron backscatter diffraction and Schmid factor analysis confirm the low activation of non-basalslip during biaxial loading tests.While the thickness strain is primarily accommodated by pyramidal<c+a>slip at the initial stage of biaxial deformation,{10–11}contraction twinning is activated at larger plastic strain.The low activation of non-basalslip also retards the dynamic recovery and cross-slip of basal and prismaticslips,leading to the differential work hardening behavior of AZ31 magnesium alloy under biaxial stress state. 展开更多
关键词 Magnesium alloy Biaxial tensile tests Differential work hardening Cruciform specimen Deformation mechanism
下载PDF
Work Hardening Behavior of 1020 Steel During Cold-Beating Simulation 被引量:2
4
作者 Fengkui CUI Yuanfei LING +3 位作者 Jinxue XUE Jia LIU Yuhui LIU Yan LI 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第2期321-331,共11页
The present research of cold-beating formation mainly focused on roller design and manufacture, kinematics, constitutive relation, metal flow law, thermo-mechanical coupling, surface micro-topography and microstructur... The present research of cold-beating formation mainly focused on roller design and manufacture, kinematics, constitutive relation, metal flow law, thermo-mechanical coupling, surface micro-topography and microstructure evolution. However, the research on surface quality and performance of workpieces in the process of cold-beating is rare. Cold-beating simulation experiment of 1020 steel is conducted at room temperature and strain rates ranging from 2000 to 4000 s^-1 base on the law of plastic forming. According to the experimental data, the model of strain hardening of 1020 steel is established, Scanning Electron Microscopy(SEM) is conducted, the mechanism of the work hardening of 1020 steel is clarified by analyzing microstructure variation of 1020 steel. It is found that the strain rate hardening effect of 1020 steel is stronger than the softening effect induced by increasing temperatures, the process of simulation cold-beating cause the grain shape of 1020 steel significant change and microstructure elongate significantly to form a fibrous tis- sue parallel to the direction of deformation, the higher strain rate, the more obvious grain refinement and the more hardening effect. Additionally, the change law of the work hardening rate is investigated, the relationship between dislocation density and strain, the relationship between work hardening rate and dislocation density is obtained. Results show that the change trend of the work hardening rate of 1020 steel is divided into two stages, the work hardening rate decreases dramatically in the first stage and slowly decreases in the second stage, finally tending toward zero. Dislocation density increases with increasing strain and strain rate, work hardening rate decreases with increasing dislocation density. The research results provide the basis for solving the problem of improving the surface quality and performance of workpieces under cold-beating formation of 1020 steel. 展开更多
关键词 1020 steel Cold·beating Work hardening Grain Dislocation density
下载PDF
Revealing effect of aluminum alloying on work hardening and impact behaviors of low-density Fe-18Mn-1.3C-2Cr-(4,11)Al casting steel 被引量:1
5
作者 Zhi-bin Zheng Hao-kun Yang +3 位作者 A.P.Shatrava Wai-wah Lai Jun Long Kai-hong Zheng 《China Foundry》 SCIE CAS 2022年第4期359-368,共10页
The present study designed two kinds of Fe-18Mn-1.3C-2Cr-(4,11)Al(wt.%)low-density steels.Tensile and impact tests were carried out to evaluate the work hardening and impact toughness properties via aluminum(Al)alloyi... The present study designed two kinds of Fe-18Mn-1.3C-2Cr-(4,11)Al(wt.%)low-density steels.Tensile and impact tests were carried out to evaluate the work hardening and impact toughness properties via aluminum(Al)alloying control.Meanwhile,microstructure evolution and fracture morphology were investigated by X-ray diffraction(XRD),a scanning electron microscope(SEM)equipped with electron backscatter diffraction(EBSD),a transmission electron microscope(TEM),and a stereo-optical microscope(OM).It is found that the Al addition obviously promotes the dislocation planar slipping,resulting in cleavage and brittle impact fracture in 11wt.%Al steel.Besides,the microband-induced plasticity(MBIP)mechanism is found in 4wt.%Al containing steel,introducing considerable work hardening capacity and impact toughness of 156.8±17.4 J.The present study provides a direct illustration of the relationship between work hardening and impact toughness behaviors of these two low-density steels for potential application as impact-resistant components. 展开更多
关键词 casting steel aluminum work hardening impact toughness tensile fractography impact fractography
下载PDF
Influence of impact energy on work hardening ability of austenitic manganese steel and its mechanism
6
作者 Li Xiaoyun Wu Wei +2 位作者 Zu Fangqiu Liu Lanjun Zhang Xianfeng 《China Foundry》 SCIE CAS 2012年第3期248-251,共4页
To further understand the hardening mechanism of austenitic manganese steel under actual working conditions, the work hardening ability was studied and the microstructures of austenitic manganese steel were observed u... To further understand the hardening mechanism of austenitic manganese steel under actual working conditions, the work hardening ability was studied and the microstructures of austenitic manganese steel were observed under different impact energies. The work hardening mechanism was also analyzed. The results show that the best strain hardening effect could be received only when the impact energy reaches or exceeds the critical impact energy. The microstructural observations reveal that dislocations, stacking faults and twins increase with raising impact energy of the tested specimens. The hardening mechanism changes at different hardening degrees. It is mainly dislocation and slip hardening below the critical impact energy, but it changes to the twinning hardening mechanism when the impact energy is above the critical impact energy. 展开更多
关键词 austenitic manganese steel work hardening impact energy MICROSTRUCTURE hardening mechanism
下载PDF
DEFORMATION AND WORK HARDENING OF HADFIELD MANGANESE STEEL
7
作者 SHI Deke LIU Junhai Xi’an Jiaotong University,Xi’an,China SHI Deke,Associate Professor,Department of Materials Science and Engineering,Xi’an Jiaotong University,Xi’an,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1990年第7期59-62,共4页
The work hardening of Hadfield manganese steel arises mainly form two causes;1)a large amount of twinning makes perfect dislocations or Shockley dislocations to be blocked at the coherent twin boundaries.2)the deforma... The work hardening of Hadfield manganese steel arises mainly form two causes;1)a large amount of twinning makes perfect dislocations or Shockley dislocations to be blocked at the coherent twin boundaries.2)the deformation leads to strong unsymmetrical distortion due to the occurrence of a large number gf Mn-C pairs or Mn-vacancy carbon-carbon cluster.It has been demonstrated by TEM observation and internal friction tests.As deformation pro- ceeds,the slip constantly accomodates twinning shear giving rise to stress relaxation.Thus, the Hadfield steel exhibits both rapid work hardening and good ductility. 展开更多
关键词 TWIN work hardening DISLOCATION
下载PDF
Flow characteristics and hot workability of a typical low-alloy high-strength steel during multi-pass deformation 被引量:1
8
作者 Mingjie Zhao Lihong Jiang +4 位作者 Changmin Li Liang Huang Chaoyuan Sun Jianjun Li Zhenghua Guo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期323-336,共14页
Heavy components of low-alloy high-strength(LAHS) steels are generally formed by multi-pass forging. It is necessary to explore the flow characteristics and hot workability of LAHS steels during the multi-pass forging... Heavy components of low-alloy high-strength(LAHS) steels are generally formed by multi-pass forging. It is necessary to explore the flow characteristics and hot workability of LAHS steels during the multi-pass forging process, which is beneficial to the formulation of actual processing parameters. In the study, the multi-pass hot compression experiments of a typical LAHS steel are carried out at a wide range of deformation temperatures and strain rates. It is found that the work hardening rate of the experimental material depends on deformation parameters and deformation passes, which is ascribed to the impacts of static and dynamic softening behaviors. A new model is established to describe the flow characteristics at various deformation passes. Compared to the classical Arrhenius model and modified Zerilli and Armstrong model, the newly proposed model shows higher prediction accuracy with a confidence level of 0.98565. Furthermore, the connection between power dissipation efficiency(PDE) and deformation parameters is revealed by analyzing the microstructures. The PDE cannot be utilized to reflect the efficiency of energy dissipation for microstructure evolution during the entire deformation process, but only to assess the efficiency of energy dissipation for microstructure evolution in a specific deformation parameter state.As a result, an integrated processing map is proposed to better study the hot workability of the LAHS steel, which considers the effects of instability factor(IF), PDE, and distribution and size of grains. The optimized processing parameters for the multi-pass deformation process are the deformation parameters of 1223–1318 K and 0.01–0.08 s^(-1). Complete dynamic recrystallization occurs within the optimized processing parameters with an average grain size of 18.36–42.3 μm. This study will guide the optimization of the forging process of heavy components. 展开更多
关键词 low-alloy high-strength steel work hardening rate constitutive model hot workability multi-pass deformation
下载PDF
Microstructure and mechanical properties of Ti−Nb−Fe−Zr alloys with high strength and low elastic modulus 被引量:5
9
作者 Qiang LI Qi HUANG +7 位作者 Jun-jie LI Qian-feng HE Masaaki NAKAI Ke ZHANG Mitsuo NIINOMI Kenta YAMANAKA Akihiko CHIBA Takayoshi NAKANO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第2期503-512,共10页
Zr was added to Ti−Nb−Fe alloys to develop low elastic modulus and high strengthβ-Ti alloys for biomedical applications.Ingots of Ti−12Nb−2Fe−(2,4,6,8,10)Zr(at.%)were prepared by arc melting and then subjected to hom... Zr was added to Ti−Nb−Fe alloys to develop low elastic modulus and high strengthβ-Ti alloys for biomedical applications.Ingots of Ti−12Nb−2Fe−(2,4,6,8,10)Zr(at.%)were prepared by arc melting and then subjected to homogenization,cold rolling,and solution treatments.The phases and microstructures of the alloys were analyzed by optical microscopy,X-ray diffraction,and transmission electron microscopy.The mechanical properties were measured by tensile tests.The results indicate that Zr and Fe cause a remarkable solid-solution strengthening effect on the alloys;thus,all the alloys show yield and ultimate tensile strengths higher than 510 MPa and 730 MPa,respectively.Zr plays a weak role in the deformation mechanism.Further,twinning occurs in all the deformed alloys and is beneficial to both strength and plasticity.Ti−12Nb−2Fe−(8,10)Zr alloys with metastableβphases show low elastic modulus,high tensile strength,and good plasticity and are suitable candidate materials for biomedical implants. 展开更多
关键词 biomedical Ti alloy mechanical properties solid-solution strengthening work hardening twinninginduced plasticity
下载PDF
Influence of original microstructure on the transformation behavior and mechanical properties of ultra-high-strength TRIP-aided steel 被引量:3
10
作者 Hong-xiang Yin Ai-min Zhao +4 位作者 Zheng-zhi Zhao Xiao Li Shuang-jiao Li Han-jiang Hu Wei-guang Xia 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第3期262-271,共10页
The transformation behavior and tensile properties of an ultra-high-strength transformation-induced plasticity (TRIP) steel (0.2C-2.0Si-I.SMn) were investigated by different heat treatments for automobile applicat... The transformation behavior and tensile properties of an ultra-high-strength transformation-induced plasticity (TRIP) steel (0.2C-2.0Si-I.SMn) were investigated by different heat treatments for automobile applications. The results show that F-TRIP steel, a tradi- tional TRIP steel containing as-cold-rolled ferfite and pearlite as the original microstructure, consists of equiaxed grains of intercritical ferrite surrounded by discrete particles of M/RA and B. In contrast, M-TRIP steel, a modified TRiP-aided steel with martensite as the original mi- crostlucture, containing full martensite as the original microstructure is comprised of lath-shaped grains of ferrite separated by lath-shaped martensite/retained austenite and bainite. Most of the austenite in F-TRIP steel is granular, while the austenite in M-TRIP steel is lath-shaped. The volume fraction of the retained austenite as well as its carbon content is lower in F-TRIP steel than in M-TRIP steel, and austenite grains in M-TRIP steel are much finer than those in F-TRIP steel. Therefore, M-TRIP steel was concluded to have a higher austenite stability, re- sulting in a lower transformation rate and consequently contributing to a higher elongation compared to F-TRIP steel. Work hardening be- havior is also discussed for both types of steel. 展开更多
关键词 high strength steels transformation-induced plasticity phase transformations mechanical properties original microstructure work hardening
下载PDF
HOT DEFORMATION AND MARTENSITIC TRANSFORMATION BEHAVIORS OF Fe-32%Ni ALLOY 被引量:3
11
作者 J. Huang Z. Xu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2006年第2期133-138,共6页
The Hot deformation and martensitic transformation behaviors of Fe-32%Ni alloy was investigated by measurements of electrical resistance and X-ray diffraction. With the increase in strain, the austenite goes through f... The Hot deformation and martensitic transformation behaviors of Fe-32%Ni alloy was investigated by measurements of electrical resistance and X-ray diffraction. With the increase in strain, the austenite goes through from the work-hardened to the partial dynamcally re-crystallized and then to the completed dynamically re-crystallized. The martensitic transformation characteristics depend on the austenite states. The work-hardening in small strain is helpful to martensitic transformation due to the low dislocation density and little lattice distortion, while the high dislocation density and severe lattice distortion by the increase in strain will hinder the martensitic nucleation. Once dynamic re-crystallization ( DRX ) takes place, the martensitic transformation will be enhanced again, which is related to the heterogeneous dynamic substructures. The growing DRX grain can enhance the martensitic nucleation due to the low dislocation density near its grain boundary. 展开更多
关键词 Fe-32%Ni alloy hot deformation work hardening dynamic re-crystallization martensitic transformation
下载PDF
Improving single pass reduction during cold rolling by controlling initial texture of AZ31 magnesium alloy sheet 被引量:2
12
作者 刘迪 刘祖岩 王尔德 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第2期244-250,共7页
The AZ31 magnesium alloy sheets obtained by multi-pass hot rolling were applied to cold rolling and the maximum single pass cold rolling reduction prior to failure of AZ31 magnesium alloy was enhanced to 41%. Larger s... The AZ31 magnesium alloy sheets obtained by multi-pass hot rolling were applied to cold rolling and the maximum single pass cold rolling reduction prior to failure of AZ31 magnesium alloy was enhanced to 41%. Larger single pass rolling reduction led to weaker texture during the multi-pass hot rolling procedure. The sheet obtained showed weak basal texture, while the value was only 1/3-1/2 that of general as-rolled AZ31 Mg alloy sheets. It was beneficial for the enhancement of further cold rolling formability despite of the coarser grain size. The deformation mechanism for the formation of texture in AZ31 magnesium alloy sheet was also analyzed in detail. 展开更多
关键词 AZ31 magnesium alloy texture control cold formability work hardening
下载PDF
Mechanical behavior of electric resistance welded pipes in pipe-making process 被引量:1
13
作者 TIAN Qingchao DONG Xiaoming +1 位作者 SHI Hongde DING Weijun 《Baosteel Technical Research》 CAS 2010年第3期32-35,共4页
The changes in the mechanical behavior of electric resistance welded(ERW) pipes before and after the cage roll forming process were investigated through tensile experiments. It is found that the Bauschinger effect d... The changes in the mechanical behavior of electric resistance welded(ERW) pipes before and after the cage roll forming process were investigated through tensile experiments. It is found that the Bauschinger effect does not exist in the pipe product, while the work hardening effect introduced by pipe-making is the direct cause of the mechanical changes. The prestrain introduced during different pipe-making processes are accumulative to the work hardening effect. And the increment of the yield strength for making Ф 244.48 × 8.94 pipe is approximately 45 MPa, higher than that of hot-rolled plates. It is verified that the strain ε=t/D-t is an efficient index representing the work hardening effect from the engineering viewpoint. 展开更多
关键词 electric resistance welding mechanical properties work hardening Bauschinger effect PRESTRAIN
下载PDF
Effect of Ti_(p) Content on the Work Hardening and Softening Behavior of Mg-Zn-Ca Alloy 被引量:1
14
作者 Jin-Kai Zhang Cui-Ju Wang +3 位作者 Yi-Dan Fan Chao Xu Kai-Bo Nie Kun-Kun Deng 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第3期551-560,共10页
The Ti_(p)/ZX60 composites with different Ti_(p) contents were prepared by semi-solid stirring casting.After extrusion,the microstructure,work hardening and softening behavior of the Ti_(p)/ZX60 composites were analyz... The Ti_(p)/ZX60 composites with different Ti_(p) contents were prepared by semi-solid stirring casting.After extrusion,the microstructure,work hardening and softening behavior of the Ti_(p)/ZX60 composites were analyzed compared with the ZX60(Mg-6Zn-0.2Ca)alloy.The results showed that the addition of Ti_(p) could not only promote the nucleation of dynamic recrystallized(DRXed)grains,but also be propitious to the refinement of DRXed grains.With increasing Ti_(p) content,the size of DRXed grains decreased accompanied with increasing volume fraction of DRXed grains.As the Ti_(p) content increased to 15 vol.%,the average size and volume fraction of DRXed grains reached to~0.32μm and 93.2%,respectively.Besides,both the strength and elongation were improved by the addition of Ti_(p).With increasing content of Ti_(p),a substantial increase in the strength was achieved with little change in the elongation.However,the elongation decreased sharply when the Ti_(p) content further increased to 15 vol.%.The addition of Ti_(p) led to an increase in the work hardening rate,which gradually increased with increasing Ti_(p) content.However,the softening rate did not demonstrate the same tendency with increasing Ti_(p) content.Unlike the conventional ceramic particles,the Ti_(p) can be deformed in coordination with the matrix alloy,which imparted a higher softening rate to the matrix alloy.Even though the softening rate improved as the Ti_(p) content increased from 5 to 10 vol.%,it dropped deeply as the Ti_(p) content increased to 15 vol.%owing to the fracture of Ti_(p) during extrusion. 展开更多
关键词 Titanium particle content Particle reinforced magnesium matrix composites Work hardening Softening behavior Mechanical properties
原文传递
Influence of Rare Earths on Contact Fatigue of Rail Steels
15
作者 马腾 朱桂兰 《Journal of Rare Earths》 SCIE EI CAS CSCD 2000年第2期136-139,共4页
Rail/wheel contact fatigue of NbRE rail, Nb rail and U74 rail was investigated using contact fatigue tester. Microstructure and morphology as well as microhardness in the fatigue profiles were analyzed by scanning ele... Rail/wheel contact fatigue of NbRE rail, Nb rail and U74 rail was investigated using contact fatigue tester. Microstructure and morphology as well as microhardness in the fatigue profiles were analyzed by scanning electron microscope and Vickers hardness respectively. The experimental results show that rare earths are able to delay the initiation and the propagation of fatigue cracks and postpone the surface shelling or spalling, even more, to reduce the crack propagation angle and the crack propagation depth in steady stab as well as the plastic deformation area, and to improve work-hardening of the rail steel. 展开更多
关键词 rare earths rail steel contact fatigue plastic deformation work hardening
下载PDF
MECHANICAL EFFECTS OF THE SELF-ORGANIZATION OF DISLOCATIONS AND RELATED CRITICAL CHARACTERISTICS
16
作者 黄国君 段祝平 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2000年第2期173-182,共10页
The effects of the dislocation pattern formed due to the self-organization of the dislocations in crystals on the macroscopic hardening and dynamic internal friction (DIF) during deformation are studied. The classic d... The effects of the dislocation pattern formed due to the self-organization of the dislocations in crystals on the macroscopic hardening and dynamic internal friction (DIF) during deformation are studied. The classic dislocation models for the hardening and DIF corresponding to the homogeneous dislocation configuration are extended to the case for the non-homogeneous one. In addition, using the result of dislocation patterning deduced from the non-linear dlislocation dynamics model for single slip, the correlation between the dislocation pattern and hardening as well as DIF is obtained. It is shown that in the case of the tension with a constant strain rate, the bifurcation point of dislocation patterning corresponds to the turning point in the stress versus strain and DIF versus strain curves. This result along with the critical characteristics of the macroscopic behavior near the bifurcation point is microscopically and macroscopically in agreement with the experimental findings on mono-crystalline pure aluminum at temperatures around 0.5T(m). The present study suggests that measuring the DIF would be a sensitive and useful mechanical means in order to study the critical phenomenon of materials during deformation. 展开更多
关键词 dislocation patterns work hardening dynamic internal friction critical phenomenon
下载PDF
ELASTIC-PLASTIC CONSTITUTIVE MODELS BASED ON THE MULTIPLICATION PROCESSES OF DEFORMED GRAINS
17
作者 何宗彦 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1996年第3期257-268,共12页
According to the characteristics of micro-deformation of polycrystalline metal,the author divides grains intothree kinds and proposes a new conceplion of deformed grains.multiplication,from which some explicit elastic... According to the characteristics of micro-deformation of polycrystalline metal,the author divides grains intothree kinds and proposes a new conceplion of deformed grains.multiplication,from which some explicit elastic-Plastic constitutive equations can be deduced and some experimental results can be explained quantitativelv,It shows that the macro-yield,rate-correlativity work hardening and other phenomena are all closely related to the kinetic process of grains deformation. 展开更多
关键词 POLYCRYSTAL elastic-plastic deformation constitutive relation yield work hardening DISLOCATION
下载PDF
MECHANICAL PROPERTIES OF Al-Li ALLOY 8090 AT CRYOGENIC TEMPERATURES
18
作者 SUN Dongsheng LI Fengzhao ZHANG Gang Shandong Polytechnic University,Jinan,China Lecturer,Centre of Materials Testing and Analysis,Shandong Polytechnic University,Jinan 250014,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1993年第2期78-80,共3页
Cryogenic strength,ductility and toughness of AI-Li alloy 8090 were found to be superior to those at ambient temperature,and up to optima at about 20 K.Different aging regimes may only influence on its cryogenic yield... Cryogenic strength,ductility and toughness of AI-Li alloy 8090 were found to be superior to those at ambient temperature,and up to optima at about 20 K.Different aging regimes may only influence on its cryogenic yield strength and elongation. 展开更多
关键词 Al-Li alloy cryogenic mechanical property work hardening alloy 8090
下载PDF
Softening interstage annealing of austenitic stainless steel sheets for stamping processes
19
作者 韩飞 林高用 +3 位作者 胡猛 王世鹏 彭大暑 周青 《Journal of Central South University》 SCIE EI CAS 2012年第6期1508-1516,共9页
To study the mechanics of work-hardening and annealing-softening, a series of experiments were conducted on samples of 304 austenitic stainless steel sheets. In addition, transmission electron microscopy (TEM), scan... To study the mechanics of work-hardening and annealing-softening, a series of experiments were conducted on samples of 304 austenitic stainless steel sheets. In addition, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and tensile testing were carried out to study changes and mechanisms of the stainless steel structures and properties during work-hardening and annealing-softening. The results indicate that annealing at low temperatures (100-500 ~C) can only remove partial residual stresses in the sample and the softening via annealing is not obvious. Bright annealing and rapid cooling in a protective atmosphere can completely soften the cold-worked material. In addition, the low-temperature sample without a protective atmosphere only has a little oxidation on the surface, but at higher temperature the oxidized layer is very thick. Thus, high-temperature annealing should include bright annealing. 展开更多
关键词 304 austenitic stainless steel work hardening annealing softening deformation twinning strain-induced martensite
下载PDF
Modeling of the flow stress behavior and microstructural evolution during hot deformation of Mg-8Al-1.5Ca-0.2Sr magnesium alloy
20
作者 Xiao Liu Luoxing Li Biwu Zhu 《Journal of Magnesium and Alloys》 SCIE EI CAS 2014年第2期133-139,共7页
Hot compression tests of Mg-8Al-1.5Ca-0.2Sr magnesium alloy were performed on the Gleeble-1500 machine at temperatures of 300,350,400,and 450℃and strain rates of 0.01,0.1 and 1 s^(−1).The flow stress behavior and mic... Hot compression tests of Mg-8Al-1.5Ca-0.2Sr magnesium alloy were performed on the Gleeble-1500 machine at temperatures of 300,350,400,and 450℃and strain rates of 0.01,0.1 and 1 s^(−1).The flow stress behavior and microstructural evolution were followed.The work hardening was derived according to the Laasraoui-Jonas model.An improved approach,which considered the influence of yield stress on flow stress and the effect of grain boundary(GB)migration on the evolution of dislocation density during compression,was used to simulate the microstructural evolution,the flow stress and the volume fraction recrystallized of Mg-8Al-1.5Ca-0.2Sr magnesium alloy.The simulated results are in good agreement with experimental results. 展开更多
关键词 Magnesium alloy Work hardening Cellular automata Volume fraction recrystallized MICROSTRUCTURE
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部