In order to obtain a high output energy from a xenon lamp-pumped solid-state dye laser, homogeneities of laser mediums and flatnesses of medium faces with different processing treatments are discussed in the paper. Th...In order to obtain a high output energy from a xenon lamp-pumped solid-state dye laser, homogeneities of laser mediums and flatnesses of medium faces with different processing treatments are discussed in the paper. The mediums without aging treatment, which are prepared by using a prepolymer process and have diamond-machined end faces to produce the required optical finish, give a highest laser output of 281.9 mJ with 0.215% slope efficiency at 2.0x 10^-4 mol/L. The best medium lifetime is 21 shots to 50% of original output equating 74.6 k J/liter.展开更多
This study aimed to investigate the effect of artificial weathering test on the photoaging behavior of TPU films. Changes in mechanical properties, morphology and chemical structures are studied by tensile test, scann...This study aimed to investigate the effect of artificial weathering test on the photoaging behavior of TPU films. Changes in mechanical properties, morphology and chemical structures are studied by tensile test, scanning electron microscopy, atomic force microscopy, Fourier-transformed infrared, and X-ray photoelectron spectroscopy. The results show that the photoaging negatively affects the initial modulus and stress at break values of TPU films. The surface of the specimen that is exposed to irradiation becomes rough, and some visible micro-defects such as blisters and voids can be detected. The morphology of the fracture surfaces illustrates that irradiation reduces the plasticity but increases the brittleness of the TPU films. The chemical structure analyses of the accelerated aged films prove that chemical structural changes in TPU films occur. The irradiation may break the long molecular chains on the surface of the specimens and form the lowmolecular weight oxygen-containing groups. The number of chain scissions increases with the increase in exposure time.展开更多
The effect of an axial magnetic field (AMF) on an old xenon short-arc lamp is experimentally investigated in this work. As the AMF increases up to 18 roT, the visible radiation power and electric power ascend more t...The effect of an axial magnetic field (AMF) on an old xenon short-arc lamp is experimentally investigated in this work. As the AMF increases up to 18 roT, the visible radiation power and electric power ascend more than 80% and 70% respectively, and the radiation efficiency is improved by 23% for the best increment at 12 mT AMF. The measurement of radiation intensity shows that the increment of radiation intensity comes mostly from the plasma area close to the cathode tip, and partially from the other area of the arc column. Successive images of the arc indicate that the arc column not only rotates about its axis, but revolves around the axis of electrodes with the AMF. The arc column structure is constricted, distorted and elongated as the AMF increases. It is suggested that the improvements of the radiation intensity and radiation efficiency are attributed to the constriction of the arc column, which is mainly induced by the enhanced cathode jet.展开更多
The solid-state medium containing pyrromethene 567 (PM567) in a polymethylmethacrylate polymer host is shown to lase under the flash lamp excitation. The experimental setup is an ordinary industrial product without ...The solid-state medium containing pyrromethene 567 (PM567) in a polymethylmethacrylate polymer host is shown to lase under the flash lamp excitation. The experimental setup is an ordinary industrial product without special design. The bulk transmission losses, the output energy, and the other lasing properties are compared. The medium with the lowest transmission loss, measured to be 0.392 %/cm at 633 nm, gives a laser output of 130 mJ with a slope efficiency of 0.082%.展开更多
YB-2 aviation polymethyl methacrylate (PMMA) is irradiated in a xenon arc lamp weather resistance test chamber for 1620 hours. The tensile strength, light transmittance, surface morphology, relative molecular mass, in...YB-2 aviation polymethyl methacrylate (PMMA) is irradiated in a xenon arc lamp weather resistance test chamber for 1620 hours. The tensile strength, light transmittance, surface morphology, relative molecular mass, infrared absorption spectrum and glass transition temperature (Tg) of PMMA exposed in xenon arc lamp for different durations are tested and characterized by universal testing machine, optical haze instrument, scanning electronic microscopy (SEM), gel permeation chromatograph (GPC), fourier transform infrared spectrometer (FT-IR) and differential scanning calorimetry (DSC), so as to comprehensively analyze the influence of xenon arc lamp irradiation on the performance of PMMA. The results reveal that under the effect of 1620 hours xenon arc lamp irradiation and periodic spraying water, the light transmittance and glass transition temperature do not change significantly, and no new chemical group is produced. After irradiated 360 hours, tiny cracks occur in the surface of PMMA, indicating that they occur at a certain degree of degradation, meanwhile, the main chain may be broken and the relative molecular mass of surface of the material decreases. After exposure of 720 hours, the tensile strength decreases about 30%.展开更多
To make full use of plant shellfibers(rice husk,walnut shell,chestnut shell),three kinds of wood-plastic com-posites of plant shellfibers and polyvinyl chloride(PVC)were prepared.X-ray diffraction analysis was carried o...To make full use of plant shellfibers(rice husk,walnut shell,chestnut shell),three kinds of wood-plastic com-posites of plant shellfibers and polyvinyl chloride(PVC)were prepared.X-ray diffraction analysis was carried out on three kinds of plant shellfibers to test their crystallinity.The aging process of the composites was conducted under 2 different conditions.One was artificial seawater immersion and xenon lamp irradiation,and the other one was deionized water spray and xenon lamp irradiation.The mechanical properties(tensile strength,flexural strength,impact strength),changes in color,water absorption,Fourier transform infrared spectroscopy(FTIR),and microstructures of the composites before and after the two aging experiments were analyzed.The results showed that the chestnut shell had the highest crystallinity,which was 42%.The chestnut shell/PVC composites had the strongest interface bonding,the least internal defects,and the best general mechanical properties among the three composites.Its tensile strength,bending strength and impact strength were 23.81 MPa,34.12 MPa,and 4.32 KJ·m^(-2),respectively.Comparing the two aging conditions,artificial seawater immersion and xenon lamp irradiation destroyed the quality of the combination of plant shellfibers and PVC,making the internal defects of the composites increase.This made the water absorption ability and changes in the color of the composites more obvious and led to a great decrease in the mechanical properties.The general mechanical properties of the chestnut shell/PVC composites were the best,but their water absorption ability changed more obviously.展开更多
文摘In order to obtain a high output energy from a xenon lamp-pumped solid-state dye laser, homogeneities of laser mediums and flatnesses of medium faces with different processing treatments are discussed in the paper. The mediums without aging treatment, which are prepared by using a prepolymer process and have diamond-machined end faces to produce the required optical finish, give a highest laser output of 281.9 mJ with 0.215% slope efficiency at 2.0x 10^-4 mol/L. The best medium lifetime is 21 shots to 50% of original output equating 74.6 k J/liter.
基金Funded by the Fundamental Research Funds for the Central Universities(No.HIT.KISTP.201408)
文摘This study aimed to investigate the effect of artificial weathering test on the photoaging behavior of TPU films. Changes in mechanical properties, morphology and chemical structures are studied by tensile test, scanning electron microscopy, atomic force microscopy, Fourier-transformed infrared, and X-ray photoelectron spectroscopy. The results show that the photoaging negatively affects the initial modulus and stress at break values of TPU films. The surface of the specimen that is exposed to irradiation becomes rough, and some visible micro-defects such as blisters and voids can be detected. The morphology of the fracture surfaces illustrates that irradiation reduces the plasticity but increases the brittleness of the TPU films. The chemical structure analyses of the accelerated aged films prove that chemical structural changes in TPU films occur. The irradiation may break the long molecular chains on the surface of the specimens and form the lowmolecular weight oxygen-containing groups. The number of chain scissions increases with the increase in exposure time.
基金supported by National Natural Science Foundation of China (Nos.50876101,11035005)the Science Instrument Foundation of CAS
文摘The effect of an axial magnetic field (AMF) on an old xenon short-arc lamp is experimentally investigated in this work. As the AMF increases up to 18 roT, the visible radiation power and electric power ascend more than 80% and 70% respectively, and the radiation efficiency is improved by 23% for the best increment at 12 mT AMF. The measurement of radiation intensity shows that the increment of radiation intensity comes mostly from the plasma area close to the cathode tip, and partially from the other area of the arc column. Successive images of the arc indicate that the arc column not only rotates about its axis, but revolves around the axis of electrodes with the AMF. The arc column structure is constricted, distorted and elongated as the AMF increases. It is suggested that the improvements of the radiation intensity and radiation efficiency are attributed to the constriction of the arc column, which is mainly induced by the enhanced cathode jet.
文摘The solid-state medium containing pyrromethene 567 (PM567) in a polymethylmethacrylate polymer host is shown to lase under the flash lamp excitation. The experimental setup is an ordinary industrial product without special design. The bulk transmission losses, the output energy, and the other lasing properties are compared. The medium with the lowest transmission loss, measured to be 0.392 %/cm at 633 nm, gives a laser output of 130 mJ with a slope efficiency of 0.082%.
文摘YB-2 aviation polymethyl methacrylate (PMMA) is irradiated in a xenon arc lamp weather resistance test chamber for 1620 hours. The tensile strength, light transmittance, surface morphology, relative molecular mass, infrared absorption spectrum and glass transition temperature (Tg) of PMMA exposed in xenon arc lamp for different durations are tested and characterized by universal testing machine, optical haze instrument, scanning electronic microscopy (SEM), gel permeation chromatograph (GPC), fourier transform infrared spectrometer (FT-IR) and differential scanning calorimetry (DSC), so as to comprehensively analyze the influence of xenon arc lamp irradiation on the performance of PMMA. The results reveal that under the effect of 1620 hours xenon arc lamp irradiation and periodic spraying water, the light transmittance and glass transition temperature do not change significantly, and no new chemical group is produced. After irradiated 360 hours, tiny cracks occur in the surface of PMMA, indicating that they occur at a certain degree of degradation, meanwhile, the main chain may be broken and the relative molecular mass of surface of the material decreases. After exposure of 720 hours, the tensile strength decreases about 30%.
基金This study was supported by the financial support of Natural Science Research Projects in Higher Education Institutions in Jiangsu Province(No.18KJD430002).
文摘To make full use of plant shellfibers(rice husk,walnut shell,chestnut shell),three kinds of wood-plastic com-posites of plant shellfibers and polyvinyl chloride(PVC)were prepared.X-ray diffraction analysis was carried out on three kinds of plant shellfibers to test their crystallinity.The aging process of the composites was conducted under 2 different conditions.One was artificial seawater immersion and xenon lamp irradiation,and the other one was deionized water spray and xenon lamp irradiation.The mechanical properties(tensile strength,flexural strength,impact strength),changes in color,water absorption,Fourier transform infrared spectroscopy(FTIR),and microstructures of the composites before and after the two aging experiments were analyzed.The results showed that the chestnut shell had the highest crystallinity,which was 42%.The chestnut shell/PVC composites had the strongest interface bonding,the least internal defects,and the best general mechanical properties among the three composites.Its tensile strength,bending strength and impact strength were 23.81 MPa,34.12 MPa,and 4.32 KJ·m^(-2),respectively.Comparing the two aging conditions,artificial seawater immersion and xenon lamp irradiation destroyed the quality of the combination of plant shellfibers and PVC,making the internal defects of the composites increase.This made the water absorption ability and changes in the color of the composites more obvious and led to a great decrease in the mechanical properties.The general mechanical properties of the chestnut shell/PVC composites were the best,but their water absorption ability changed more obviously.