Lead (Pb) was detected in potential urban garden soil in Claremont Cali-fornia and was absorbed by radish cultivars and giant red mustard in a bioassay of the contaminated soil. Radish cultivars grown in two soils wit...Lead (Pb) was detected in potential urban garden soil in Claremont Cali-fornia and was absorbed by radish cultivars and giant red mustard in a bioassay of the contaminated soil. Radish cultivars grown in two soils with two lead salts developed the same lead tissue concentrations. In a subsequent study, Cultivar “Rudolf” accumulated less lead nitrate than cultivars “French Breakfast” and “White Beauty”. Cultivar “Rudolf” grew the least biomass likely accounting for its reduced Pb accumulation. All radish cultivars accumulated more lead when grown in clay vs. sand soil and radish Pb accumulation increased when the concentration of lead was increased in either soil type. The solubility of the lead ion used was not associated with Pb uptake by radish.展开更多
The use of low-cost (<200 USD) soil moisture sensors in crop production systems has the potential to give inference on plant water status and therein drive irrigation events. However, commercially available sensors...The use of low-cost (<200 USD) soil moisture sensors in crop production systems has the potential to give inference on plant water status and therein drive irrigation events. However, commercially available sensors in this price range vary in sensing methodologies and limited information on sensor to sensor relationship is available. The objective of this research was to test the response of the Watermark 200SS and Decagon 10HS sensors to changes in water content of three dissimilar soils representing common soils in Arkansas row-crop production in nine plastic, 19 L containers under variable environmental conditions. Both sensors were influenced by changes in soil temperature but the magnitudes of the temperature responses were small relative to the moisture responses. Furthermore, the 10HS sensor did not indicate a significant impact of soil texture on estimated volumetric water contents (VWCs). The small sphere of influence on the tested soil moisture parameters coupled with the substantial evaporative demands and temperatures under which this experiment was conducted resulted in suspected non-uniform drying and wetting of the tested containers. Subsequently, non-linear relationships were noted between 10HS estimated VWCs and actual container VWCs and the 200SS predicted lower water potentials than calculated by converting container VWC to soil water potential. The failure of the sensors to accurately predict container VWC highlights the importance of understanding the relatively small quantity of soil on which these sensors rely as well as the potential variability in soil moisture within a very limited volume. The authors caution users of sensors that soil variability may be one of the most important considerations in sensor deployment.展开更多
Phosphorus loading and measurement is of concern on lands where biosolids have been applied. Traditional soil testing for plant-available P may be inadequate for the accurate assessment of P loadings in a regulatory e...Phosphorus loading and measurement is of concern on lands where biosolids have been applied. Traditional soil testing for plant-available P may be inadequate for the accurate assessment of P loadings in a regulatory environment as the reported levels may not correlate well with environmental risk. In order to accurately assess potential P runoff and leaching, as well as plant uptake, we must be able to measure organic P mineralized by the biotic community in the soil. Soils with varying rates of biosolid application were evaluated for mineralized organic P during a 112-day incubation using the difference between P measured using a rapid-flow analyzer (RFA) and an axial flow Varian ICP-OES. An increase in the P mineralized from the treated soils was observed from analysis with the Varian ICP-OES, but not with the RFA. These results confirm that even though organic P concentrations have increased due to increasing biosolid application, traditional soil testing using an RFA for detection, would not accurately portray P concentration and potential P loading from treated soils.展开更多
The soils, tropical climate, and network of canals and rivers of southern Vietnam have created one of the most diverse tropical jungles and intensely cultivated landscapes of Southeast Asia. This paradise has a long h...The soils, tropical climate, and network of canals and rivers of southern Vietnam have created one of the most diverse tropical jungles and intensely cultivated landscapes of Southeast Asia. This paradise has a long history of numerous wars, foreign occupations, and most recently the Second Indochina War (aka the Vietnam War 1965-1972) which defoliated rain forests and ancient wetland mangroves and left behind contaminated soil and sediment hotspots. During this war, the United States (US) military sprayed 80 million liters of Agent Orange contaminated with the dioxin TCDD in a guerrilla war against communist insurgents. Agent Orange was a synthetic plant growth regulator comprised of equal amounts of two herbicides 2,4-dichloro phenoxyacetic acid C8H6Cl2O3 (2,4-D) and 2,4,5-trichlorophenoxyacetic acid C8H5Cl3O3 (2,4,5-T). TCDD, the dioxin, 2,3,7,8-tetrachlorodibenzodioxin (C12H4Cl4O2) was an unintended byproduct of the accelerated combustion process used in the manufacture of herbicides containing 2,4,5-T. Agent Orange has frequently been blamed for soil and sediment contamination and long-term human health problems;however, the true source of harm is the dioxin TCDD. Agent Orange has a short half-life of days and weeks after application to vegetation, and has not been found to persist, after 50 years, in the water or soils of southern Vietnam. However, the half-life of dioxin TCDD depends on where it is deposited and varies from 1 to 3 years on soil surfaces that have been fully exposed to sunlight, to as long as 20 to 50 years or more when buried in tropical subsoils, and more than 100 years in river and sea sediments. Dioxin TCDD was heavily concentrated in the US Air Force bases in Vietnam where the herbicides were stored, loaded on planes and helicopters for aerial spraying, and used extensively around military base perimeter fences as a security measure to prevent surprise attacks. Bien Hoa Air Force base, 40 km northeast of Ho Chi Minh City, continues to be one of the mega-hotspots where after 48 years the dioxin TCDD levels in fish and shrimp are still high and fishing is banned in ponds and lakes adjacent to the airbase. Although expensive, one of the most effective remediation to dioxin TCDD contaminated soils is incineration which is the recommended method of dioxin TCDD disposal.展开更多
Soil organic carbon (SOC) losses due to poor soil management in dryland are now well documented. However, the influence of soil properties on organic carbon change is not well known. The groundnut plant (Arachis hypog...Soil organic carbon (SOC) losses due to poor soil management in dryland are now well documented. However, the influence of soil properties on organic carbon change is not well known. The groundnut plant (Arachis hypogaea L.), and the dominant crop system in the Senegal’s Soudanian zone, have been compared with semi-natural savanna. Leaves, stems and roots biomass were measured, and soil characteristics were analysed. The total leaves and stems biomass was 1.7 and 2.7 Mg ha-1 dry matter in groundnut fields and savanna respectively. Total SOC stocks were low (8 to 20 Mg C·ha-1 within upper 0.2 m depth, 20 to 64 Mg C·ha-1 within upper 1 m depth) and were significantly lower (P δ13C values show that SOC quality is transformed from the savanna plants (C4/C3 mixed-pools) to C3-pools in groundnut cultivated zone, with the organic matter signature more preserved in the clayey soils. This study confirms that converting woodland to groundnut fields provokes texture transformation and SOC loss. The results call for the extreme necessity to regenerate the wooded zone or encourage practices that favour SOC restitution.展开更多
Objective:To explore various unexplored locations where Penicillium spp.would be available and study the production of penicillin from the isolated Penicillium spp.in different media with altered carbohydrate source.M...Objective:To explore various unexplored locations where Penicillium spp.would be available and study the production of penicillin from the isolated Penicillium spp.in different media with altered carbohydrate source.Methods:The collected soil samples were screened for the isolation of Penicillium chrysogenum(P.chrysogenum) by soil dilution plate.The isolated Penicillium species were further grown in different production media with changes in the carbohydrate source.The extracted penicillin from various isolates was analyzed by HPLC for the efficacy of the product.Further the products were screened with various bacterial species including methicillin resistant Staphylococcus aureus(MRSA).And the work was extended to find the possible action on MRSA,along with characterization using other pathogens.Results:From the various soil and citrus samples used for analysis,only the soil sample from Government General Hospital of Bangalore,India,and Sanjay Gandhi Hospital,Bangalore,India,showed some potential growth of the desired fungi P.chrysogenum.Different production media showed varied range of growth of PenicilUum.Optimum production of penicillin was obtained in maltose which proved maximum zone of inhibition during assay.Characterization of penicillin on pathogens,like wild Escherichia coli strain,Klebsiella spp.,and MRSA,gave quite interesting results such as no activity on the later strain as it is resistant.HPLC data provided the analytical and confirmation details of the penicillin produced.Accordingly,the penicillin produced from the soil sample of Government General Hospital had the high milli absorbance unit of 441.5 mAu compared with that of the penicillin produced from Sanjay Gandhi Hospital sample,8S.S2 mAu.Therefore,there was a considerable change in quantity of the penicillin produced from both the samples.Conclusions: The Penicillium spp.could be possibly rich in hospital contaminants and its environments.This research focuses on various unexplored sources of medical ailments,and also shows that the growth of penicillin is high in maltose rich media that could possibly enhance the growth.展开更多
This study investigated the impact of soil texture and sweetpotato cropping system on soil erosion and nutrient loss in the drought infield of the Three Gorges Reservoir Area of Changjiang River under field conditions...This study investigated the impact of soil texture and sweetpotato cropping system on soil erosion and nutrient loss in the drought infield of the Three Gorges Reservoir Area of Changjiang River under field conditions. A factorial experiment was conducted in the study using five soil textures and two cropping systems. The lost soil during the crop season was recovered by a soil-blocking device and the dry weights for the total lost soil and its nutrient components, such as ammonium nitrogen, effective phosphorus, K^+ and organic matter were analyzed. We found that soil texture significantly affected the dry weights of the total lost soil, effective phosphorus, K^+, and organic matter, while sweetpotato cropping systems and interaction between soil texture and sweetpotato cropping system affected the dry weights of the total lost soil, the effective phosphorus and organic matter. Among the five soil textures tested, Da and Huang caused significantly less soil erosion and nutrient loss compared with the other three soil textures; intercropping sweetpotato with corn significantly reduced soil erosion and nutrient loss.展开更多
Soil underneath a structure might affect the behavior and the overall response of the structure in seismic events. The role of loose soil conditions and the inclusion of soil-structure interaction (SSI) in the analysi...Soil underneath a structure might affect the behavior and the overall response of the structure in seismic events. The role of loose soil conditions and the inclusion of soil-structure interaction (SSI) in the analysis are important issues that need to be addressed. Since steel structures are light, two configurations designed as spatial and perimeter are considered to study the effect of soil on the steel structural frames for the same building. The paper provides a parametric analysis on the influence of SSI on the overall performance of MRFs (Moment Resisting Frames) according to the provisions of Saudi Building Code (SBC) [1]. A case study has been developed in which spatial and perimeter moment resisting frames of 12, 6 and 3 stories residential buildings are designed using Saudi Building Code (SBC) prescriptions. A modal response spectrum analysis has been carried out to see the influence of SSI on the fundamental period of vibration, top story displacement and inter-story drift limitations. Moreover, a static non-linear analysis has been performed to investigate the performance of frames, thus allowing to identify the influence of SSI on the structural design of steel MRFs.展开更多
Accurate monitoring of soil water status can be an important component of precision irrigation water management. A variety of commercial sensors measure soil water status by relating sensor electrical output to soil w...Accurate monitoring of soil water status can be an important component of precision irrigation water management. A variety of commercial sensors measure soil water status by relating sensor electrical output to soil water content or soil water potential. However, sensor electrical output can also be affected by soil characteristics other than water content, such as soil texture, salinity, and temperature. This makes it difficult to accurately measure and interpret soil water status without prior on-site calibration. In this study, we investigated the impact of soil texture on the response of three types of sensors commonly used to monitor soil water status, including the Decagon EC-5, the Vegetronix VH400, and the Watermark 200ss granular matrix sensor. A replicated laboratory experiment was conducted to evaluate the response of these types of sensors using four major soil textural classes commonly found in South Carolina. We found that the three types of sensors had a significant response to changes in soil water content, but while the EC-5 and VH400 sensors had a linear response, the Watermark 200ss had a curvilinear response that was explained by an exponential decay function. The response of the three sensor types, however, was significantly affected by soil texture, which will significantly affect the trigger point used to initiate irrigation based on the output from these sensors. Therefore, it is suggested that guidelines on how to use these sensors for local soils need to be developed and made available to farmers, so that they can make better irrigation scheduling decisions.展开更多
Soil water deficit is increasingly threatening the sustainable vegetation restoration and ecological construction on the Loess Plateau of China due to the climate warming and human activities.To determine the response...Soil water deficit is increasingly threatening the sustainable vegetation restoration and ecological construction on the Loess Plateau of China due to the climate warming and human activities.To determine the response thresholds of Amygdalus pedunculata(AP)and Salix psammophila(SP)to soil water availability under different textural soils,we measured the changes in net photosynthetic rate(Pn),stomatal conductance(Gs),intercellular CO2 concentration(Ci),leaf water potential(ψw),water use efficiency(WUE)and daily transpiration rate(Td)of the two plant species during soil water content(SWC)decreased from 100%field capacity(FC)to 20%FC in the sandy and loamy soils on the Loess Plateau in the growing season from June to August in 2018.Results showed that Pn,Gs,WUE and Td of AP and SP remained relatively constant at the beginning of soil water deficit but decreased rapidly as plant available soil water content(PASWC)fell below the threshold values in both the sandy and loamy soils.The PASWC thresholds corresponding to Pn,Gs and Ci of AP in the loamy soil(0.61,0.62 and 0.70,respectively)were lower than those in the sandy soil(0.70,0.63 and 0.75,respectively),whereas the PASWC thresholds corresponding to Pn,Gs and Ci of SP in the loamy soil(0.63,0.68 and 0.78,respectively)were higher than those in the sandy soil(0.58,0.62 and 0.66,respectively).In addition,the PASWC thresholds in relation to Td and WUE of AP(0.60 and 0.58,respectively)and SP(0.62 and 0.60,respectively)in the loamy soil were higher than the corresponding PASWC thresholds of AP(0.58 and 0.52,respectively)and SP(0.55 and 0.56,respectively)in the sandy soil.Furthermore,the PASWC thresholds for the instantaneous gas exchange parameters(e.g.,Pn and Gs)at the transient scale were higher than the thresholds for the parameters(e.g.,Td)at the daily scale.Our study demonstrates that different plant species and/or different physiological parameters exhibit different thresholds of PASWC and that the thresholds are affected by soil texture.The result can provide guidance for the rational allocation and sustainable management of reforestation species under different soil conditions in the loess regions.展开更多
A two-year field experiment was carried out in order to study the occurrence degree and mechanism of apple replant disease(ARD)in the apple orchards with different soil textures.So we can adopt appropriate controlmeas...A two-year field experiment was carried out in order to study the occurrence degree and mechanism of apple replant disease(ARD)in the apple orchards with different soil textures.So we can adopt appropriate controlmeasures according to the severity of ARD.Healthy two-year-old seedlings with consistent growth were selected,of which the root stock was T337 and the scion was Yanfu 3.There were significant differences in biomass between methyl bromide fumigation and replanted treatments,and the difference was the largest in clay loam,followed by sandy loam,and loam,which verified ARD in clay loam was most serious,followed by sandy loam and loam.Based on high-throughput sequencing of fungi in soil samples,fungal richness and diversity were the highest in clay loam,followed by sandy loam,and loam.The relative abundance of Fusarium in SX,SL,FX,FL,WX and WL was 7.33%,19.32%,2.70%,4.24%,10.71%and 23.87%,respectively.Based on Real-time quantitative analysis,there were significant differences in the number of Fusarium oxysporum and Fusarium solani between methyl bromide fumigation and replanted treatments,i.e.,clay loam>sandy loam>loam.Fusarium was the main pathogen causing ARD.This shows that ARD is the most serious under replanted clay loam condition.High-throughput sequencing technology was used to prove the difference in Fusarium was one of the important reasons for ARD under different soil textures.This technology provides a new idea for the prevention and control of ARD.展开更多
Three kinds of soil texture (clay-loam, mid-loam, and sand-loam soil) were used to study the effects of soil texture on starch accumulating rate and the changes in activities of the key enzymes of starch synthesis i...Three kinds of soil texture (clay-loam, mid-loam, and sand-loam soil) were used to study the effects of soil texture on starch accumulating rate and the changes in activities of the key enzymes of starch synthesis in the kernel during grain filling in high gluten content wheat ZM 9023, under conditions of pond culture. The content of starch and its components were measured according to the method of double-wave length described by Bao (1996). ADP-glucose pyrophosphorylase (AGPP) activity was tested according to the method described by Doehlert et al. (1988). Soluble starch synthase (SSS) and starch branching enzyme (SBE) activities were tested according to the method described by Nakamura et al. (1989). The amylose, amylopectin, and total starch accumulating rate in the kernel of ZM 9023 were found to be a single-peak curve in three different soil textures during grain filling, and peaked 20, 15, and 15 d after anthesis, respectively. The activities of the enzymes, AGPP, SSS, and SBE, in the kernel of ZM 9023 had a single-peaked curve, which peaked 20, 15, and 15 d after anthesis, respectively. The activities of the above three enzymes of ZM 9023 were higher in the sand-loam soil. The accumulating peak of amylose formed later compared to that of amylopectin. The sand-loam soil could help high gluten content cultivars to synthesize starch.展开更多
In arid desert regions of northwestern China, reclamation and subsequent irrigated cultivation have become effective ways to prevent desertification, expand arable croplands, and develop sustainable agricultural produ...In arid desert regions of northwestern China, reclamation and subsequent irrigated cultivation have become effective ways to prevent desertification, expand arable croplands, and develop sustainable agricultural production. Improvement in soil texture and fertility is crucial to high soil quality and stable crop yield. However, knowledge on the long-term effects of the conversion of desert lands into arable croplands is very limited. To address this problem, we conducted this study in an arid desert region of northwestern China to understand the changes in soil physical-chemical properties after 0, 2, 5, 10, 17, and 24 years of cultivation. Our results showed that silt and clay contents at the 17-year-old sites increased 17.5 and 152.3 folds, respectively, compared with that at the 0-year-old sites. The soil aggregate size fraction and its stability exhibited an exponential growth trend with increasing cultivation ages, but no significant change was found for the proportion of soil macroaggregates(>5.00 mm) during the 17 years of cultivation. The soil organic carbon(SOC) content at the 24-year-old sites was 6.86 g/kg and increased 8.8 folds compared with that at the 0-year-old sites. The total(or available) nitrogen, phosphorus, and potassium contents showed significant increasing trends and reached higher values after 17(or 24) years of cultivation. Changes in soil physical-chemical properties successively experienced slow, rapid, and stable development stages, but some key properties(such as soil aggregate stability and SOC) were still too low to meet the sustainable agricultural production. The results of this long-term study indicated that reasonable agricultural management, such as expanding no-tillage land area, returning straw to the fields, applying organic fertilizer, reducing chemical fertilizer application, and carrying out soil testing for formula fertilization, is urgently needed in arid desert regions.展开更多
The thermal conductivity of the soil skeletonλ;is an essential parameter from the point of view of the correct assessment of soil overall/effective conductivity.This work introduces the concept of“local thermal cond...The thermal conductivity of the soil skeletonλ;is an essential parameter from the point of view of the correct assessment of soil overall/effective conductivity.This work introduces the concept of“local thermal conductivity fluctuation”which characterizes the microscale variation of conductivity within the solid phase.It is proposed to link the“local fluctuation”of thermal conductivityλwith the soil texture-the information that is available at the scale of engineering applications.It was possible to relate the skeleton thermal conductivity with the grain size distribution of the soil.Finally,based on a large series of numerical simulations,the paper provides four triangle diagrams(at different organic matter contents:0%,2%,4%and 6%)relating the value ofλ;with volume fraction of individual soil separates.This result is extremely important from the practical point of view.One can quickly evaluateλ;value provided that information on the grain size distribution and organic matter content is available.展开更多
In the present paper, we have studied the effect of soil textures,?i.e., sand, silt and clay on microwave scattering at X-band (10 GHz) at various incidence angles and like polarizations (i.e., Horizontal-Horizontal;H...In the present paper, we have studied the effect of soil textures,?i.e., sand, silt and clay on microwave scattering at X-band (10 GHz) at various incidence angles and like polarizations (i.e., Horizontal-Horizontal;HH-, Vertical-Vertical;VV-). We have proposed a retrieval technique based on Genetic Algorithm (GA) to retrieve soil texture. For this purpose, ten types of soil mixtures having different percentage of sand, silt and clay have been analyzed. The observations were carried out by ingeniously assembled X-band scatterometer. A good agreement has been noticed between estimated and observed soil texture. Study infers that soil texture is quite sensitive to radar scattering and it is possible to retrieve soil texture with radar/scatterometer data with good accuracy and this type of retrieved results can be helpful to predict soil strength as well as soil erosion of the particular area.展开更多
Soil water is a key factor limiting plant growth in water-limited regions. Without limit of soil water used by plants, soil degradation in the form of soil desiccation is easy to take place in the perennial forestland...Soil water is a key factor limiting plant growth in water-limited regions. Without limit of soil water used by plants, soil degradation in the form of soil desiccation is easy to take place in the perennial forestland and grassland with too higher density or productivity. Soil water resources use limit (SWRUL) is the lowest control limit of soil water resources which is used by plants in those regions. It can be defined as soil water storage within the maximum infiltration depth in which all of soil layers belong to dried soil layers. In this paper, after detailed discussion of characteristics of water resources and the relationship between soil water and plant growth in the Loess Plateau, the definition, quantitative method, and practical applications of SWRUL are introduced. Henceforth, we should strengthen the study of SWRUL and have a better understanding of soil water resources. All those are of great importance for designing effective restoration project and sustainable management of soil water resources in water- limited regions in the future.展开更多
Soil resistance to penetration and rutting depends on variations in soil texture, density and weather-affected changes in moisture content. It is therefore difficult to know when and where off-road traffic could lead ...Soil resistance to penetration and rutting depends on variations in soil texture, density and weather-affected changes in moisture content. It is therefore difficult to know when and where off-road traffic could lead to rutting-induced soil disturbances. To establish some of the empirical means needed to enable the “when” and “where” determinations, an effort was made to model the soil resistance to penetration over time for three contrasting forest locations in Fredericton, New Brunswick: a loam and a clay loam on ablation/ basal till, and a sandy loam on alluvium. Measurements were taken manually with a soil moisture probe and a cone penetrometer from spring to fall at weekly intervals. Soil moisture was measured at 7.5 cm soil depth, and modelled at 15, 30, 45 and 60 cm depth using the Forest Hydrology Model (ForHyM). Cone penetration in the form of the cone index (CI) was determined at the same depths. These determinations were not only correlated with measured soil moisture but were also affected by soil density (or pore space), texture, and coarse fragment and organic matter content (R2 = 0.54;all locations and soil depths). The resulting regression-derived CI model was used to emulate how CI would generally change at each of the three locations based on daily weather records for rain, snow, and air temperature. This was done through location-initialized and calibrated hydrological and geospatial modelling. For practical interpretation purposes, the resulting CI projections were transformed into rut-depth estimates regarding multi-pass off-road all-terrain vehicle traffic.展开更多
In the present study, a biofertilizer on the basis of Streptomyces fumanus gn-2 was used for the treatment of wheat and soybean seeds (dose 104 spore/ml) before planting them in soil with low fertility in order to det...In the present study, a biofertilizer on the basis of Streptomyces fumanus gn-2 was used for the treatment of wheat and soybean seeds (dose 104 spore/ml) before planting them in soil with low fertility in order to determine the effect of this biological agent on germination rate;the growth of seedlings, shoots, and the maturation phase of plants;the rhizosphere’s functional biodiversity;and the resistance of these plants to pathogens. Seeds were soaked in the suspension for a period of two or three hours. During the growing season of the crop, no additional fertilizing and spraying of a biopesticide against diseases or pests occurred. Despite the soil having low fertility, low quantities of organic matter, and not having been before used for the cultivation of agricultural plants, this biofertilizer showed a strong stimulatory effect on the growth of seeds and seedlings of wheat and soybeans. The average germination and seed vigor increased by 1.5 - 2.0 times, and the phenophases were accelerated to three to five days. In all phases of vegetation, the ammonifying bacteria in the presence of an antagonist (a biological agent) developed rapidly and were constantly present in significant numbers in the rhizosphere. Streptomyces fumanus introduced into non-sterile soil entered into competition with the local soil microflora and had the ability to colonize the rhizosphere system of plants. The use of a formulation of Streptomyces gn-2 has improved the composition of rhizosphere microflora, attracting saprophytic microorganisms: ammonificators and oligotrophs. The presence of the biocontrol microorganism Streptomyces fumanus in the rhizosphere plays an important role in enhancing the growth and development of useful groups, such as nitrogen-fixing bacteria.展开更多
Twenty-four soil samples were collected at three depths from an approximately 2.5 acre contaminated site in southern Piedmont (Italy) and then analyzed. The main soil parameters determined were: pH, Cation Exchange...Twenty-four soil samples were collected at three depths from an approximately 2.5 acre contaminated site in southern Piedmont (Italy) and then analyzed. The main soil parameters determined were: pH, Cation Exchange Capacity (CEC), particle size distribution, total organic carbon (TOC) content and retained metal concentration. The mineral phases were identified by X-Ray Powder Diffraction (XRPD). All of the samples contained Zn and Cu resulting from industrial contamination during the last century, and those obtained at depths of 20-40 cm consistently showed the highest levels. To determine which size fraction was most active in the retention process, the samples were separated into four fractions (≤2 mm, ≤63 0m, ≤30 0m and ≤2 μm) and the amount of pollutant measured in each. It was found that metal retention was the highest in the clayey fraction, whose clay minerals were identified by XRPD after K+ and Mg2+ saturation, glycerol treatment and heating to 550℃. The clayey fraction was also the richest in TOC, and a direct correlation between TOC amount and metal retention was observed.展开更多
文摘Lead (Pb) was detected in potential urban garden soil in Claremont Cali-fornia and was absorbed by radish cultivars and giant red mustard in a bioassay of the contaminated soil. Radish cultivars grown in two soils with two lead salts developed the same lead tissue concentrations. In a subsequent study, Cultivar “Rudolf” accumulated less lead nitrate than cultivars “French Breakfast” and “White Beauty”. Cultivar “Rudolf” grew the least biomass likely accounting for its reduced Pb accumulation. All radish cultivars accumulated more lead when grown in clay vs. sand soil and radish Pb accumulation increased when the concentration of lead was increased in either soil type. The solubility of the lead ion used was not associated with Pb uptake by radish.
文摘The use of low-cost (<200 USD) soil moisture sensors in crop production systems has the potential to give inference on plant water status and therein drive irrigation events. However, commercially available sensors in this price range vary in sensing methodologies and limited information on sensor to sensor relationship is available. The objective of this research was to test the response of the Watermark 200SS and Decagon 10HS sensors to changes in water content of three dissimilar soils representing common soils in Arkansas row-crop production in nine plastic, 19 L containers under variable environmental conditions. Both sensors were influenced by changes in soil temperature but the magnitudes of the temperature responses were small relative to the moisture responses. Furthermore, the 10HS sensor did not indicate a significant impact of soil texture on estimated volumetric water contents (VWCs). The small sphere of influence on the tested soil moisture parameters coupled with the substantial evaporative demands and temperatures under which this experiment was conducted resulted in suspected non-uniform drying and wetting of the tested containers. Subsequently, non-linear relationships were noted between 10HS estimated VWCs and actual container VWCs and the 200SS predicted lower water potentials than calculated by converting container VWC to soil water potential. The failure of the sensors to accurately predict container VWC highlights the importance of understanding the relatively small quantity of soil on which these sensors rely as well as the potential variability in soil moisture within a very limited volume. The authors caution users of sensors that soil variability may be one of the most important considerations in sensor deployment.
文摘Phosphorus loading and measurement is of concern on lands where biosolids have been applied. Traditional soil testing for plant-available P may be inadequate for the accurate assessment of P loadings in a regulatory environment as the reported levels may not correlate well with environmental risk. In order to accurately assess potential P runoff and leaching, as well as plant uptake, we must be able to measure organic P mineralized by the biotic community in the soil. Soils with varying rates of biosolid application were evaluated for mineralized organic P during a 112-day incubation using the difference between P measured using a rapid-flow analyzer (RFA) and an axial flow Varian ICP-OES. An increase in the P mineralized from the treated soils was observed from analysis with the Varian ICP-OES, but not with the RFA. These results confirm that even though organic P concentrations have increased due to increasing biosolid application, traditional soil testing using an RFA for detection, would not accurately portray P concentration and potential P loading from treated soils.
文摘The soils, tropical climate, and network of canals and rivers of southern Vietnam have created one of the most diverse tropical jungles and intensely cultivated landscapes of Southeast Asia. This paradise has a long history of numerous wars, foreign occupations, and most recently the Second Indochina War (aka the Vietnam War 1965-1972) which defoliated rain forests and ancient wetland mangroves and left behind contaminated soil and sediment hotspots. During this war, the United States (US) military sprayed 80 million liters of Agent Orange contaminated with the dioxin TCDD in a guerrilla war against communist insurgents. Agent Orange was a synthetic plant growth regulator comprised of equal amounts of two herbicides 2,4-dichloro phenoxyacetic acid C8H6Cl2O3 (2,4-D) and 2,4,5-trichlorophenoxyacetic acid C8H5Cl3O3 (2,4,5-T). TCDD, the dioxin, 2,3,7,8-tetrachlorodibenzodioxin (C12H4Cl4O2) was an unintended byproduct of the accelerated combustion process used in the manufacture of herbicides containing 2,4,5-T. Agent Orange has frequently been blamed for soil and sediment contamination and long-term human health problems;however, the true source of harm is the dioxin TCDD. Agent Orange has a short half-life of days and weeks after application to vegetation, and has not been found to persist, after 50 years, in the water or soils of southern Vietnam. However, the half-life of dioxin TCDD depends on where it is deposited and varies from 1 to 3 years on soil surfaces that have been fully exposed to sunlight, to as long as 20 to 50 years or more when buried in tropical subsoils, and more than 100 years in river and sea sediments. Dioxin TCDD was heavily concentrated in the US Air Force bases in Vietnam where the herbicides were stored, loaded on planes and helicopters for aerial spraying, and used extensively around military base perimeter fences as a security measure to prevent surprise attacks. Bien Hoa Air Force base, 40 km northeast of Ho Chi Minh City, continues to be one of the mega-hotspots where after 48 years the dioxin TCDD levels in fish and shrimp are still high and fishing is banned in ponds and lakes adjacent to the airbase. Although expensive, one of the most effective remediation to dioxin TCDD contaminated soils is incineration which is the recommended method of dioxin TCDD disposal.
文摘Soil organic carbon (SOC) losses due to poor soil management in dryland are now well documented. However, the influence of soil properties on organic carbon change is not well known. The groundnut plant (Arachis hypogaea L.), and the dominant crop system in the Senegal’s Soudanian zone, have been compared with semi-natural savanna. Leaves, stems and roots biomass were measured, and soil characteristics were analysed. The total leaves and stems biomass was 1.7 and 2.7 Mg ha-1 dry matter in groundnut fields and savanna respectively. Total SOC stocks were low (8 to 20 Mg C·ha-1 within upper 0.2 m depth, 20 to 64 Mg C·ha-1 within upper 1 m depth) and were significantly lower (P δ13C values show that SOC quality is transformed from the savanna plants (C4/C3 mixed-pools) to C3-pools in groundnut cultivated zone, with the organic matter signature more preserved in the clayey soils. This study confirms that converting woodland to groundnut fields provokes texture transformation and SOC loss. The results call for the extreme necessity to regenerate the wooded zone or encourage practices that favour SOC restitution.
文摘Objective:To explore various unexplored locations where Penicillium spp.would be available and study the production of penicillin from the isolated Penicillium spp.in different media with altered carbohydrate source.Methods:The collected soil samples were screened for the isolation of Penicillium chrysogenum(P.chrysogenum) by soil dilution plate.The isolated Penicillium species were further grown in different production media with changes in the carbohydrate source.The extracted penicillin from various isolates was analyzed by HPLC for the efficacy of the product.Further the products were screened with various bacterial species including methicillin resistant Staphylococcus aureus(MRSA).And the work was extended to find the possible action on MRSA,along with characterization using other pathogens.Results:From the various soil and citrus samples used for analysis,only the soil sample from Government General Hospital of Bangalore,India,and Sanjay Gandhi Hospital,Bangalore,India,showed some potential growth of the desired fungi P.chrysogenum.Different production media showed varied range of growth of PenicilUum.Optimum production of penicillin was obtained in maltose which proved maximum zone of inhibition during assay.Characterization of penicillin on pathogens,like wild Escherichia coli strain,Klebsiella spp.,and MRSA,gave quite interesting results such as no activity on the later strain as it is resistant.HPLC data provided the analytical and confirmation details of the penicillin produced.Accordingly,the penicillin produced from the soil sample of Government General Hospital had the high milli absorbance unit of 441.5 mAu compared with that of the penicillin produced from Sanjay Gandhi Hospital sample,8S.S2 mAu.Therefore,there was a considerable change in quantity of the penicillin produced from both the samples.Conclusions: The Penicillium spp.could be possibly rich in hospital contaminants and its environments.This research focuses on various unexplored sources of medical ailments,and also shows that the growth of penicillin is high in maltose rich media that could possibly enhance the growth.
文摘This study investigated the impact of soil texture and sweetpotato cropping system on soil erosion and nutrient loss in the drought infield of the Three Gorges Reservoir Area of Changjiang River under field conditions. A factorial experiment was conducted in the study using five soil textures and two cropping systems. The lost soil during the crop season was recovered by a soil-blocking device and the dry weights for the total lost soil and its nutrient components, such as ammonium nitrogen, effective phosphorus, K^+ and organic matter were analyzed. We found that soil texture significantly affected the dry weights of the total lost soil, effective phosphorus, K^+, and organic matter, while sweetpotato cropping systems and interaction between soil texture and sweetpotato cropping system affected the dry weights of the total lost soil, the effective phosphorus and organic matter. Among the five soil textures tested, Da and Huang caused significantly less soil erosion and nutrient loss compared with the other three soil textures; intercropping sweetpotato with corn significantly reduced soil erosion and nutrient loss.
文摘Soil underneath a structure might affect the behavior and the overall response of the structure in seismic events. The role of loose soil conditions and the inclusion of soil-structure interaction (SSI) in the analysis are important issues that need to be addressed. Since steel structures are light, two configurations designed as spatial and perimeter are considered to study the effect of soil on the steel structural frames for the same building. The paper provides a parametric analysis on the influence of SSI on the overall performance of MRFs (Moment Resisting Frames) according to the provisions of Saudi Building Code (SBC) [1]. A case study has been developed in which spatial and perimeter moment resisting frames of 12, 6 and 3 stories residential buildings are designed using Saudi Building Code (SBC) prescriptions. A modal response spectrum analysis has been carried out to see the influence of SSI on the fundamental period of vibration, top story displacement and inter-story drift limitations. Moreover, a static non-linear analysis has been performed to investigate the performance of frames, thus allowing to identify the influence of SSI on the structural design of steel MRFs.
文摘Accurate monitoring of soil water status can be an important component of precision irrigation water management. A variety of commercial sensors measure soil water status by relating sensor electrical output to soil water content or soil water potential. However, sensor electrical output can also be affected by soil characteristics other than water content, such as soil texture, salinity, and temperature. This makes it difficult to accurately measure and interpret soil water status without prior on-site calibration. In this study, we investigated the impact of soil texture on the response of three types of sensors commonly used to monitor soil water status, including the Decagon EC-5, the Vegetronix VH400, and the Watermark 200ss granular matrix sensor. A replicated laboratory experiment was conducted to evaluate the response of these types of sensors using four major soil textural classes commonly found in South Carolina. We found that the three types of sensors had a significant response to changes in soil water content, but while the EC-5 and VH400 sensors had a linear response, the Watermark 200ss had a curvilinear response that was explained by an exponential decay function. The response of the three sensor types, however, was significantly affected by soil texture, which will significantly affect the trigger point used to initiate irrigation based on the output from these sensors. Therefore, it is suggested that guidelines on how to use these sensors for local soils need to be developed and made available to farmers, so that they can make better irrigation scheduling decisions.
基金This study was financially supported by the National Natural Science Foundation of China(41601221)the Ministry of Science and Technology of China(2016YFC0501605)+2 种基金the Youth Innovation Promotion Association of Chinese Academy of Sciences(2019052)the Bingwei Outstanding Young Talent Project from the Institute of Geographical Sciences and Natural Resources Research,Chinese Academy of Sciences(2017RC203)the Scientific Research Program from the State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau,Institute of Soil and Water Conservation,Chinese Academy of Sciences and Ministry of Water Resources(A314021402-2010)。
文摘Soil water deficit is increasingly threatening the sustainable vegetation restoration and ecological construction on the Loess Plateau of China due to the climate warming and human activities.To determine the response thresholds of Amygdalus pedunculata(AP)and Salix psammophila(SP)to soil water availability under different textural soils,we measured the changes in net photosynthetic rate(Pn),stomatal conductance(Gs),intercellular CO2 concentration(Ci),leaf water potential(ψw),water use efficiency(WUE)and daily transpiration rate(Td)of the two plant species during soil water content(SWC)decreased from 100%field capacity(FC)to 20%FC in the sandy and loamy soils on the Loess Plateau in the growing season from June to August in 2018.Results showed that Pn,Gs,WUE and Td of AP and SP remained relatively constant at the beginning of soil water deficit but decreased rapidly as plant available soil water content(PASWC)fell below the threshold values in both the sandy and loamy soils.The PASWC thresholds corresponding to Pn,Gs and Ci of AP in the loamy soil(0.61,0.62 and 0.70,respectively)were lower than those in the sandy soil(0.70,0.63 and 0.75,respectively),whereas the PASWC thresholds corresponding to Pn,Gs and Ci of SP in the loamy soil(0.63,0.68 and 0.78,respectively)were higher than those in the sandy soil(0.58,0.62 and 0.66,respectively).In addition,the PASWC thresholds in relation to Td and WUE of AP(0.60 and 0.58,respectively)and SP(0.62 and 0.60,respectively)in the loamy soil were higher than the corresponding PASWC thresholds of AP(0.58 and 0.52,respectively)and SP(0.55 and 0.56,respectively)in the sandy soil.Furthermore,the PASWC thresholds for the instantaneous gas exchange parameters(e.g.,Pn and Gs)at the transient scale were higher than the thresholds for the parameters(e.g.,Td)at the daily scale.Our study demonstrates that different plant species and/or different physiological parameters exhibit different thresholds of PASWC and that the thresholds are affected by soil texture.The result can provide guidance for the rational allocation and sustainable management of reforestation species under different soil conditions in the loess regions.
基金supported by earmarked fund for National Modern Agro-industry Technology Research System of China(Grant No.CARS-27)Qingchuang Science and Technology Support Project of Shandong Colleges and Universities(Grant No.2019KJF020)+4 种基金Project Supported by Taishan Scholars(Grant No.ts20190923)Shandong Province Agricultural Major Applied Technology Innovation Projects(Grant No.SD2019ZZ008)the National Key Research and Development Program of China(Grant No.2016YFD0201114)the National Natural Science Foundation of China(Grant No.31672104)Fruit Innovation Team in Shandong Province,China(Grant No.SDAIT-06-07).
文摘A two-year field experiment was carried out in order to study the occurrence degree and mechanism of apple replant disease(ARD)in the apple orchards with different soil textures.So we can adopt appropriate controlmeasures according to the severity of ARD.Healthy two-year-old seedlings with consistent growth were selected,of which the root stock was T337 and the scion was Yanfu 3.There were significant differences in biomass between methyl bromide fumigation and replanted treatments,and the difference was the largest in clay loam,followed by sandy loam,and loam,which verified ARD in clay loam was most serious,followed by sandy loam and loam.Based on high-throughput sequencing of fungi in soil samples,fungal richness and diversity were the highest in clay loam,followed by sandy loam,and loam.The relative abundance of Fusarium in SX,SL,FX,FL,WX and WL was 7.33%,19.32%,2.70%,4.24%,10.71%and 23.87%,respectively.Based on Real-time quantitative analysis,there were significant differences in the number of Fusarium oxysporum and Fusarium solani between methyl bromide fumigation and replanted treatments,i.e.,clay loam>sandy loam>loam.Fusarium was the main pathogen causing ARD.This shows that ARD is the most serious under replanted clay loam condition.High-throughput sequencing technology was used to prove the difference in Fusarium was one of the important reasons for ARD under different soil textures.This technology provides a new idea for the prevention and control of ARD.
文摘Three kinds of soil texture (clay-loam, mid-loam, and sand-loam soil) were used to study the effects of soil texture on starch accumulating rate and the changes in activities of the key enzymes of starch synthesis in the kernel during grain filling in high gluten content wheat ZM 9023, under conditions of pond culture. The content of starch and its components were measured according to the method of double-wave length described by Bao (1996). ADP-glucose pyrophosphorylase (AGPP) activity was tested according to the method described by Doehlert et al. (1988). Soluble starch synthase (SSS) and starch branching enzyme (SBE) activities were tested according to the method described by Nakamura et al. (1989). The amylose, amylopectin, and total starch accumulating rate in the kernel of ZM 9023 were found to be a single-peak curve in three different soil textures during grain filling, and peaked 20, 15, and 15 d after anthesis, respectively. The activities of the enzymes, AGPP, SSS, and SBE, in the kernel of ZM 9023 had a single-peaked curve, which peaked 20, 15, and 15 d after anthesis, respectively. The activities of the above three enzymes of ZM 9023 were higher in the sand-loam soil. The accumulating peak of amylose formed later compared to that of amylopectin. The sand-loam soil could help high gluten content cultivars to synthesize starch.
基金funded by the National Key Research and Development Project (2017YFC0504303)the Strategic Priority Research Program of Chines Academy of Science (XDA2003010301)the National Natural Science Foundation of China (41671103)。
文摘In arid desert regions of northwestern China, reclamation and subsequent irrigated cultivation have become effective ways to prevent desertification, expand arable croplands, and develop sustainable agricultural production. Improvement in soil texture and fertility is crucial to high soil quality and stable crop yield. However, knowledge on the long-term effects of the conversion of desert lands into arable croplands is very limited. To address this problem, we conducted this study in an arid desert region of northwestern China to understand the changes in soil physical-chemical properties after 0, 2, 5, 10, 17, and 24 years of cultivation. Our results showed that silt and clay contents at the 17-year-old sites increased 17.5 and 152.3 folds, respectively, compared with that at the 0-year-old sites. The soil aggregate size fraction and its stability exhibited an exponential growth trend with increasing cultivation ages, but no significant change was found for the proportion of soil macroaggregates(>5.00 mm) during the 17 years of cultivation. The soil organic carbon(SOC) content at the 24-year-old sites was 6.86 g/kg and increased 8.8 folds compared with that at the 0-year-old sites. The total(or available) nitrogen, phosphorus, and potassium contents showed significant increasing trends and reached higher values after 17(or 24) years of cultivation. Changes in soil physical-chemical properties successively experienced slow, rapid, and stable development stages, but some key properties(such as soil aggregate stability and SOC) were still too low to meet the sustainable agricultural production. The results of this long-term study indicated that reasonable agricultural management, such as expanding no-tillage land area, returning straw to the fields, applying organic fertilizer, reducing chemical fertilizer application, and carrying out soil testing for formula fertilization, is urgently needed in arid desert regions.
文摘The thermal conductivity of the soil skeletonλ;is an essential parameter from the point of view of the correct assessment of soil overall/effective conductivity.This work introduces the concept of“local thermal conductivity fluctuation”which characterizes the microscale variation of conductivity within the solid phase.It is proposed to link the“local fluctuation”of thermal conductivityλwith the soil texture-the information that is available at the scale of engineering applications.It was possible to relate the skeleton thermal conductivity with the grain size distribution of the soil.Finally,based on a large series of numerical simulations,the paper provides four triangle diagrams(at different organic matter contents:0%,2%,4%and 6%)relating the value ofλ;with volume fraction of individual soil separates.This result is extremely important from the practical point of view.One can quickly evaluateλ;value provided that information on the grain size distribution and organic matter content is available.
文摘In the present paper, we have studied the effect of soil textures,?i.e., sand, silt and clay on microwave scattering at X-band (10 GHz) at various incidence angles and like polarizations (i.e., Horizontal-Horizontal;HH-, Vertical-Vertical;VV-). We have proposed a retrieval technique based on Genetic Algorithm (GA) to retrieve soil texture. For this purpose, ten types of soil mixtures having different percentage of sand, silt and clay have been analyzed. The observations were carried out by ingeniously assembled X-band scatterometer. A good agreement has been noticed between estimated and observed soil texture. Study infers that soil texture is quite sensitive to radar scattering and it is possible to retrieve soil texture with radar/scatterometer data with good accuracy and this type of retrieved results can be helpful to predict soil strength as well as soil erosion of the particular area.
文摘Soil water is a key factor limiting plant growth in water-limited regions. Without limit of soil water used by plants, soil degradation in the form of soil desiccation is easy to take place in the perennial forestland and grassland with too higher density or productivity. Soil water resources use limit (SWRUL) is the lowest control limit of soil water resources which is used by plants in those regions. It can be defined as soil water storage within the maximum infiltration depth in which all of soil layers belong to dried soil layers. In this paper, after detailed discussion of characteristics of water resources and the relationship between soil water and plant growth in the Loess Plateau, the definition, quantitative method, and practical applications of SWRUL are introduced. Henceforth, we should strengthen the study of SWRUL and have a better understanding of soil water resources. All those are of great importance for designing effective restoration project and sustainable management of soil water resources in water- limited regions in the future.
文摘Soil resistance to penetration and rutting depends on variations in soil texture, density and weather-affected changes in moisture content. It is therefore difficult to know when and where off-road traffic could lead to rutting-induced soil disturbances. To establish some of the empirical means needed to enable the “when” and “where” determinations, an effort was made to model the soil resistance to penetration over time for three contrasting forest locations in Fredericton, New Brunswick: a loam and a clay loam on ablation/ basal till, and a sandy loam on alluvium. Measurements were taken manually with a soil moisture probe and a cone penetrometer from spring to fall at weekly intervals. Soil moisture was measured at 7.5 cm soil depth, and modelled at 15, 30, 45 and 60 cm depth using the Forest Hydrology Model (ForHyM). Cone penetration in the form of the cone index (CI) was determined at the same depths. These determinations were not only correlated with measured soil moisture but were also affected by soil density (or pore space), texture, and coarse fragment and organic matter content (R2 = 0.54;all locations and soil depths). The resulting regression-derived CI model was used to emulate how CI would generally change at each of the three locations based on daily weather records for rain, snow, and air temperature. This was done through location-initialized and calibrated hydrological and geospatial modelling. For practical interpretation purposes, the resulting CI projections were transformed into rut-depth estimates regarding multi-pass off-road all-terrain vehicle traffic.
文摘In the present study, a biofertilizer on the basis of Streptomyces fumanus gn-2 was used for the treatment of wheat and soybean seeds (dose 104 spore/ml) before planting them in soil with low fertility in order to determine the effect of this biological agent on germination rate;the growth of seedlings, shoots, and the maturation phase of plants;the rhizosphere’s functional biodiversity;and the resistance of these plants to pathogens. Seeds were soaked in the suspension for a period of two or three hours. During the growing season of the crop, no additional fertilizing and spraying of a biopesticide against diseases or pests occurred. Despite the soil having low fertility, low quantities of organic matter, and not having been before used for the cultivation of agricultural plants, this biofertilizer showed a strong stimulatory effect on the growth of seeds and seedlings of wheat and soybeans. The average germination and seed vigor increased by 1.5 - 2.0 times, and the phenophases were accelerated to three to five days. In all phases of vegetation, the ammonifying bacteria in the presence of an antagonist (a biological agent) developed rapidly and were constantly present in significant numbers in the rhizosphere. Streptomyces fumanus introduced into non-sterile soil entered into competition with the local soil microflora and had the ability to colonize the rhizosphere system of plants. The use of a formulation of Streptomyces gn-2 has improved the composition of rhizosphere microflora, attracting saprophytic microorganisms: ammonificators and oligotrophs. The presence of the biocontrol microorganism Streptomyces fumanus in the rhizosphere plays an important role in enhancing the growth and development of useful groups, such as nitrogen-fixing bacteria.
文摘Twenty-four soil samples were collected at three depths from an approximately 2.5 acre contaminated site in southern Piedmont (Italy) and then analyzed. The main soil parameters determined were: pH, Cation Exchange Capacity (CEC), particle size distribution, total organic carbon (TOC) content and retained metal concentration. The mineral phases were identified by X-Ray Powder Diffraction (XRPD). All of the samples contained Zn and Cu resulting from industrial contamination during the last century, and those obtained at depths of 20-40 cm consistently showed the highest levels. To determine which size fraction was most active in the retention process, the samples were separated into four fractions (≤2 mm, ≤63 0m, ≤30 0m and ≤2 μm) and the amount of pollutant measured in each. It was found that metal retention was the highest in the clayey fraction, whose clay minerals were identified by XRPD after K+ and Mg2+ saturation, glycerol treatment and heating to 550℃. The clayey fraction was also the richest in TOC, and a direct correlation between TOC amount and metal retention was observed.