期刊文献+
共找到238,925篇文章
< 1 2 250 >
每页显示 20 50 100
Lead Absorption by Radish Is Affected by Soil Texture and Cultivar
1
作者 Tracey Emmerick Takeuchi Arthur James Downer 《Open Journal of Soil Science》 2019年第4期65-74,共10页
Lead (Pb) was detected in potential urban garden soil in Claremont Cali-fornia and was absorbed by radish cultivars and giant red mustard in a bioassay of the contaminated soil. Radish cultivars grown in two soils wit... Lead (Pb) was detected in potential urban garden soil in Claremont Cali-fornia and was absorbed by radish cultivars and giant red mustard in a bioassay of the contaminated soil. Radish cultivars grown in two soils with two lead salts developed the same lead tissue concentrations. In a subsequent study, Cultivar “Rudolf” accumulated less lead nitrate than cultivars “French Breakfast” and “White Beauty”. Cultivar “Rudolf” grew the least biomass likely accounting for its reduced Pb accumulation. All radish cultivars accumulated more lead when grown in clay vs. sand soil and radish Pb accumulation increased when the concentration of lead was increased in either soil type. The solubility of the lead ion used was not associated with Pb uptake by radish. 展开更多
关键词 Lead Pb RADISH MUSTARD soil Clay LOAM SANDY LOAM Plant Growth BIOASSAY
下载PDF
Response of Two Inexpensive Commercially Produced Soil Moisture Sensors to Changes in Water Content and Soil Texture 被引量:2
2
作者 Tyson B. Raper Christopher G. Henry +2 位作者 Leo Espinoza Mukhammadzakhrab Ismanov Derrick M. Oosterhuis 《Agricultural Sciences》 2015年第10期1148-1163,共16页
The use of low-cost (<200 USD) soil moisture sensors in crop production systems has the potential to give inference on plant water status and therein drive irrigation events. However, commercially available sensors... The use of low-cost (<200 USD) soil moisture sensors in crop production systems has the potential to give inference on plant water status and therein drive irrigation events. However, commercially available sensors in this price range vary in sensing methodologies and limited information on sensor to sensor relationship is available. The objective of this research was to test the response of the Watermark 200SS and Decagon 10HS sensors to changes in water content of three dissimilar soils representing common soils in Arkansas row-crop production in nine plastic, 19 L containers under variable environmental conditions. Both sensors were influenced by changes in soil temperature but the magnitudes of the temperature responses were small relative to the moisture responses. Furthermore, the 10HS sensor did not indicate a significant impact of soil texture on estimated volumetric water contents (VWCs). The small sphere of influence on the tested soil moisture parameters coupled with the substantial evaporative demands and temperatures under which this experiment was conducted resulted in suspected non-uniform drying and wetting of the tested containers. Subsequently, non-linear relationships were noted between 10HS estimated VWCs and actual container VWCs and the 200SS predicted lower water potentials than calculated by converting container VWC to soil water potential. The failure of the sensors to accurately predict container VWC highlights the importance of understanding the relatively small quantity of soil on which these sensors rely as well as the potential variability in soil moisture within a very limited volume. The authors caution users of sensors that soil variability may be one of the most important considerations in sensor deployment. 展开更多
关键词 soil MOISTURE Sensor 10HS WATERMARK 200SS Decagon Comparison soil texture
下载PDF
Analysis Methods for the Determination of Anthropogenic Additions of P to Agricultural Soils
3
作者 Richard L. Haney Virginia L. Jin +4 位作者 Mari-Vaughn V. Johnson Elizabeth B. Haney R. Daren Harmel Jeffrey G. Arnold Michael J. White 《Open Journal of Soil Science》 2015年第2期59-68,共10页
Phosphorus loading and measurement is of concern on lands where biosolids have been applied. Traditional soil testing for plant-available P may be inadequate for the accurate assessment of P loadings in a regulatory e... Phosphorus loading and measurement is of concern on lands where biosolids have been applied. Traditional soil testing for plant-available P may be inadequate for the accurate assessment of P loadings in a regulatory environment as the reported levels may not correlate well with environmental risk. In order to accurately assess potential P runoff and leaching, as well as plant uptake, we must be able to measure organic P mineralized by the biotic community in the soil. Soils with varying rates of biosolid application were evaluated for mineralized organic P during a 112-day incubation using the difference between P measured using a rapid-flow analyzer (RFA) and an axial flow Varian ICP-OES. An increase in the P mineralized from the treated soils was observed from analysis with the Varian ICP-OES, but not with the RFA. These results confirm that even though organic P concentrations have increased due to increasing biosolid application, traditional soil testing using an RFA for detection, would not accurately portray P concentration and potential P loading from treated soils. 展开更多
关键词 Phosphorus ANTHROPOGENIC ADDITIONS Biosolids Rapid-Flow Analyzer (RFA) Inductively Coupled Plasma (ICP) Texas Commission of Environmental Quality (TCEQ) soil ORGANIC C (SOC) Total N (TN) Water-Soluble ORGANIC C (WSOC) Water Soluble ORGANIC N (WSON)
下载PDF
Long-Term Fate of Agent Orange and Dioxin TCDD Contaminated Soils and Sediments in Vietnam Hotspots 被引量:5
4
作者 Kenneth Ray Olson Lois Wright Morton 《Open Journal of Soil Science》 2019年第1期1-34,共34页
The soils, tropical climate, and network of canals and rivers of southern Vietnam have created one of the most diverse tropical jungles and intensely cultivated landscapes of Southeast Asia. This paradise has a long h... The soils, tropical climate, and network of canals and rivers of southern Vietnam have created one of the most diverse tropical jungles and intensely cultivated landscapes of Southeast Asia. This paradise has a long history of numerous wars, foreign occupations, and most recently the Second Indochina War (aka the Vietnam War 1965-1972) which defoliated rain forests and ancient wetland mangroves and left behind contaminated soil and sediment hotspots. During this war, the United States (US) military sprayed 80 million liters of Agent Orange contaminated with the dioxin TCDD in a guerrilla war against communist insurgents. Agent Orange was a synthetic plant growth regulator comprised of equal amounts of two herbicides 2,4-dichloro phenoxyacetic acid C8H6Cl2O3 (2,4-D) and 2,4,5-trichlorophenoxyacetic acid C8H5Cl3O3 (2,4,5-T). TCDD, the dioxin, 2,3,7,8-tetrachlorodibenzodioxin (C12H4Cl4O2) was an unintended byproduct of the accelerated combustion process used in the manufacture of herbicides containing 2,4,5-T. Agent Orange has frequently been blamed for soil and sediment contamination and long-term human health problems;however, the true source of harm is the dioxin TCDD. Agent Orange has a short half-life of days and weeks after application to vegetation, and has not been found to persist, after 50 years, in the water or soils of southern Vietnam. However, the half-life of dioxin TCDD depends on where it is deposited and varies from 1 to 3 years on soil surfaces that have been fully exposed to sunlight, to as long as 20 to 50 years or more when buried in tropical subsoils, and more than 100 years in river and sea sediments. Dioxin TCDD was heavily concentrated in the US Air Force bases in Vietnam where the herbicides were stored, loaded on planes and helicopters for aerial spraying, and used extensively around military base perimeter fences as a security measure to prevent surprise attacks. Bien Hoa Air Force base, 40 km northeast of Ho Chi Minh City, continues to be one of the mega-hotspots where after 48 years the dioxin TCDD levels in fish and shrimp are still high and fishing is banned in ponds and lakes adjacent to the airbase. Although expensive, one of the most effective remediation to dioxin TCDD contaminated soils is incineration which is the recommended method of dioxin TCDD disposal. 展开更多
关键词 soils of VIETNAM Agent Orange DIOXIN TCDD Herbicides soil CONTAMINANT Sediment CONTAMINANT Half-Life HOTSPOTS Operation Ranch Hand US Airbases in VIETNAM VIETNAM War Cu Chi soil Tunnels Guerilla Warfare Incineration
下载PDF
Land Use and Soil Texture Effects on Organic Carbon Change in Dryland Soils, Senegal
5
作者 Assize Touré Emile Temgoua +1 位作者 Claire Guenat Bo Elberling 《Open Journal of Soil Science》 2013年第6期253-262,共10页
Soil organic carbon (SOC) losses due to poor soil management in dryland are now well documented. However, the influence of soil properties on organic carbon change is not well known. The groundnut plant (Arachis hypog... Soil organic carbon (SOC) losses due to poor soil management in dryland are now well documented. However, the influence of soil properties on organic carbon change is not well known. The groundnut plant (Arachis hypogaea L.), and the dominant crop system in the Senegal’s Soudanian zone, have been compared with semi-natural savanna. Leaves, stems and roots biomass were measured, and soil characteristics were analysed. The total leaves and stems biomass was 1.7 and 2.7 Mg ha-1 dry matter in groundnut fields and savanna respectively. Total SOC stocks were low (8 to 20 Mg C·ha-1 within upper 0.2 m depth, 20 to 64 Mg C·ha-1 within upper 1 m depth) and were significantly lower (P δ13C values show that SOC quality is transformed from the savanna plants (C4/C3 mixed-pools) to C3-pools in groundnut cultivated zone, with the organic matter signature more preserved in the clayey soils. This study confirms that converting woodland to groundnut fields provokes texture transformation and SOC loss. The results call for the extreme necessity to regenerate the wooded zone or encourage practices that favour SOC restitution. 展开更多
关键词 δ13C DRYLAND LAND Use soil Organic Carbon soil texture
下载PDF
Comparative study on production,purification of penicillin by Penicillium chrysogenum isolated from soil and citrus samples 被引量:1
6
作者 S Anto Jeya Dayalan Pramod Darwin Prakash S 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2011年第1期15-19,共5页
Objective:To explore various unexplored locations where Penicillium spp.would be available and study the production of penicillin from the isolated Penicillium spp.in different media with altered carbohydrate source.M... Objective:To explore various unexplored locations where Penicillium spp.would be available and study the production of penicillin from the isolated Penicillium spp.in different media with altered carbohydrate source.Methods:The collected soil samples were screened for the isolation of Penicillium chrysogenum(P.chrysogenum) by soil dilution plate.The isolated Penicillium species were further grown in different production media with changes in the carbohydrate source.The extracted penicillin from various isolates was analyzed by HPLC for the efficacy of the product.Further the products were screened with various bacterial species including methicillin resistant Staphylococcus aureus(MRSA).And the work was extended to find the possible action on MRSA,along with characterization using other pathogens.Results:From the various soil and citrus samples used for analysis,only the soil sample from Government General Hospital of Bangalore,India,and Sanjay Gandhi Hospital,Bangalore,India,showed some potential growth of the desired fungi P.chrysogenum.Different production media showed varied range of growth of PenicilUum.Optimum production of penicillin was obtained in maltose which proved maximum zone of inhibition during assay.Characterization of penicillin on pathogens,like wild Escherichia coli strain,Klebsiella spp.,and MRSA,gave quite interesting results such as no activity on the later strain as it is resistant.HPLC data provided the analytical and confirmation details of the penicillin produced.Accordingly,the penicillin produced from the soil sample of Government General Hospital had the high milli absorbance unit of 441.5 mAu compared with that of the penicillin produced from Sanjay Gandhi Hospital sample,8S.S2 mAu.Therefore,there was a considerable change in quantity of the penicillin produced from both the samples.Conclusions: The Penicillium spp.could be possibly rich in hospital contaminants and its environments.This research focuses on various unexplored sources of medical ailments,and also shows that the growth of penicillin is high in maltose rich media that could possibly enhance the growth. 展开更多
关键词 PENICILLIUM chrysogenum soil CITRUS PENICILLIN Bioefficacy Antibiotic activity PENICILLIUM spp. PRODUCTION soil dilution plate Staphy lococcus AUREUS Characterization PRODUCTION media Zone of inhibition Carbohydrate source Isolation Efficacy Pathogen
下载PDF
Impact of soil texture and sweetpotato cropping system on soil erosion and nutrient loss in the Three Gorges Reservoir Area of the Changjiang River 被引量:1
7
作者 LENG Jin-chuan FU Yu-fan +6 位作者 YANG Chun-xian LIANG Yuan-yuan KONG Ling-ming LUO Yong DUAN Ji-wen LI Bao-chun ZHANG Qi-tang 《Journal of Life Sciences》 2009年第5期30-35,共6页
This study investigated the impact of soil texture and sweetpotato cropping system on soil erosion and nutrient loss in the drought infield of the Three Gorges Reservoir Area of Changjiang River under field conditions... This study investigated the impact of soil texture and sweetpotato cropping system on soil erosion and nutrient loss in the drought infield of the Three Gorges Reservoir Area of Changjiang River under field conditions. A factorial experiment was conducted in the study using five soil textures and two cropping systems. The lost soil during the crop season was recovered by a soil-blocking device and the dry weights for the total lost soil and its nutrient components, such as ammonium nitrogen, effective phosphorus, K^+ and organic matter were analyzed. We found that soil texture significantly affected the dry weights of the total lost soil, effective phosphorus, K^+, and organic matter, while sweetpotato cropping systems and interaction between soil texture and sweetpotato cropping system affected the dry weights of the total lost soil, the effective phosphorus and organic matter. Among the five soil textures tested, Da and Huang caused significantly less soil erosion and nutrient loss compared with the other three soil textures; intercropping sweetpotato with corn significantly reduced soil erosion and nutrient loss. 展开更多
关键词 Three Gorges Reservoir Area of Changiiang River soil texture cropping systems sweetpotato drought infield soil erosion nutrient loss
下载PDF
Seismic Evaluation of Steel Moment Resisting Frames (MRFs)—Supported by Loose Granular Soil
8
作者 Muhammad Tayyab Naqash Qazi Umar Farooq Ouahid Harireche 《Open Journal of Earthquake Research》 2019年第2期37-51,共15页
Soil underneath a structure might affect the behavior and the overall response of the structure in seismic events. The role of loose soil conditions and the inclusion of soil-structure interaction (SSI) in the analysi... Soil underneath a structure might affect the behavior and the overall response of the structure in seismic events. The role of loose soil conditions and the inclusion of soil-structure interaction (SSI) in the analysis are important issues that need to be addressed. Since steel structures are light, two configurations designed as spatial and perimeter are considered to study the effect of soil on the steel structural frames for the same building. The paper provides a parametric analysis on the influence of SSI on the overall performance of MRFs (Moment Resisting Frames) according to the provisions of Saudi Building Code (SBC) [1]. A case study has been developed in which spatial and perimeter moment resisting frames of 12, 6 and 3 stories residential buildings are designed using Saudi Building Code (SBC) prescriptions. A modal response spectrum analysis has been carried out to see the influence of SSI on the fundamental period of vibration, top story displacement and inter-story drift limitations. Moreover, a static non-linear analysis has been performed to investigate the performance of frames, thus allowing to identify the influence of SSI on the structural design of steel MRFs. 展开更多
关键词 soil Structure Interaction (SSI) SAUDI Building Code (SBC) American Society of Civil Engineers (ASCE) FEDERAL Emergency Management Agency (FEMA) Moment Resisting Frames (MRFs) SEISMIC Resistance SEISMIC Codes
下载PDF
Evaluating the Effect of Soil Texture on the Response of Three Types of Sensors Used to Monitor Soil Water Status
9
作者 José O. Payero Xin Qiao +2 位作者 Ahmad Khalilian Ali Mirzakhani-Nafchi Rebecca Davis 《Journal of Water Resource and Protection》 2017年第6期566-577,共12页
Accurate monitoring of soil water status can be an important component of precision irrigation water management. A variety of commercial sensors measure soil water status by relating sensor electrical output to soil w... Accurate monitoring of soil water status can be an important component of precision irrigation water management. A variety of commercial sensors measure soil water status by relating sensor electrical output to soil water content or soil water potential. However, sensor electrical output can also be affected by soil characteristics other than water content, such as soil texture, salinity, and temperature. This makes it difficult to accurately measure and interpret soil water status without prior on-site calibration. In this study, we investigated the impact of soil texture on the response of three types of sensors commonly used to monitor soil water status, including the Decagon EC-5, the Vegetronix VH400, and the Watermark 200ss granular matrix sensor. A replicated laboratory experiment was conducted to evaluate the response of these types of sensors using four major soil textural classes commonly found in South Carolina. We found that the three types of sensors had a significant response to changes in soil water content, but while the EC-5 and VH400 sensors had a linear response, the Watermark 200ss had a curvilinear response that was explained by an exponential decay function. The response of the three sensor types, however, was significantly affected by soil texture, which will significantly affect the trigger point used to initiate irrigation based on the output from these sensors. Therefore, it is suggested that guidelines on how to use these sensors for local soils need to be developed and made available to farmers, so that they can make better irrigation scheduling decisions. 展开更多
关键词 soil MOISTURE soil texture IRRIGATION SENSORS Calibration soil Water
下载PDF
Response of plant physiological parameters to soil water availability during prolonged drought is affected by soil texture
10
作者 HUANG Laiming ZHAO Wen SHAO Ming'an 《Journal of Arid Land》 SCIE CSCD 2021年第7期688-698,共11页
Soil water deficit is increasingly threatening the sustainable vegetation restoration and ecological construction on the Loess Plateau of China due to the climate warming and human activities.To determine the response... Soil water deficit is increasingly threatening the sustainable vegetation restoration and ecological construction on the Loess Plateau of China due to the climate warming and human activities.To determine the response thresholds of Amygdalus pedunculata(AP)and Salix psammophila(SP)to soil water availability under different textural soils,we measured the changes in net photosynthetic rate(Pn),stomatal conductance(Gs),intercellular CO2 concentration(Ci),leaf water potential(ψw),water use efficiency(WUE)and daily transpiration rate(Td)of the two plant species during soil water content(SWC)decreased from 100%field capacity(FC)to 20%FC in the sandy and loamy soils on the Loess Plateau in the growing season from June to August in 2018.Results showed that Pn,Gs,WUE and Td of AP and SP remained relatively constant at the beginning of soil water deficit but decreased rapidly as plant available soil water content(PASWC)fell below the threshold values in both the sandy and loamy soils.The PASWC thresholds corresponding to Pn,Gs and Ci of AP in the loamy soil(0.61,0.62 and 0.70,respectively)were lower than those in the sandy soil(0.70,0.63 and 0.75,respectively),whereas the PASWC thresholds corresponding to Pn,Gs and Ci of SP in the loamy soil(0.63,0.68 and 0.78,respectively)were higher than those in the sandy soil(0.58,0.62 and 0.66,respectively).In addition,the PASWC thresholds in relation to Td and WUE of AP(0.60 and 0.58,respectively)and SP(0.62 and 0.60,respectively)in the loamy soil were higher than the corresponding PASWC thresholds of AP(0.58 and 0.52,respectively)and SP(0.55 and 0.56,respectively)in the sandy soil.Furthermore,the PASWC thresholds for the instantaneous gas exchange parameters(e.g.,Pn and Gs)at the transient scale were higher than the thresholds for the parameters(e.g.,Td)at the daily scale.Our study demonstrates that different plant species and/or different physiological parameters exhibit different thresholds of PASWC and that the thresholds are affected by soil texture.The result can provide guidance for the rational allocation and sustainable management of reforestation species under different soil conditions in the loess regions. 展开更多
关键词 plant available soil water content drought stress soil water deficit sustainable vegetation restoration sandy soil loamy soil Loess Plateau
下载PDF
Effects of Soil Texture on the Growth of Young Apple Trees and Soil Microbial Community Structure Under Replanted Conditions 被引量:12
11
作者 Yuefan Sheng Haiyan Wang +7 位作者 MeiWang Hanhao Li Li Xiang Fengbing Pan Xuesen Chen Xiang Shen Chengmiao Yin Zhiquan Mao 《Horticultural Plant Journal》 SCIE 2020年第3期123-131,共9页
A two-year field experiment was carried out in order to study the occurrence degree and mechanism of apple replant disease(ARD)in the apple orchards with different soil textures.So we can adopt appropriate controlmeas... A two-year field experiment was carried out in order to study the occurrence degree and mechanism of apple replant disease(ARD)in the apple orchards with different soil textures.So we can adopt appropriate controlmeasures according to the severity of ARD.Healthy two-year-old seedlings with consistent growth were selected,of which the root stock was T337 and the scion was Yanfu 3.There were significant differences in biomass between methyl bromide fumigation and replanted treatments,and the difference was the largest in clay loam,followed by sandy loam,and loam,which verified ARD in clay loam was most serious,followed by sandy loam and loam.Based on high-throughput sequencing of fungi in soil samples,fungal richness and diversity were the highest in clay loam,followed by sandy loam,and loam.The relative abundance of Fusarium in SX,SL,FX,FL,WX and WL was 7.33%,19.32%,2.70%,4.24%,10.71%and 23.87%,respectively.Based on Real-time quantitative analysis,there were significant differences in the number of Fusarium oxysporum and Fusarium solani between methyl bromide fumigation and replanted treatments,i.e.,clay loam>sandy loam>loam.Fusarium was the main pathogen causing ARD.This shows that ARD is the most serious under replanted clay loam condition.High-throughput sequencing technology was used to prove the difference in Fusarium was one of the important reasons for ARD under different soil textures.This technology provides a new idea for the prevention and control of ARD. 展开更多
关键词 APPLE Apple replant disease Fungi community structure soil texture High-throughput sequencing
下载PDF
Effect of Soil Texture on Starch Accumulation and Activities of Key Enzymes of Starch Synthesis in the Kernel of ZM 9023 被引量:1
12
作者 WANG Wen-jing ZHAN Hai-hong 《Agricultural Sciences in China》 CAS CSCD 2008年第6期686-691,共6页
Three kinds of soil texture (clay-loam, mid-loam, and sand-loam soil) were used to study the effects of soil texture on starch accumulating rate and the changes in activities of the key enzymes of starch synthesis i... Three kinds of soil texture (clay-loam, mid-loam, and sand-loam soil) were used to study the effects of soil texture on starch accumulating rate and the changes in activities of the key enzymes of starch synthesis in the kernel during grain filling in high gluten content wheat ZM 9023, under conditions of pond culture. The content of starch and its components were measured according to the method of double-wave length described by Bao (1996). ADP-glucose pyrophosphorylase (AGPP) activity was tested according to the method described by Doehlert et al. (1988). Soluble starch synthase (SSS) and starch branching enzyme (SBE) activities were tested according to the method described by Nakamura et al. (1989). The amylose, amylopectin, and total starch accumulating rate in the kernel of ZM 9023 were found to be a single-peak curve in three different soil textures during grain filling, and peaked 20, 15, and 15 d after anthesis, respectively. The activities of the enzymes, AGPP, SSS, and SBE, in the kernel of ZM 9023 had a single-peaked curve, which peaked 20, 15, and 15 d after anthesis, respectively. The activities of the above three enzymes of ZM 9023 were higher in the sand-loam soil. The accumulating peak of amylose formed later compared to that of amylopectin. The sand-loam soil could help high gluten content cultivars to synthesize starch. 展开更多
关键词 wheat Triticum aestivum L. soil texture gluten content STARCH ENZYME
下载PDF
Cultivation effects on soil texture and fertility in an arid desert region of northwestern China 被引量:5
13
作者 HE Mingzhu JI Xibin +1 位作者 BU Dongsheng ZHI Jinhu 《Journal of Arid Land》 SCIE CSCD 2020年第4期701-715,共15页
In arid desert regions of northwestern China, reclamation and subsequent irrigated cultivation have become effective ways to prevent desertification, expand arable croplands, and develop sustainable agricultural produ... In arid desert regions of northwestern China, reclamation and subsequent irrigated cultivation have become effective ways to prevent desertification, expand arable croplands, and develop sustainable agricultural production. Improvement in soil texture and fertility is crucial to high soil quality and stable crop yield. However, knowledge on the long-term effects of the conversion of desert lands into arable croplands is very limited. To address this problem, we conducted this study in an arid desert region of northwestern China to understand the changes in soil physical-chemical properties after 0, 2, 5, 10, 17, and 24 years of cultivation. Our results showed that silt and clay contents at the 17-year-old sites increased 17.5 and 152.3 folds, respectively, compared with that at the 0-year-old sites. The soil aggregate size fraction and its stability exhibited an exponential growth trend with increasing cultivation ages, but no significant change was found for the proportion of soil macroaggregates(>5.00 mm) during the 17 years of cultivation. The soil organic carbon(SOC) content at the 24-year-old sites was 6.86 g/kg and increased 8.8 folds compared with that at the 0-year-old sites. The total(or available) nitrogen, phosphorus, and potassium contents showed significant increasing trends and reached higher values after 17(or 24) years of cultivation. Changes in soil physical-chemical properties successively experienced slow, rapid, and stable development stages, but some key properties(such as soil aggregate stability and SOC) were still too low to meet the sustainable agricultural production. The results of this long-term study indicated that reasonable agricultural management, such as expanding no-tillage land area, returning straw to the fields, applying organic fertilizer, reducing chemical fertilizer application, and carrying out soil testing for formula fertilization, is urgently needed in arid desert regions. 展开更多
关键词 RECLAMATION soil physical-chemical properties soil aggregate stability mean weight diameter(MWD) water stable aggregate percentage(WSAP) principal component analysis(PCA)
下载PDF
Relating thermal conductivity of soil skeleton with soil texture by the concept of“local thermal conductivity fluctuation”
14
作者 Adrian Rózanski 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第1期262-271,共10页
The thermal conductivity of the soil skeletonλ;is an essential parameter from the point of view of the correct assessment of soil overall/effective conductivity.This work introduces the concept of“local thermal cond... The thermal conductivity of the soil skeletonλ;is an essential parameter from the point of view of the correct assessment of soil overall/effective conductivity.This work introduces the concept of“local thermal conductivity fluctuation”which characterizes the microscale variation of conductivity within the solid phase.It is proposed to link the“local fluctuation”of thermal conductivityλwith the soil texture-the information that is available at the scale of engineering applications.It was possible to relate the skeleton thermal conductivity with the grain size distribution of the soil.Finally,based on a large series of numerical simulations,the paper provides four triangle diagrams(at different organic matter contents:0%,2%,4%and 6%)relating the value ofλ;with volume fraction of individual soil separates.This result is extremely important from the practical point of view.One can quickly evaluateλ;value provided that information on the grain size distribution and organic matter content is available. 展开更多
关键词 soil skeleton Probability density function(PDF) Computational micromechanics Local fluctuation soil texture
下载PDF
Microwave Scattering for Soil Texture at X-Band and Its Retrieval Using Genetic Algorithm
15
作者 Rajesh Tiwari R. K. Singh +3 位作者 D. S. Chauhan O. P. Singh R. Prakash D. Singh 《Advances in Remote Sensing》 2014年第3期120-127,共8页
In the present paper, we have studied the effect of soil textures,?i.e., sand, silt and clay on microwave scattering at X-band (10 GHz) at various incidence angles and like polarizations (i.e., Horizontal-Horizontal;H... In the present paper, we have studied the effect of soil textures,?i.e., sand, silt and clay on microwave scattering at X-band (10 GHz) at various incidence angles and like polarizations (i.e., Horizontal-Horizontal;HH-, Vertical-Vertical;VV-). We have proposed a retrieval technique based on Genetic Algorithm (GA) to retrieve soil texture. For this purpose, ten types of soil mixtures having different percentage of sand, silt and clay have been analyzed. The observations were carried out by ingeniously assembled X-band scatterometer. A good agreement has been noticed between estimated and observed soil texture. Study infers that soil texture is quite sensitive to radar scattering and it is possible to retrieve soil texture with radar/scatterometer data with good accuracy and this type of retrieved results can be helpful to predict soil strength as well as soil erosion of the particular area. 展开更多
关键词 soil texture RETRIEVAL MICROWAVE REMOTE SENSING
下载PDF
Soil water resources use limit in the loess plateau of China 被引量:4
16
作者 Ting Ning Zhongsheng Guo +1 位作者 Mancai Guo Bing Han 《Agricultural Sciences》 2013年第5期100-105,共6页
Soil water is a key factor limiting plant growth in water-limited regions. Without limit of soil water used by plants, soil degradation in the form of soil desiccation is easy to take place in the perennial forestland... Soil water is a key factor limiting plant growth in water-limited regions. Without limit of soil water used by plants, soil degradation in the form of soil desiccation is easy to take place in the perennial forestland and grassland with too higher density or productivity. Soil water resources use limit (SWRUL) is the lowest control limit of soil water resources which is used by plants in those regions. It can be defined as soil water storage within the maximum infiltration depth in which all of soil layers belong to dried soil layers. In this paper, after detailed discussion of characteristics of water resources and the relationship between soil water and plant growth in the Loess Plateau, the definition, quantitative method, and practical applications of SWRUL are introduced. Henceforth, we should strengthen the study of SWRUL and have a better understanding of soil water resources. All those are of great importance for designing effective restoration project and sustainable management of soil water resources in water- limited regions in the future. 展开更多
关键词 Infiltration Depth Dried soil Layer WILTING Coefficient soil WATER Resources USE LIMIT Initial Stage to Regulate the Relationship between soil WATER and Plant Growth
下载PDF
Relating Cone Penetration and Rutting Resistance to Variations in Forest Soil Properties and Daily Moisture Fluctuations
17
作者 Marie-France Jones Paul A. Arp 《Open Journal of Soil Science》 2017年第7期149-171,共23页
Soil resistance to penetration and rutting depends on variations in soil texture, density and weather-affected changes in moisture content. It is therefore difficult to know when and where off-road traffic could lead ... Soil resistance to penetration and rutting depends on variations in soil texture, density and weather-affected changes in moisture content. It is therefore difficult to know when and where off-road traffic could lead to rutting-induced soil disturbances. To establish some of the empirical means needed to enable the “when” and “where” determinations, an effort was made to model the soil resistance to penetration over time for three contrasting forest locations in Fredericton, New Brunswick: a loam and a clay loam on ablation/ basal till, and a sandy loam on alluvium. Measurements were taken manually with a soil moisture probe and a cone penetrometer from spring to fall at weekly intervals. Soil moisture was measured at 7.5 cm soil depth, and modelled at 15, 30, 45 and 60 cm depth using the Forest Hydrology Model (ForHyM). Cone penetration in the form of the cone index (CI) was determined at the same depths. These determinations were not only correlated with measured soil moisture but were also affected by soil density (or pore space), texture, and coarse fragment and organic matter content (R2 = 0.54;all locations and soil depths). The resulting regression-derived CI model was used to emulate how CI would generally change at each of the three locations based on daily weather records for rain, snow, and air temperature. This was done through location-initialized and calibrated hydrological and geospatial modelling. For practical interpretation purposes, the resulting CI projections were transformed into rut-depth estimates regarding multi-pass off-road all-terrain vehicle traffic. 展开更多
关键词 soil Resistance to Penetration Cone Index soil MOISTURE texture Coarse Fragments Organic Matter Weather Records Hydrological Modelling soil TRAFFICABILITY RUTTING Depth RECREATIONAL Vehicles
下载PDF
坡耕地土壤有机碳再分布特征及其迁移累积平衡 被引量:8
18
作者 方华军 杨学明 +1 位作者 张晓平 梁爱珍 《核农学报》 CAS CSCD 北大核心 2005年第3期202-207,共6页
利用137Cs和飞灰示踪技术,研究坡耕地黑土近50年和近100年来土壤再分布过程,计算坡耕地土壤有机碳(SOC)迁移和累积平衡。结果表明:利用SOC的深度分布特征鉴定坡脚和坡足原始埋藏土壤的表面分别位于地表下70和80cm,其埋藏层的SOC含量分... 利用137Cs和飞灰示踪技术,研究坡耕地黑土近50年和近100年来土壤再分布过程,计算坡耕地土壤有机碳(SOC)迁移和累积平衡。结果表明:利用SOC的深度分布特征鉴定坡脚和坡足原始埋藏土壤的表面分别位于地表下70和80cm,其埋藏层的SOC含量分别比与其接壤的上覆土层SOC含量高5.2和0.4gkg。坡顶、坡肩和坡背均遭受侵蚀,年平均侵蚀的土壤厚度为0.2、5.0和2.2mmyr。坡脚和坡足部位飞灰到达的深度分别为70和80cm,与埋藏层表面相吻合。坡脚飞灰出现于埋藏A层之中,表明沉积区在蒸汽机车开始使用前已被开垦为农田(或已有侵蚀和堆积发生)。根据137Cs和飞灰分布深度构建了不同年代的坡型,结果表明侵蚀部位剥蚀的土壤多堆积在坡脚和坡足,且搬运的土壤物质先累积于坡脚,随着景观坡度变缓,土壤累积逐渐向坡足过渡。研究区(1m宽)坡顶、坡肩和坡背近百年来由于土壤侵蚀共失去683kgSOC,其中60%(418kgSOC)沉积在坡脚和坡足等低洼部位,其中有257kgSOC是近50年累积的。 展开更多
关键词 ^137CS SOC 100 50 使
下载PDF
Effects of Streptomyces <i>Biofertilizer</i>to Soil Fertility and Rhizosphere’s Functional Biodiversity of Agricultural Plants 被引量:3
19
作者 Tinatin Doolotkeldieva Saykal Bobusheva Maxabat Konurbaeva 《Advances in Microbiology》 2015年第7期555-571,共17页
In the present study, a biofertilizer on the basis of Streptomyces fumanus gn-2 was used for the treatment of wheat and soybean seeds (dose 104 spore/ml) before planting them in soil with low fertility in order to det... In the present study, a biofertilizer on the basis of Streptomyces fumanus gn-2 was used for the treatment of wheat and soybean seeds (dose 104 spore/ml) before planting them in soil with low fertility in order to determine the effect of this biological agent on germination rate;the growth of seedlings, shoots, and the maturation phase of plants;the rhizosphere’s functional biodiversity;and the resistance of these plants to pathogens. Seeds were soaked in the suspension for a period of two or three hours. During the growing season of the crop, no additional fertilizing and spraying of a biopesticide against diseases or pests occurred. Despite the soil having low fertility, low quantities of organic matter, and not having been before used for the cultivation of agricultural plants, this biofertilizer showed a strong stimulatory effect on the growth of seeds and seedlings of wheat and soybeans. The average germination and seed vigor increased by 1.5 - 2.0 times, and the phenophases were accelerated to three to five days. In all phases of vegetation, the ammonifying bacteria in the presence of an antagonist (a biological agent) developed rapidly and were constantly present in significant numbers in the rhizosphere. Streptomyces fumanus introduced into non-sterile soil entered into competition with the local soil microflora and had the ability to colonize the rhizosphere system of plants. The use of a formulation of Streptomyces gn-2 has improved the composition of rhizosphere microflora, attracting saprophytic microorganisms: ammonificators and oligotrophs. The presence of the biocontrol microorganism Streptomyces fumanus in the rhizosphere plays an important role in enhancing the growth and development of useful groups, such as nitrogen-fixing bacteria. 展开更多
关键词 A Low Fertility soil A BIOFERTILIZER Streptomyces fumanus gn-2 Wheat and Soybean Seeds Stimulatory Effect on Seed Germination Rhizospheres FUNCTIONAL BIODIVERSITY
下载PDF
Characterization of an Area Polluted by Copper and Zinc:the Relation between Soil Texture,Mineralogy and Pollutant Concentration
20
作者 Caterina RINAUDO Daniela GASTALDI +2 位作者 Orfeo ZERBINATI Elisa FORNERO Graziella BERTA 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2009年第6期1224-1231,共8页
Twenty-four soil samples were collected at three depths from an approximately 2.5 acre contaminated site in southern Piedmont (Italy) and then analyzed. The main soil parameters determined were: pH, Cation Exchange... Twenty-four soil samples were collected at three depths from an approximately 2.5 acre contaminated site in southern Piedmont (Italy) and then analyzed. The main soil parameters determined were: pH, Cation Exchange Capacity (CEC), particle size distribution, total organic carbon (TOC) content and retained metal concentration. The mineral phases were identified by X-Ray Powder Diffraction (XRPD). All of the samples contained Zn and Cu resulting from industrial contamination during the last century, and those obtained at depths of 20-40 cm consistently showed the highest levels. To determine which size fraction was most active in the retention process, the samples were separated into four fractions (≤2 mm, ≤63 0m, ≤30 0m and ≤2 μm) and the amount of pollutant measured in each. It was found that metal retention was the highest in the clayey fraction, whose clay minerals were identified by XRPD after K+ and Mg2+ saturation, glycerol treatment and heating to 550℃. The clayey fraction was also the richest in TOC, and a direct correlation between TOC amount and metal retention was observed. 展开更多
关键词 soil pollution heavy metals soil texture clay minerals
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部