期刊文献+
共找到107,152篇文章
< 1 2 250 >
每页显示 20 50 100
气象观测场在汽车试验场中的应用研究
1
作者 陈海建 《时代汽车》 2024年第14期172-174,178,共4页
汽车试验场作为汽车开展道路测试的重要场所,用于验证汽车产品的品质以及可靠性。除了场地道路外,气象条件作为汽车道路测试的重要一环,在《GB/T12534-1990汽车道路试验方法通则》中也有明确要求,如:试验时应是无雨无雾天气,相对湿度小... 汽车试验场作为汽车开展道路测试的重要场所,用于验证汽车产品的品质以及可靠性。除了场地道路外,气象条件作为汽车道路测试的重要一环,在《GB/T12534-1990汽车道路试验方法通则》中也有明确要求,如:试验时应是无雨无雾天气,相对湿度小于95%,气温0-40℃,风速不大于3m/s。同时气象条件也作为试验场道路管控的重要依据,实时风速、雨量、能见度等信息为场地管理者发布限速、限行、封场等通知提供必要参考依据,直接影响道路测试安全管控的及时性。因此,文章从气象观测场的建设、气象服务、异常天气道路管控等方面开展气象观测场在汽车试验场中的应用研究。 展开更多
关键词 products. In addition to the SITE roads METEOROLOGICAL conditions are an important part of AUTOMOTIVE ROAD testing and there are also clear requirements in the GB/T12534-1990 General Rules for AUTOMOTIVE ROAD Test Methods. For example the test should be conducted in rain and fog free weather with a relative humidity of less than 95% a temperature of 0-40 and a wind SPEED of no more than 3m/s. At the same time METEOROLOGICAL conditions also serve as an important basis for ROAD control in the test site. Real time information such as wind SPEED rainfall and visibility provides necessary reference for SITE managers to issue notices on SPEED limits SITE closures and trac restrictions directly aecting the timeliness of ROAD testing safety control. Therefore this article conducts research on the application of METEOROLOGICAL observation SITES in AUTOMOTIVE testing SITES from the construction of METEOROLOGICAL observation SITES METEOROLOGICAL services and abnormal weather ROAD control.
下载PDF
Dark Matter Cosmology and Astrophysics 被引量:8
2
作者 Vladimir S. Netchitailo 《Journal of High Energy Physics, Gravitation and Cosmology》 2019年第4期999-1050,共52页
Hypersphere World-Universe Model (WUM) envisions Matter carried from Universe into World from fourth spatial dimension by Dark Matter Particles (DMPs). Luminous Matter is byproduct of Dark Matter (DM) annihilation. WU... Hypersphere World-Universe Model (WUM) envisions Matter carried from Universe into World from fourth spatial dimension by Dark Matter Particles (DMPs). Luminous Matter is byproduct of Dark Matter (DM) annihilation. WUM introduces Dark Epoch (spanning from Beginning of World for 0.4 billion years) when only DMPs existed, and Luminous Epoch (ever since for 13.8 billion years). Big Bang discussed in standard cosmological model is, in our view, transition from Dark Epoch to Luminous Epoch due to Rotational Fission of Overspinning DM Supercluster’s Cores and annihilation of DMPs. WUM solves a number of physical problems in contemporary Cosmology and Astrophysics through DMPs and their interactions: Angular Momentum problem in birth and subsequent evolution of Galaxies and Extrasolar systems—how do they obtain it;Fermi Bubbles—two large structures in gamma-rays and X-rays above and below Galactic center;Mysterious Star KIC 8462852 with irregular dimmings;Coronal Heating problem in solar physics—temperature of Sun’s corona exceeding that of photosphere by millions of degrees;Cores of Sun and Earth rotating faster than their surfaces;Diversity of Gravitationally-Rounded Objects in Solar system and their Internal Heat;Lightning Initiation problem—electric fields observed inside thunderstorms are not sufficient to initiate sparks;Terrestrial Gamma-Ray Flashes—bursts of high energy X-rays and gamma rays emanating from Earth. Model makes predictions pertaining to Masses of DMPs, proposes New Types of their Interactions. WUM reveals Inter-Connectivity of Primary Cosmological Parameters and calculates their values, which are in good agreement with the latest results of their measurements. 展开更多
关键词 Hypersphere World-Universe Model Law of Conservation of Angular Momentum DARK EPOCH Rotational Fission Luminous EPOCH Multiworld DARK MATTER Particles Macroobject Shell Model DARK MATTER Core Medium of the World Mysterious Star KIC 8462852 DARK MATTER Fermi Bubbles Solar CORONA Geocorona Planetary CORONA Galactic wind Solar wind High-Energy Atmospheric Physics Lightning Initiation Problem Terrestrial GAMMA-RAY Flashes GAMMA-RAY BURSTS Gravitational BURSTS Ball Lightning
下载PDF
Random vortex induced vibration response of suspended flexible cable to fluctuating wind
3
作者 Genjin MU Weiqiu ZHU Maolin DENG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第12期2207-2226,共20页
A popular dynamical model for the vortex induced vibration(VIV)of a suspended flexible cable consists of two coupled equations.The first equation is a partial differential equation governing the cable vibration.The se... A popular dynamical model for the vortex induced vibration(VIV)of a suspended flexible cable consists of two coupled equations.The first equation is a partial differential equation governing the cable vibration.The second equation is a wake oscillator that models the lift coefficient acting on the cable.The incoming wind acting on the cable is usually assumed as the uniform wind with a constant velocity,which makes the VIV model be a deterministic one.In the real world,however,the wind velocity is randomly fluctuant and makes the VIV of a suspended flexible cable be treated as a random vibration.In the present paper,the deterministic VIV model of a suspended flexible cable is modified to a random one by introducing the fluctuating wind.Using the normal mode approach,the random VIV system is transformed into an infinite-dimensional modal vibration system.Depending on whether a modal frequency is close to the aeolian frequency or not,the corresponding modal vibration is characterized as a resonant vibration or a non-resonant vibration.By applying the stochastic averaging method of quasi Hamiltonian systems,the response of modal vibrations in the case of resonance or non-resonance can be analytically predicted.Then,the random VIV response of the whole cable can be approximately calculated by superimposing the response of the most influential modal vibrations.Some numerical simulation results confirm the obtained analytical results.It is found that the intensity of the resonant modal vibration is much higher than that of the non-resonant modal vibration.Thus,the analytical results of the resonant modal vibration can be used as a rough estimation for the whole response of a cable. 展开更多
关键词 vortex induced vibration(VIV) wake oscillator random response suspended flexible cable fluctuating wind
下载PDF
Wind Energy Conversion System from Electrical Perspective—A Survey
4
作者 Hyong Sik Kim Dylan Dah-Chuan Lu 《Smart Grid and Renewable Energy》 2010年第3期119-131,共13页
This paper focuses on the wind energy conversion system (WECS) with the three main electrical aspects: 1) wind turbine generators (WTGs), 2) power electronics converters (PECs) and 3) grid-connection issues. The curre... This paper focuses on the wind energy conversion system (WECS) with the three main electrical aspects: 1) wind turbine generators (WTGs), 2) power electronics converters (PECs) and 3) grid-connection issues. The current state of wind turbine generators are discussed and compared in some criteria along with the trends in the current WECS market, which are ‘Variable Speed’, ‘Multi-MW’ and ‘Offshore’. In addition, the other crucial component in the WECS, PECs will be discussed with its topologies available in the current WECS market along with their modulation strategies. Moreover, three main issues of the WECS associating with the grid-connection, fault-ride through (FRT) capability, harmonics/interharmonics emission and flicker, which are the power quality issues, will be discussed due to the increasing responsibility of WECS as utility power station. Some key findings from the review such as the attractiveness of BDFRG are presented in the conclusion of this paper. 展开更多
关键词 wind Energy wind Turbine Generators POWER Electronic Converters Grid-Connection BRUSHLESS Reluctance Pulse-Width Modulation Fault RIDE through Capability Voltage DIP Harmonics FLICKER POWER Quality BDFRG
下载PDF
Natural ventilation performance of single room building with fluctuating wind speed and thermal mass 被引量:3
5
作者 TAN Gang 《Journal of Central South University》 SCIE EI CAS 2012年第3期733-739,共7页
Natural ventilation is driven by either buoyancy forces or wind pressure forces or their combinations that inherit stochastic variation into ventilation rates. Since the ventilation rate is a nonlinear function of mul... Natural ventilation is driven by either buoyancy forces or wind pressure forces or their combinations that inherit stochastic variation into ventilation rates. Since the ventilation rate is a nonlinear function of multiple variable factors including wind speed, wind direction, internal heat source and building structural thermal mass, the conventional methods for quantifying ventilation rate simply using dominant wind direction and average wind speed may not accurately describe the characteristic performance of natural ventilation. From a new point of view, the natural ventilation performance of a single room building under fluctuating wind speed condition using the Monte-Carlo simulation approach was investigated by incorporating building facade thermal mass effect. Given a same hourly turbulence intensity distribution, the wind speeds with 1 rain frequency fluctuations were generated using a stochastic model, the modified GARCH model. Comparisons of natural ventilation profiles, effective ventilation rates, and air conditioning electricity use for a three-month period show statistically significant differences (for 80% confidence interval) between the new calculations and the traditional methods based on hourly average wind speed. 展开更多
关键词 natural ventilation fluctuating wind speed thermal mass GARCH model
下载PDF
Smart Semi-active PID-ACO control strategy for tower vibration reduction in Wind Turbines with MR damper 被引量:2
6
作者 Mahmudur Rahman Zhi Chao Ong +1 位作者 Wen Tong Chong Sabariah Julai 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2019年第4期887-902,共16页
Wind turbine technology is well known around the globe as an eco-friendly and eff ective renewable power source. However, this technology often faces reliability problems due to structural vibration. This study propos... Wind turbine technology is well known around the globe as an eco-friendly and eff ective renewable power source. However, this technology often faces reliability problems due to structural vibration. This study proposes a smart semi-active vibration control system using Magnetorheological (MR) dampers where feedback controllers are optimized with nature-inspired algorithms. Proportional integral derivative (PID) and Proportional integral (PI) controllers are designed to achieve the optimal desired force and current input for MR the damper. PID control parameters are optimized using an Ant colony optimization (ACO) algorithm. The eff ectiveness of the ACO algorithm is validated by comparing its performance with Ziegler-Nichols (Z-N) and particle swarm optimization (PSO). The placement of the MR damper on the tower is also investigated to ensure structural balance and optimal desired force from the MR damper. The simulation results show that the proposed semi-active PID-ACO control strategy can signifi cantly reduce vibration on the wind turbine tower under diff erent frequencies (i.e., 67%, 73%, 79% and 34.4% at 2 Hz, 3 Hz, 4.6 Hz and 6 Hz, respectively) and amplitudes (i.e. 50%, 58% and 67% for 50 N, 80 N, and 100 N, respectively). In this study, the simulation model is validated with an experimental study in terms of natural frequency, mode shape and uncontrolled response at the 1st mode. The proposed PID-ACO control strategy and optimal MR damper position is also implemented on a lab-scaled wind turbine tower model. The results show that the vibration reduction rate is 66% and 73% in the experimental and simulation study, respectively, at the 1st mode. 展开更多
关键词 ant COLONY optimization fi nite diff erence method MAGNETORHEOLOGICAL damper PID-ACO controller semiactive control system identifi cation wind turbine TOWER
下载PDF
Co-variation of the surface wind speed and the sea surface temperature over mesoscale eddies in the Gulf Stream region:momentum vertical mixing aspect
7
作者 HE Jingjing LIN Xiaopei 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2019年第4期1154-1164,共11页
The co-variation of surface wind speed and sea surface temperature (SST) over the Gulf Stream frontal region is investigated using high-resolution satellite measurements and atmospheric reanalysis data. Results show t... The co-variation of surface wind speed and sea surface temperature (SST) over the Gulf Stream frontal region is investigated using high-resolution satellite measurements and atmospheric reanalysis data. Results show that the pattern of positive SST-surface wind speed correlations is anchored by strong SST gradient and marine atmospheric boundary layer (MABL) height front, with active warm and cold-ocean eddies around. The MABL has an obvious transitional structure along the strong SST front, with greater (lesser) heights over the north (south) side. The significant positive SST-surface wind-speed perturbation correlations are mostly found over both strong warm and cold eddies. The surface wind speed increases (decreases) about 0.32 (0.41) m/s and the MABL elevates (drops) approximate 55 (54) m per 1℃ of SST perturbation induced by warm (cold) eddies. The response of the surface wind speed to SST perturbations over the mesoscale eddies is mainly attributed to the momentum vertical mixing in the MABL, which is confirmed by the linear relationships between the downwind (crosswind) SST gradient and wind divergence (curl). 展开更多
关键词 GULF Stream positive sea SURFACE temperature (SST)-surface wind speed correlation marine atmospheric boundary layer (MABL) height MESOSCALE EDDY MOMENTUM vertical mixing
下载PDF
Power Maximization and Control of Variable-Speed Wind Turbine System Using Extremum Seeking
8
作者 Safanah M. Rafaat Rajaa Hussein 《Journal of Power and Energy Engineering》 2018年第1期51-69,共19页
Maximizing the power capture is an important issue to the turbines that are installed in low wind speed area. In this paper, we focused on the modeling and control of variable speed wind turbine that is composed of tw... Maximizing the power capture is an important issue to the turbines that are installed in low wind speed area. In this paper, we focused on the modeling and control of variable speed wind turbine that is composed of two-mass drive train, a Squirrel Cage Induction Generator (SCIG), and voltage source converter control by Space Vector Pulse Width Modulation (SPVWM). To achieve Maximum Power Point Tracking (MPPT), the reference speed to the generator is searched via Extremum Seeking Control (ESC). ESC was designed for wind turbine region II operation based on dither-modulation scheme. ESC is a model-free method that has the ability to increase the captured power in real time under turbulent wind without any requirement for wind measurements. The controller is designed in two loops. In the outer loop, ESC is used to set a desired reference speed to PI controller to regulate the speed of the generator and extract the maximum electrical power. The inner control loop is based on Indirect Field Orientation Control (IFOC) to decouple the currents. Finally, Particle Swarm Optimization (PSO) is used to obtain the optimal PI parameters. Simulation and control of the system have been accomplished using MATLAB/Simulink 2014. 展开更多
关键词 wind Turbine Indirect Field Orientation CONTROL (IFOC) Maximum POWER Point Tracking (MPPT) Extremum SEEKING CONTROL (ESC) Particle SWARM Op-timization (PSO) PI Controller
下载PDF
Wind Power Potential in Interior Alaska from a Micrometeorological Perspective 被引量:1
9
作者 Hannah K.Ross John Cooney +5 位作者 Megan Hinzman Samuel Smock Gary Sellhorst Ralph Dlugi Nicole Molders Gerhard Kramm 《Atmospheric and Climate Sciences》 2014年第1期100-121,共22页
The wind power potential in Interior Alaska is evaluated from a micrometeorological perspective. Based on the local balance equation of momentum and the equation of continuity we derive the local balance equation of k... The wind power potential in Interior Alaska is evaluated from a micrometeorological perspective. Based on the local balance equation of momentum and the equation of continuity we derive the local balance equation of kinetic energy for macroscopic and turbulent systems, and in a further step, Bernoulli’s equation and integral equations that customarily serve as the key equations in momentum theory and blade-element analysis, where the Lanchester-Betz-Joukowsky limit, Glauert’s optimum actuator disk, and the results of the blade-element analysis by Okulov and Sorensen are exemplarily illustrated. The wind power potential at three different sites in Interior Alaska (Delta Junction, Eva Creek, and Poker Flat) is assessed by considering the results of wind field predictions for the winter period from October 1, 2008, to April 1, 2009 provided by the Weather Research and Forecasting (WRF) model to avoid time-consuming and expensive tall-tower observations in Interior Alaska which is characterized by a relatively low degree of infrastructure outside of the city of Fairbanks. To predict the average power output we use the Weibull distributions derived from the predicted wind fields for these three different sites and the power curves of five different propeller-type wind turbines with rated powers ranging from 2 MW to 2.5 MW. These power curves are represented by general logistic functions. The predicted power capacity for the Eva Creek site is compared with that of the Eva Creek wind farm established in 2012. The results of our predictions for the winter period 2008/2009 are nearly 20 percent lower than those of the Eva Creek wind farm for the period from January to September 2013. 展开更多
关键词 wind Power Power Efficiency wind Power Potential wind Power Prediction WRF/Chem MICROMETEOROLOGY Momentum Theory Blade Element Analysis Betz Limit Glauerts Optimum Rotor Balance Equation for Momentum Equation of Continuity Balance Equation for Kinetic Energy ReynoldsAverage Hesselbergs Average Bernoullis Equation Integral Equations Weibull Distribution General Logistic Function Eva Creek wind Farm
下载PDF
Implementation of Dynamic Line Rating in a Sub-Transmission System for Wind Power Integration
10
作者 Saifal Talpur Carl Johan Wallnerstrom +1 位作者 Patrik Hilber Christer Flood 《Smart Grid and Renewable Energy》 2015年第8期233-249,共17页
Based on conventional static line rating method, the actual current carrying capability of overhead conductors cannot be judged. Due to continuous increment in electricity demand and the difficulties associated with n... Based on conventional static line rating method, the actual current carrying capability of overhead conductors cannot be judged. Due to continuous increment in electricity demand and the difficulties associated with new line constructions, the overhead lines are therefore required to be rated based on a method that should establish their real-time capability in terms of electricity transmission. The method used to determine the real-time ampacity of overhead conductors not only can enhance their transmission capacity but can also help in allowing excessive renewable generation in the electricity network. In this research work, the issues related to analyzing an impact of wind power on periodical loading of overhead line as well as finding its static and dynamic ampacities with line current are investigated in detail. Moreover, the investigation related to finding a suitable location for the construction of a 60 MW wind farm is taken on board. Thereafter, the wind park is integrated with a regional grid, owned by Fortum Distribution AB. In addition to that, the electricity generated from the wind park is also calculated in this project. Later on, the work is devoted to finding the static and dynamic line ratings for “VL3” overhead conductor by using IEEE-738-2006 standard. Furthermore, the project also deals with finding the line current and making its comparison with maximum capacity of overhead conductor (VL3) for loading it in such a way that no any violation of safe ground clearance requirements is observed at all. Besides, the line current, knowing the conductor temperature when it transmits the required electricity in the presence of wind power generation is also an important factor to be taken into consideration. Therefore, based on real-time ambient conditions with actual line loading and with the help of IEEE-738-2006 standard, the conductor temperature is also calculated in this project. At the end, an economic analysis is performed to evaluate the financial advantages related to applying the dynamic line ratings approach in place of traditional static line ratings technique across an overhead conductor (VL3) and to know how much beneficial it is to temporarily postpone the rebuilding and/or construction of a new transmission line. Furthermore, an economic analysis related to wind power system is taken into consideration as well to get familiar with the costs related to building and connecting a 60 MW wind farm with the regional grid. 展开更多
关键词 Overhead Conductor STATIC and DYNAMIC Ampacities Real-Time Weather Conditions STATIC and DYNAMIC LINE RATING Techniques wind Power Integration Regional Grid LINE Current. Conductor Temperature wind Power ECONOMICS DYNAMIC LINE RATING ECONOMICS
下载PDF
Impact of Reactive Power in Power Evacuation from Wind Turbines
11
作者 Ashish Ranjan S. Prabhakar Karthikeyan +3 位作者 Ankur Ahuja K. Palanisamy I. Jacob Raglend D. P. Kothari 《Journal of Electromagnetic Analysis and Applications》 2009年第1期15-23,共9页
Application of Distributed Generation (DG) to supply the demands of a diverse customer base plays a vital role in the renewable energy environment. Various DG technologies are being integrated into power systems to pr... Application of Distributed Generation (DG) to supply the demands of a diverse customer base plays a vital role in the renewable energy environment. Various DG technologies are being integrated into power systems to provide alterna-tives to energy sources and to improve reliability of the system. Power Evacuation from these remotely located DG’s remains a major concern for the power utilities these days. The main cause of concern regarding evacuation is con-sumption of reactive power for excitation by Induction Generators (IG) used in wind power production which affects the power system in variety of ways. This paper deals with the issues related to reactive power consumption by Induc-tion generators during power evacuation. Induction generator based wind turbine model using MATLAB/SIMULINK is simulated and its impact on the grid is observed. The simulated results are analyzed and validated with the real time results for the system considered. A wind farm is also modeled and simulations are carried out to study the various im-pacts it has on the grid &amp;nearby wind turbines during Islanding and system event especially on 3-Phase to ground fault. 展开更多
关键词 Distributed Generation (DG) Grid wind Turbines INDUCTION Generator ISLANDING POWER EVACUATION Point of Common Connection 3 Phase to Ground FAULT
下载PDF
Research on multi-time scale doubly-fed wind turbine test system based on FPGA+CPU heterogeneous calculation
12
作者 Qing Mu Xing Zhang +3 位作者 Xiaoxin Zhou Xiaowei Fan Yingmei Liu Dongbo Pan 《Global Energy Interconnection》 2019年第1期7-18,共12页
As the proportion of renewable energy increases, the interaction between renewable energy devices and the grid continues to enhance. Therefore, the renewable energy dynamic test in a power system has become more and m... As the proportion of renewable energy increases, the interaction between renewable energy devices and the grid continues to enhance. Therefore, the renewable energy dynamic test in a power system has become more and more important. Traditional dynamic simulation systems and digital-analog hybrid simulation systems are difficult to compromise on the economy, flexibility and accuracy. A multi-time scale test system of doubly fed induction generator based on FPGA+ CPU heterogeneous calculation is proposed in this paper. The proposed test system is based on the ADPSS simulation platform. The power circuit part of the test system is setup up using the EMT(electromagnetic transient simulation) simulation, and the control part uses the actual physical devices. In order to realize the close-loop testing for the physical devices, the power circuit must be simulated in real-time. This paper proposes a multi-time scale simulation algorithm, in which the decoupling component divides the power circuit into a large time scale system and a small time scale system in order to reduce computing effort. This paper also proposes the FPGA+CPU heterogeneous computing architecture for implementing this multitime scale simulation. In FPGA, there is a complete small time-scale EMT engine, which support the flexibly circuit modeling with any topology. Finally, the test system is connected to an DFIG controller based on Labview to verify the feasibility of the test system. 展开更多
关键词 Renewable energy gen erati on DOUBLY fed in duction generator ADPSS simulati on SYSTEM wind turbine test SYSTEM Multi-time scale FPGA%PLUS%CPU
下载PDF
Earth’s Atmosphere Prevailing Surface Winds Based on Effectiveness of Mbane Biouele Formula Derived in 2009
13
作者 César Mbane Biouele 《Atmospheric and Climate Sciences》 2014年第2期192-198,共7页
Any system designed to simulate the earth's atmosphere general circulation, must necessarily be based on the spatial-or temporal average conditions. Irregularities in the profiles of air motions that we observe on... Any system designed to simulate the earth's atmosphere general circulation, must necessarily be based on the spatial-or temporal average conditions. Irregularities in the profiles of air motions that we observe on daily weather maps often make lose any real meaning to the general circulation. As complicated and inconsistent that is the daily traffic of air particles, it is interesting to define a general circulation characteristic of the average air transportation around the globe. Indeed, this transport responds to a need to transfer heat from the equator (heat source) to the poles (cold sources). Mbane Biouele formula (2009), derived from Clausius-Clapeyron relation (1832), now allows faithful and unique representation of the tricellular general circulation: Hence, the possibility of access to the earth’s atmosphere prevailing surface winds in summer as well as winter. 展开更多
关键词 Earths ATMOSPHERE General CIRCULATION DAILY Traffic of Air Particles Heat Transfer from the EQUATOR to the POLES Prevailing Surface winds
下载PDF
脉动压力分布同步测量的探讨 被引量:6
14
作者 郭明旻 黄东群 +2 位作者 穆晟 林晨 徐有恒 《实验力学》 CSCD 北大核心 2005年第1期123-127,共5页
动态气动力的研究是实验工作者极为关注的问题。特别对于二元模型动态气动力的测定,必须从脉动的压力分布通过面积加权积分来得到气动力的时间历程,而其先决条件为各测压点压力的时间历程必须是同步的,也就是要测得同一时刻诸多测点的... 动态气动力的研究是实验工作者极为关注的问题。特别对于二元模型动态气动力的测定,必须从脉动的压力分布通过面积加权积分来得到气动力的时间历程,而其先决条件为各测压点压力的时间历程必须是同步的,也就是要测得同一时刻诸多测点的压力。本文介绍了一种比较经济的多点同步测压方法,并对该方法的实施进行了探讨。分别对A/D卡采样的同步性、整套测压系统的同步性以及频响特性进行了测试和验证。经相关性分析,相关系数分别达到0. 9999和 0. 99。最后以圆柱表面脉动压力系数分布的测试为例,给出了单圆柱不同瞬间的压力向量图、按照瞬间压力沿表面积分得到的单个圆柱脉动升力的时间历程,以及升力的脉动频率,表明整套同步测压系统具有很好的实用性,能满足实验的需要。 展开更多
关键词 A/D
下载PDF
Experimental Investigation of Performance of the Wind Turbine with the Flanged-Diffuser Shroud in Sinusoidally Oscillating and Fluctuating Velocity Flows 被引量:3
15
作者 Kazuhiko Toshimitsu Hironori Kikugawa +1 位作者 Kohei Sato Takuya Sato 《Open Journal of Fluid Dynamics》 2012年第4期215-221,共7页
The wind turbine with a flanged-diffuser shroud—so called “wind-lens turbine”—is developed as one of high performance wind turbines by Ohya et al. In this paper, the wind turbine performance is investigated for bo... The wind turbine with a flanged-diffuser shroud—so called “wind-lens turbine”—is developed as one of high performance wind turbines by Ohya et al. In this paper, the wind turbine performance is investigated for both steady and unsteady winds. The compact-type wind lens turbine shows higher efficiency than the only rotor wind turbine. Also, the flow structure around the compact-type wind turbine is made clear by CFD and PIV in steady wind. Furthermore, the performances of the only rotor and the compact-type wind-lens turbines for unsteady wind are experimentally and numerically investigated. Experimental and numerical results are presented to demonstrate the dependence of frequency of the harmonic oscillating velocity wind on power coefficient. Consequently, the compact-type wind-lens turbine show better performance than the only rotor one in sinusoidally oscillating velocity wind. Furthermore, the numerical estimation can predict the power coefficient in the oscillating flows to an accuracy of 94% to 102%. In addition, the dependence of the turbine performance on turbulent intensity and vortex scale of natural fluctuating wind is presented. 展开更多
关键词 wind TURBINE Unsteady Flow wind Energy Power Coefficients Flanged DIFFUSER Natural wind
下载PDF
An Improved Method of the Energy Loss Calculation Considering the Volatility of Wind Power Generation
16
作者 Bo Ruan Tingting Hou +2 位作者 Yu Li Zhen Mei Jun Huang 《Energy and Power Engineering》 2017年第4期281-291,共11页
The energy loss of the power grid is one of the key factors affecting the economic operation of power systems. How to calculate the electric energy consumption accurately will have a great influence on the planning, o... The energy loss of the power grid is one of the key factors affecting the economic operation of power systems. How to calculate the electric energy consumption accurately will have a great influence on the planning, operation and management of the power grid. Currently there is a mountain of theoretical methods to calculate the line loss of the power system. However, these methods have some limitation, such as less considering the volatility of wind power resources. This paper presents an improved method to calculate the energy loss of wind power generation, considering the fluctuations of wind power generation. First, data are collected to obtain the curve of the typical daily expected output of wind farms for one month. Second, the curve of the typical daily expected output are corrected by the average electricity and the shape factor to obtain the curve of the typical daily equivalent output of wind farms for one month. Finally, the power flow is calculated by using typical daily equivalent output curve to describe the energy loss for one month. The results in the 110 kV main network show that the method is feasible. 展开更多
关键词 The Energy Loss of the POWER Grid wind POWER Generation Shape Factor the Curve of the TYPICAL DAILY EQUIVALENT Output POWER Flow CALCULATION
下载PDF
PI-MPC Frequency Control of Power System in the Presence of DFIG Wind Turbines 被引量:1
17
作者 Michael Z. Bernard T. H. Mohamed +2 位作者 Raheel Ali Yasunori Mitani Yaser Soliman Qudaih 《Engineering(科研)》 2013年第9期43-50,共8页
For the recent expansion of renewable energy applications, Wind Energy System (WES) is receiving much interest all over the world. However, area load change and abnormal conditions lead to mismatches in frequency and ... For the recent expansion of renewable energy applications, Wind Energy System (WES) is receiving much interest all over the world. However, area load change and abnormal conditions lead to mismatches in frequency and scheduled power interchanges between areas. These mismatches have to be corrected by the LFC system. This paper, therefore, proposes a new robust frequency control technique involving the combination of conventional Proportional-Integral (PI) and Model Predictive Control (MPC) controllers in the presence of wind turbines (WT). The PI-MPC technique has been designed such that the effect of the uncertainty due to governor and turbine parameters variation and load disturbance is reduced. A frequency response dynamic model of a single-area power system with an aggregated generator unit is introduced, and physical constraints of the governors and turbines are considered. The proposed technique is tested on the single-area power system, for enhancement of the network frequency quality. The validity of the proposed method is evaluated by computer simulation analyses using Matlab Simulink. The results show that, with the proposed PI-MPC combination technique, the overall closed loop system performance demonstrated robustness regardless of the presence of uncertainties due to variations of the parameters of governors and turbines, and loads disturbances. A performance comparison between the proposed control scheme, the classical PI control scheme and the MPC is carried out confirming the superiority of the proposed technique in presence of doubly fed induction generator (DFIG) WT. 展开更多
关键词 DOUBLY Fed Induction Generator Power SYSTEM Model Predictive Control) Proportional Integral Controller DFIG wind TURBINE wind Energy SYSTEM (WES)
下载PDF
Aerodynamic Performance and Vibration Analyses of Small Scale Horizontal Axis Wind Turbine with Various Number of Blades
18
作者 Mosfequr Rahman Emile Maroha +2 位作者 Adel El Shahat Valentin Soloiu Marcel Ilie 《Journal of Power and Energy Engineering》 2018年第6期76-105,共30页
The need to generate power from renewable sources to reduce demand for fossil fuels and the damage of their resulting carbon dioxide emissions is now well understood. Wind is among the most popular and fastest growing... The need to generate power from renewable sources to reduce demand for fossil fuels and the damage of their resulting carbon dioxide emissions is now well understood. Wind is among the most popular and fastest growing sources of alternative energy in the world. It is an inexhaustible, indigenous resource, pollution-free, and available almost any time of the day, especially in coastal regions. As a sustainable energy resource, electrical power generation from the wind is increasingly important in national and international energy policy in response to climate change. Experts predict that, with proper development, wind energy can meet up to 20% of US needs. Horizontal Axis Wind Turbines (HAWTs) are the most popular because of their higher efficiency. The aerodynamic characteristics and vibration of small scale HAWT with various numbers of blade designs have been investigated in this numerical study in order to improve its performance. SolidWorks was used for designing Computer Aided Design (CAD) models, and ANSYS software was used to study the dynamic flow around the turbine. Two, three, and five bladed HAWTs of 87 cm rotor diameter were designed. A HAWT tower of 100 cm long and 6 cm diameter was considered during this study while a shaft of 10.02 cm diameter was chosen. A good choice of airfoils and angle of attack is a key in the designing of a blade of rough surface and maintaining the maximum lift to drag ratio. The S818, S825 and S826 airfoils were used from the root to the tip and 4° critical angle of attack was considered. In this paper, a more appropriate numerical models and an improved method have been adopted in comparable with other models and methods in the literature. The wind flow around the whole wind turbine and static behavior of the HAWT rotor was solved using Moving Reference Frame (MRF) solver. The HAWT rotor results were used to initialize the Sliding Mesh Models (SMM) solver and study the dynamic behavior of HAWT rotor. The pressure and velocity contours on different blades surfaces were analyzed and presented in this work. The pressure and velocity contours around the entire turbine models were also analyzed. The power coefficient was calculated using the Tip Speed Ratio (TSR) and the moment coefficient and the results were compared to the theoretical and other research. The results show that the increase of number of blades from two to three increases the efficiency;however, the power coefficient remains relatively the same or sometimes decreases for five bladed turbine models. HAWT rotors and shaft vibrations were analyzed for two different materials using an applied pressure load imported from ANSYS fluent environment. It has proven that a good choice of material is crucial during the design process. 展开更多
关键词 HORIZONTAL AXIS wind TURBINE Power COEFFICIENT MOMENT COEFFICIENT Mode Shape Natural Frequency CFD Moving Reference Frame SLIDING Mesh Model
下载PDF
Optimal Sizing of Solar/Wind Hybrid Off-Grid Microgrids Using an Enhanced Genetic Algorithm 被引量:2
19
作者 Abdrahamane Traoré Hatem Elgothamy Mohamed A. Zohdy 《Journal of Power and Energy Engineering》 2018年第5期64-77,共14页
This paper presents a method for optimal sizing of an off-grid hybrid microgrid (MG) system in order to achieve a certain load demand. The hybrid MG is made of a solar photovoltaic (PV) system, wind turbine (TW) and e... This paper presents a method for optimal sizing of an off-grid hybrid microgrid (MG) system in order to achieve a certain load demand. The hybrid MG is made of a solar photovoltaic (PV) system, wind turbine (TW) and energy storage system (ESS). The reliability of the MG system is modeled based on the loss of power supply probability (SPSP). For optimization, an enhanced Genetic Algorithm (GA) is used to minimize the total cost of the system over a 20-year period, while satisfying some reliability and operation constraints. A case study addressing optimal sizing of an off-grid hybrid microgrid in Nigeria is discussed. The result is compared with results obtained from the Brute Force and standard GA methods. 展开更多
关键词 Optimization OFF-GRID Microgrid Renewable ENERGY ENERGY Storage Systems (ESS) SOLAR Photovoltaic (PV) wind Battery HYBRID Genetic Algorithm (GA)
下载PDF
Theoretical Study of Wind Turbine Model with a New Concept on Swept Area
20
作者 Sagarkumar M. Agravat N. V. S. Manyam +1 位作者 Sanket Mankar T. Harinarayana 《Energy and Power Engineering》 2015年第4期127-134,共8页
Commercially available wind-turbines are optimized to operate at certain wind velocity, known as rated wind velocity. For other values of wind velocity, it has different output which is lower than the rated output of ... Commercially available wind-turbines are optimized to operate at certain wind velocity, known as rated wind velocity. For other values of wind velocity, it has different output which is lower than the rated output of the wind plant. Wind mill can be designed to provide maximum power output at different wind velocities through modification of swept area to match with the wind speed available at the moment. This can result in higher power output at all the velocities except that at rated wind speed because of limitation of generator. This results in increased utilization of generation capacity of wind mill compared to its commercially designed counterpart. A theoretical simulation has been done to prove a new concept about swept area of wind turbine blade which results in a significant increase in the power output through the year. Simulation results of power extracted through normal wind blade design and new concept are studied and compared. The findings of the study are presented in graphical and tabular form. Study establishes that there can be a significant gain in the power output with the new concept. 展开更多
关键词 CUT-IN wind-SPEED CUT-OUT wind-SPEED CUF Swept Area Radius CHORD Aerofoil Axial Flow Induction FACTOR INFLOW FACTOR Actuator Disc Concept Momentum Theory
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部