Hypersphere World-Universe Model (WUM) envisions Matter carried from Universe into World from fourth spatial dimension by Dark Matter Particles (DMPs). Luminous Matter is byproduct of Dark Matter (DM) annihilation. WU...Hypersphere World-Universe Model (WUM) envisions Matter carried from Universe into World from fourth spatial dimension by Dark Matter Particles (DMPs). Luminous Matter is byproduct of Dark Matter (DM) annihilation. WUM introduces Dark Epoch (spanning from Beginning of World for 0.4 billion years) when only DMPs existed, and Luminous Epoch (ever since for 13.8 billion years). Big Bang discussed in standard cosmological model is, in our view, transition from Dark Epoch to Luminous Epoch due to Rotational Fission of Overspinning DM Supercluster’s Cores and annihilation of DMPs. WUM solves a number of physical problems in contemporary Cosmology and Astrophysics through DMPs and their interactions: Angular Momentum problem in birth and subsequent evolution of Galaxies and Extrasolar systems—how do they obtain it;Fermi Bubbles—two large structures in gamma-rays and X-rays above and below Galactic center;Mysterious Star KIC 8462852 with irregular dimmings;Coronal Heating problem in solar physics—temperature of Sun’s corona exceeding that of photosphere by millions of degrees;Cores of Sun and Earth rotating faster than their surfaces;Diversity of Gravitationally-Rounded Objects in Solar system and their Internal Heat;Lightning Initiation problem—electric fields observed inside thunderstorms are not sufficient to initiate sparks;Terrestrial Gamma-Ray Flashes—bursts of high energy X-rays and gamma rays emanating from Earth. Model makes predictions pertaining to Masses of DMPs, proposes New Types of their Interactions. WUM reveals Inter-Connectivity of Primary Cosmological Parameters and calculates their values, which are in good agreement with the latest results of their measurements.展开更多
A popular dynamical model for the vortex induced vibration(VIV)of a suspended flexible cable consists of two coupled equations.The first equation is a partial differential equation governing the cable vibration.The se...A popular dynamical model for the vortex induced vibration(VIV)of a suspended flexible cable consists of two coupled equations.The first equation is a partial differential equation governing the cable vibration.The second equation is a wake oscillator that models the lift coefficient acting on the cable.The incoming wind acting on the cable is usually assumed as the uniform wind with a constant velocity,which makes the VIV model be a deterministic one.In the real world,however,the wind velocity is randomly fluctuant and makes the VIV of a suspended flexible cable be treated as a random vibration.In the present paper,the deterministic VIV model of a suspended flexible cable is modified to a random one by introducing the fluctuating wind.Using the normal mode approach,the random VIV system is transformed into an infinite-dimensional modal vibration system.Depending on whether a modal frequency is close to the aeolian frequency or not,the corresponding modal vibration is characterized as a resonant vibration or a non-resonant vibration.By applying the stochastic averaging method of quasi Hamiltonian systems,the response of modal vibrations in the case of resonance or non-resonance can be analytically predicted.Then,the random VIV response of the whole cable can be approximately calculated by superimposing the response of the most influential modal vibrations.Some numerical simulation results confirm the obtained analytical results.It is found that the intensity of the resonant modal vibration is much higher than that of the non-resonant modal vibration.Thus,the analytical results of the resonant modal vibration can be used as a rough estimation for the whole response of a cable.展开更多
This paper focuses on the wind energy conversion system (WECS) with the three main electrical aspects: 1) wind turbine generators (WTGs), 2) power electronics converters (PECs) and 3) grid-connection issues. The curre...This paper focuses on the wind energy conversion system (WECS) with the three main electrical aspects: 1) wind turbine generators (WTGs), 2) power electronics converters (PECs) and 3) grid-connection issues. The current state of wind turbine generators are discussed and compared in some criteria along with the trends in the current WECS market, which are ‘Variable Speed’, ‘Multi-MW’ and ‘Offshore’. In addition, the other crucial component in the WECS, PECs will be discussed with its topologies available in the current WECS market along with their modulation strategies. Moreover, three main issues of the WECS associating with the grid-connection, fault-ride through (FRT) capability, harmonics/interharmonics emission and flicker, which are the power quality issues, will be discussed due to the increasing responsibility of WECS as utility power station. Some key findings from the review such as the attractiveness of BDFRG are presented in the conclusion of this paper.展开更多
Natural ventilation is driven by either buoyancy forces or wind pressure forces or their combinations that inherit stochastic variation into ventilation rates. Since the ventilation rate is a nonlinear function of mul...Natural ventilation is driven by either buoyancy forces or wind pressure forces or their combinations that inherit stochastic variation into ventilation rates. Since the ventilation rate is a nonlinear function of multiple variable factors including wind speed, wind direction, internal heat source and building structural thermal mass, the conventional methods for quantifying ventilation rate simply using dominant wind direction and average wind speed may not accurately describe the characteristic performance of natural ventilation. From a new point of view, the natural ventilation performance of a single room building under fluctuating wind speed condition using the Monte-Carlo simulation approach was investigated by incorporating building facade thermal mass effect. Given a same hourly turbulence intensity distribution, the wind speeds with 1 rain frequency fluctuations were generated using a stochastic model, the modified GARCH model. Comparisons of natural ventilation profiles, effective ventilation rates, and air conditioning electricity use for a three-month period show statistically significant differences (for 80% confidence interval) between the new calculations and the traditional methods based on hourly average wind speed.展开更多
Wind turbine technology is well known around the globe as an eco-friendly and eff ective renewable power source. However, this technology often faces reliability problems due to structural vibration. This study propos...Wind turbine technology is well known around the globe as an eco-friendly and eff ective renewable power source. However, this technology often faces reliability problems due to structural vibration. This study proposes a smart semi-active vibration control system using Magnetorheological (MR) dampers where feedback controllers are optimized with nature-inspired algorithms. Proportional integral derivative (PID) and Proportional integral (PI) controllers are designed to achieve the optimal desired force and current input for MR the damper. PID control parameters are optimized using an Ant colony optimization (ACO) algorithm. The eff ectiveness of the ACO algorithm is validated by comparing its performance with Ziegler-Nichols (Z-N) and particle swarm optimization (PSO). The placement of the MR damper on the tower is also investigated to ensure structural balance and optimal desired force from the MR damper. The simulation results show that the proposed semi-active PID-ACO control strategy can signifi cantly reduce vibration on the wind turbine tower under diff erent frequencies (i.e., 67%, 73%, 79% and 34.4% at 2 Hz, 3 Hz, 4.6 Hz and 6 Hz, respectively) and amplitudes (i.e. 50%, 58% and 67% for 50 N, 80 N, and 100 N, respectively). In this study, the simulation model is validated with an experimental study in terms of natural frequency, mode shape and uncontrolled response at the 1st mode. The proposed PID-ACO control strategy and optimal MR damper position is also implemented on a lab-scaled wind turbine tower model. The results show that the vibration reduction rate is 66% and 73% in the experimental and simulation study, respectively, at the 1st mode.展开更多
The co-variation of surface wind speed and sea surface temperature (SST) over the Gulf Stream frontal region is investigated using high-resolution satellite measurements and atmospheric reanalysis data. Results show t...The co-variation of surface wind speed and sea surface temperature (SST) over the Gulf Stream frontal region is investigated using high-resolution satellite measurements and atmospheric reanalysis data. Results show that the pattern of positive SST-surface wind speed correlations is anchored by strong SST gradient and marine atmospheric boundary layer (MABL) height front, with active warm and cold-ocean eddies around. The MABL has an obvious transitional structure along the strong SST front, with greater (lesser) heights over the north (south) side. The significant positive SST-surface wind-speed perturbation correlations are mostly found over both strong warm and cold eddies. The surface wind speed increases (decreases) about 0.32 (0.41) m/s and the MABL elevates (drops) approximate 55 (54) m per 1℃ of SST perturbation induced by warm (cold) eddies. The response of the surface wind speed to SST perturbations over the mesoscale eddies is mainly attributed to the momentum vertical mixing in the MABL, which is confirmed by the linear relationships between the downwind (crosswind) SST gradient and wind divergence (curl).展开更多
Maximizing the power capture is an important issue to the turbines that are installed in low wind speed area. In this paper, we focused on the modeling and control of variable speed wind turbine that is composed of tw...Maximizing the power capture is an important issue to the turbines that are installed in low wind speed area. In this paper, we focused on the modeling and control of variable speed wind turbine that is composed of two-mass drive train, a Squirrel Cage Induction Generator (SCIG), and voltage source converter control by Space Vector Pulse Width Modulation (SPVWM). To achieve Maximum Power Point Tracking (MPPT), the reference speed to the generator is searched via Extremum Seeking Control (ESC). ESC was designed for wind turbine region II operation based on dither-modulation scheme. ESC is a model-free method that has the ability to increase the captured power in real time under turbulent wind without any requirement for wind measurements. The controller is designed in two loops. In the outer loop, ESC is used to set a desired reference speed to PI controller to regulate the speed of the generator and extract the maximum electrical power. The inner control loop is based on Indirect Field Orientation Control (IFOC) to decouple the currents. Finally, Particle Swarm Optimization (PSO) is used to obtain the optimal PI parameters. Simulation and control of the system have been accomplished using MATLAB/Simulink 2014.展开更多
The wind power potential in Interior Alaska is evaluated from a micrometeorological perspective. Based on the local balance equation of momentum and the equation of continuity we derive the local balance equation of k...The wind power potential in Interior Alaska is evaluated from a micrometeorological perspective. Based on the local balance equation of momentum and the equation of continuity we derive the local balance equation of kinetic energy for macroscopic and turbulent systems, and in a further step, Bernoulli’s equation and integral equations that customarily serve as the key equations in momentum theory and blade-element analysis, where the Lanchester-Betz-Joukowsky limit, Glauert’s optimum actuator disk, and the results of the blade-element analysis by Okulov and Sorensen are exemplarily illustrated. The wind power potential at three different sites in Interior Alaska (Delta Junction, Eva Creek, and Poker Flat) is assessed by considering the results of wind field predictions for the winter period from October 1, 2008, to April 1, 2009 provided by the Weather Research and Forecasting (WRF) model to avoid time-consuming and expensive tall-tower observations in Interior Alaska which is characterized by a relatively low degree of infrastructure outside of the city of Fairbanks. To predict the average power output we use the Weibull distributions derived from the predicted wind fields for these three different sites and the power curves of five different propeller-type wind turbines with rated powers ranging from 2 MW to 2.5 MW. These power curves are represented by general logistic functions. The predicted power capacity for the Eva Creek site is compared with that of the Eva Creek wind farm established in 2012. The results of our predictions for the winter period 2008/2009 are nearly 20 percent lower than those of the Eva Creek wind farm for the period from January to September 2013.展开更多
Based on conventional static line rating method, the actual current carrying capability of overhead conductors cannot be judged. Due to continuous increment in electricity demand and the difficulties associated with n...Based on conventional static line rating method, the actual current carrying capability of overhead conductors cannot be judged. Due to continuous increment in electricity demand and the difficulties associated with new line constructions, the overhead lines are therefore required to be rated based on a method that should establish their real-time capability in terms of electricity transmission. The method used to determine the real-time ampacity of overhead conductors not only can enhance their transmission capacity but can also help in allowing excessive renewable generation in the electricity network. In this research work, the issues related to analyzing an impact of wind power on periodical loading of overhead line as well as finding its static and dynamic ampacities with line current are investigated in detail. Moreover, the investigation related to finding a suitable location for the construction of a 60 MW wind farm is taken on board. Thereafter, the wind park is integrated with a regional grid, owned by Fortum Distribution AB. In addition to that, the electricity generated from the wind park is also calculated in this project. Later on, the work is devoted to finding the static and dynamic line ratings for “VL3” overhead conductor by using IEEE-738-2006 standard. Furthermore, the project also deals with finding the line current and making its comparison with maximum capacity of overhead conductor (VL3) for loading it in such a way that no any violation of safe ground clearance requirements is observed at all. Besides, the line current, knowing the conductor temperature when it transmits the required electricity in the presence of wind power generation is also an important factor to be taken into consideration. Therefore, based on real-time ambient conditions with actual line loading and with the help of IEEE-738-2006 standard, the conductor temperature is also calculated in this project. At the end, an economic analysis is performed to evaluate the financial advantages related to applying the dynamic line ratings approach in place of traditional static line ratings technique across an overhead conductor (VL3) and to know how much beneficial it is to temporarily postpone the rebuilding and/or construction of a new transmission line. Furthermore, an economic analysis related to wind power system is taken into consideration as well to get familiar with the costs related to building and connecting a 60 MW wind farm with the regional grid.展开更多
Application of Distributed Generation (DG) to supply the demands of a diverse customer base plays a vital role in the renewable energy environment. Various DG technologies are being integrated into power systems to pr...Application of Distributed Generation (DG) to supply the demands of a diverse customer base plays a vital role in the renewable energy environment. Various DG technologies are being integrated into power systems to provide alterna-tives to energy sources and to improve reliability of the system. Power Evacuation from these remotely located DG’s remains a major concern for the power utilities these days. The main cause of concern regarding evacuation is con-sumption of reactive power for excitation by Induction Generators (IG) used in wind power production which affects the power system in variety of ways. This paper deals with the issues related to reactive power consumption by Induc-tion generators during power evacuation. Induction generator based wind turbine model using MATLAB/SIMULINK is simulated and its impact on the grid is observed. The simulated results are analyzed and validated with the real time results for the system considered. A wind farm is also modeled and simulations are carried out to study the various im-pacts it has on the grid &nearby wind turbines during Islanding and system event especially on 3-Phase to ground fault.展开更多
As the proportion of renewable energy increases, the interaction between renewable energy devices and the grid continues to enhance. Therefore, the renewable energy dynamic test in a power system has become more and m...As the proportion of renewable energy increases, the interaction between renewable energy devices and the grid continues to enhance. Therefore, the renewable energy dynamic test in a power system has become more and more important. Traditional dynamic simulation systems and digital-analog hybrid simulation systems are difficult to compromise on the economy, flexibility and accuracy. A multi-time scale test system of doubly fed induction generator based on FPGA+ CPU heterogeneous calculation is proposed in this paper. The proposed test system is based on the ADPSS simulation platform. The power circuit part of the test system is setup up using the EMT(electromagnetic transient simulation) simulation, and the control part uses the actual physical devices. In order to realize the close-loop testing for the physical devices, the power circuit must be simulated in real-time. This paper proposes a multi-time scale simulation algorithm, in which the decoupling component divides the power circuit into a large time scale system and a small time scale system in order to reduce computing effort. This paper also proposes the FPGA+CPU heterogeneous computing architecture for implementing this multitime scale simulation. In FPGA, there is a complete small time-scale EMT engine, which support the flexibly circuit modeling with any topology. Finally, the test system is connected to an DFIG controller based on Labview to verify the feasibility of the test system.展开更多
Any system designed to simulate the earth's atmosphere general circulation, must necessarily be based on the spatial-or temporal average conditions. Irregularities in the profiles of air motions that we observe on...Any system designed to simulate the earth's atmosphere general circulation, must necessarily be based on the spatial-or temporal average conditions. Irregularities in the profiles of air motions that we observe on daily weather maps often make lose any real meaning to the general circulation. As complicated and inconsistent that is the daily traffic of air particles, it is interesting to define a general circulation characteristic of the average air transportation around the globe. Indeed, this transport responds to a need to transfer heat from the equator (heat source) to the poles (cold sources). Mbane Biouele formula (2009), derived from Clausius-Clapeyron relation (1832), now allows faithful and unique representation of the tricellular general circulation: Hence, the possibility of access to the earth’s atmosphere prevailing surface winds in summer as well as winter.展开更多
The wind turbine with a flanged-diffuser shroud—so called “wind-lens turbine”—is developed as one of high performance wind turbines by Ohya et al. In this paper, the wind turbine performance is investigated for bo...The wind turbine with a flanged-diffuser shroud—so called “wind-lens turbine”—is developed as one of high performance wind turbines by Ohya et al. In this paper, the wind turbine performance is investigated for both steady and unsteady winds. The compact-type wind lens turbine shows higher efficiency than the only rotor wind turbine. Also, the flow structure around the compact-type wind turbine is made clear by CFD and PIV in steady wind. Furthermore, the performances of the only rotor and the compact-type wind-lens turbines for unsteady wind are experimentally and numerically investigated. Experimental and numerical results are presented to demonstrate the dependence of frequency of the harmonic oscillating velocity wind on power coefficient. Consequently, the compact-type wind-lens turbine show better performance than the only rotor one in sinusoidally oscillating velocity wind. Furthermore, the numerical estimation can predict the power coefficient in the oscillating flows to an accuracy of 94% to 102%. In addition, the dependence of the turbine performance on turbulent intensity and vortex scale of natural fluctuating wind is presented.展开更多
The energy loss of the power grid is one of the key factors affecting the economic operation of power systems. How to calculate the electric energy consumption accurately will have a great influence on the planning, o...The energy loss of the power grid is one of the key factors affecting the economic operation of power systems. How to calculate the electric energy consumption accurately will have a great influence on the planning, operation and management of the power grid. Currently there is a mountain of theoretical methods to calculate the line loss of the power system. However, these methods have some limitation, such as less considering the volatility of wind power resources. This paper presents an improved method to calculate the energy loss of wind power generation, considering the fluctuations of wind power generation. First, data are collected to obtain the curve of the typical daily expected output of wind farms for one month. Second, the curve of the typical daily expected output are corrected by the average electricity and the shape factor to obtain the curve of the typical daily equivalent output of wind farms for one month. Finally, the power flow is calculated by using typical daily equivalent output curve to describe the energy loss for one month. The results in the 110 kV main network show that the method is feasible.展开更多
For the recent expansion of renewable energy applications, Wind Energy System (WES) is receiving much interest all over the world. However, area load change and abnormal conditions lead to mismatches in frequency and ...For the recent expansion of renewable energy applications, Wind Energy System (WES) is receiving much interest all over the world. However, area load change and abnormal conditions lead to mismatches in frequency and scheduled power interchanges between areas. These mismatches have to be corrected by the LFC system. This paper, therefore, proposes a new robust frequency control technique involving the combination of conventional Proportional-Integral (PI) and Model Predictive Control (MPC) controllers in the presence of wind turbines (WT). The PI-MPC technique has been designed such that the effect of the uncertainty due to governor and turbine parameters variation and load disturbance is reduced. A frequency response dynamic model of a single-area power system with an aggregated generator unit is introduced, and physical constraints of the governors and turbines are considered. The proposed technique is tested on the single-area power system, for enhancement of the network frequency quality. The validity of the proposed method is evaluated by computer simulation analyses using Matlab Simulink. The results show that, with the proposed PI-MPC combination technique, the overall closed loop system performance demonstrated robustness regardless of the presence of uncertainties due to variations of the parameters of governors and turbines, and loads disturbances. A performance comparison between the proposed control scheme, the classical PI control scheme and the MPC is carried out confirming the superiority of the proposed technique in presence of doubly fed induction generator (DFIG) WT.展开更多
The need to generate power from renewable sources to reduce demand for fossil fuels and the damage of their resulting carbon dioxide emissions is now well understood. Wind is among the most popular and fastest growing...The need to generate power from renewable sources to reduce demand for fossil fuels and the damage of their resulting carbon dioxide emissions is now well understood. Wind is among the most popular and fastest growing sources of alternative energy in the world. It is an inexhaustible, indigenous resource, pollution-free, and available almost any time of the day, especially in coastal regions. As a sustainable energy resource, electrical power generation from the wind is increasingly important in national and international energy policy in response to climate change. Experts predict that, with proper development, wind energy can meet up to 20% of US needs. Horizontal Axis Wind Turbines (HAWTs) are the most popular because of their higher efficiency. The aerodynamic characteristics and vibration of small scale HAWT with various numbers of blade designs have been investigated in this numerical study in order to improve its performance. SolidWorks was used for designing Computer Aided Design (CAD) models, and ANSYS software was used to study the dynamic flow around the turbine. Two, three, and five bladed HAWTs of 87 cm rotor diameter were designed. A HAWT tower of 100 cm long and 6 cm diameter was considered during this study while a shaft of 10.02 cm diameter was chosen. A good choice of airfoils and angle of attack is a key in the designing of a blade of rough surface and maintaining the maximum lift to drag ratio. The S818, S825 and S826 airfoils were used from the root to the tip and 4° critical angle of attack was considered. In this paper, a more appropriate numerical models and an improved method have been adopted in comparable with other models and methods in the literature. The wind flow around the whole wind turbine and static behavior of the HAWT rotor was solved using Moving Reference Frame (MRF) solver. The HAWT rotor results were used to initialize the Sliding Mesh Models (SMM) solver and study the dynamic behavior of HAWT rotor. The pressure and velocity contours on different blades surfaces were analyzed and presented in this work. The pressure and velocity contours around the entire turbine models were also analyzed. The power coefficient was calculated using the Tip Speed Ratio (TSR) and the moment coefficient and the results were compared to the theoretical and other research. The results show that the increase of number of blades from two to three increases the efficiency;however, the power coefficient remains relatively the same or sometimes decreases for five bladed turbine models. HAWT rotors and shaft vibrations were analyzed for two different materials using an applied pressure load imported from ANSYS fluent environment. It has proven that a good choice of material is crucial during the design process.展开更多
This paper presents a method for optimal sizing of an off-grid hybrid microgrid (MG) system in order to achieve a certain load demand. The hybrid MG is made of a solar photovoltaic (PV) system, wind turbine (TW) and e...This paper presents a method for optimal sizing of an off-grid hybrid microgrid (MG) system in order to achieve a certain load demand. The hybrid MG is made of a solar photovoltaic (PV) system, wind turbine (TW) and energy storage system (ESS). The reliability of the MG system is modeled based on the loss of power supply probability (SPSP). For optimization, an enhanced Genetic Algorithm (GA) is used to minimize the total cost of the system over a 20-year period, while satisfying some reliability and operation constraints. A case study addressing optimal sizing of an off-grid hybrid microgrid in Nigeria is discussed. The result is compared with results obtained from the Brute Force and standard GA methods.展开更多
Commercially available wind-turbines are optimized to operate at certain wind velocity, known as rated wind velocity. For other values of wind velocity, it has different output which is lower than the rated output of ...Commercially available wind-turbines are optimized to operate at certain wind velocity, known as rated wind velocity. For other values of wind velocity, it has different output which is lower than the rated output of the wind plant. Wind mill can be designed to provide maximum power output at different wind velocities through modification of swept area to match with the wind speed available at the moment. This can result in higher power output at all the velocities except that at rated wind speed because of limitation of generator. This results in increased utilization of generation capacity of wind mill compared to its commercially designed counterpart. A theoretical simulation has been done to prove a new concept about swept area of wind turbine blade which results in a significant increase in the power output through the year. Simulation results of power extracted through normal wind blade design and new concept are studied and compared. The findings of the study are presented in graphical and tabular form. Study establishes that there can be a significant gain in the power output with the new concept.展开更多
文摘Hypersphere World-Universe Model (WUM) envisions Matter carried from Universe into World from fourth spatial dimension by Dark Matter Particles (DMPs). Luminous Matter is byproduct of Dark Matter (DM) annihilation. WUM introduces Dark Epoch (spanning from Beginning of World for 0.4 billion years) when only DMPs existed, and Luminous Epoch (ever since for 13.8 billion years). Big Bang discussed in standard cosmological model is, in our view, transition from Dark Epoch to Luminous Epoch due to Rotational Fission of Overspinning DM Supercluster’s Cores and annihilation of DMPs. WUM solves a number of physical problems in contemporary Cosmology and Astrophysics through DMPs and their interactions: Angular Momentum problem in birth and subsequent evolution of Galaxies and Extrasolar systems—how do they obtain it;Fermi Bubbles—two large structures in gamma-rays and X-rays above and below Galactic center;Mysterious Star KIC 8462852 with irregular dimmings;Coronal Heating problem in solar physics—temperature of Sun’s corona exceeding that of photosphere by millions of degrees;Cores of Sun and Earth rotating faster than their surfaces;Diversity of Gravitationally-Rounded Objects in Solar system and their Internal Heat;Lightning Initiation problem—electric fields observed inside thunderstorms are not sufficient to initiate sparks;Terrestrial Gamma-Ray Flashes—bursts of high energy X-rays and gamma rays emanating from Earth. Model makes predictions pertaining to Masses of DMPs, proposes New Types of their Interactions. WUM reveals Inter-Connectivity of Primary Cosmological Parameters and calculates their values, which are in good agreement with the latest results of their measurements.
基金Project supported by the State Grid Science and Technology Project(No.SGZJJXI0SYJS2101112)。
文摘A popular dynamical model for the vortex induced vibration(VIV)of a suspended flexible cable consists of two coupled equations.The first equation is a partial differential equation governing the cable vibration.The second equation is a wake oscillator that models the lift coefficient acting on the cable.The incoming wind acting on the cable is usually assumed as the uniform wind with a constant velocity,which makes the VIV model be a deterministic one.In the real world,however,the wind velocity is randomly fluctuant and makes the VIV of a suspended flexible cable be treated as a random vibration.In the present paper,the deterministic VIV model of a suspended flexible cable is modified to a random one by introducing the fluctuating wind.Using the normal mode approach,the random VIV system is transformed into an infinite-dimensional modal vibration system.Depending on whether a modal frequency is close to the aeolian frequency or not,the corresponding modal vibration is characterized as a resonant vibration or a non-resonant vibration.By applying the stochastic averaging method of quasi Hamiltonian systems,the response of modal vibrations in the case of resonance or non-resonance can be analytically predicted.Then,the random VIV response of the whole cable can be approximately calculated by superimposing the response of the most influential modal vibrations.Some numerical simulation results confirm the obtained analytical results.It is found that the intensity of the resonant modal vibration is much higher than that of the non-resonant modal vibration.Thus,the analytical results of the resonant modal vibration can be used as a rough estimation for the whole response of a cable.
文摘This paper focuses on the wind energy conversion system (WECS) with the three main electrical aspects: 1) wind turbine generators (WTGs), 2) power electronics converters (PECs) and 3) grid-connection issues. The current state of wind turbine generators are discussed and compared in some criteria along with the trends in the current WECS market, which are ‘Variable Speed’, ‘Multi-MW’ and ‘Offshore’. In addition, the other crucial component in the WECS, PECs will be discussed with its topologies available in the current WECS market along with their modulation strategies. Moreover, three main issues of the WECS associating with the grid-connection, fault-ride through (FRT) capability, harmonics/interharmonics emission and flicker, which are the power quality issues, will be discussed due to the increasing responsibility of WECS as utility power station. Some key findings from the review such as the attractiveness of BDFRG are presented in the conclusion of this paper.
文摘Natural ventilation is driven by either buoyancy forces or wind pressure forces or their combinations that inherit stochastic variation into ventilation rates. Since the ventilation rate is a nonlinear function of multiple variable factors including wind speed, wind direction, internal heat source and building structural thermal mass, the conventional methods for quantifying ventilation rate simply using dominant wind direction and average wind speed may not accurately describe the characteristic performance of natural ventilation. From a new point of view, the natural ventilation performance of a single room building under fluctuating wind speed condition using the Monte-Carlo simulation approach was investigated by incorporating building facade thermal mass effect. Given a same hourly turbulence intensity distribution, the wind speeds with 1 rain frequency fluctuations were generated using a stochastic model, the modified GARCH model. Comparisons of natural ventilation profiles, effective ventilation rates, and air conditioning electricity use for a three-month period show statistically significant differences (for 80% confidence interval) between the new calculations and the traditional methods based on hourly average wind speed.
基金University of Malaya Research under Grant No.RP013B-15SUS,Postgraduate Research Fund(PG098-2015A)
文摘Wind turbine technology is well known around the globe as an eco-friendly and eff ective renewable power source. However, this technology often faces reliability problems due to structural vibration. This study proposes a smart semi-active vibration control system using Magnetorheological (MR) dampers where feedback controllers are optimized with nature-inspired algorithms. Proportional integral derivative (PID) and Proportional integral (PI) controllers are designed to achieve the optimal desired force and current input for MR the damper. PID control parameters are optimized using an Ant colony optimization (ACO) algorithm. The eff ectiveness of the ACO algorithm is validated by comparing its performance with Ziegler-Nichols (Z-N) and particle swarm optimization (PSO). The placement of the MR damper on the tower is also investigated to ensure structural balance and optimal desired force from the MR damper. The simulation results show that the proposed semi-active PID-ACO control strategy can signifi cantly reduce vibration on the wind turbine tower under diff erent frequencies (i.e., 67%, 73%, 79% and 34.4% at 2 Hz, 3 Hz, 4.6 Hz and 6 Hz, respectively) and amplitudes (i.e. 50%, 58% and 67% for 50 N, 80 N, and 100 N, respectively). In this study, the simulation model is validated with an experimental study in terms of natural frequency, mode shape and uncontrolled response at the 1st mode. The proposed PID-ACO control strategy and optimal MR damper position is also implemented on a lab-scaled wind turbine tower model. The results show that the vibration reduction rate is 66% and 73% in the experimental and simulation study, respectively, at the 1st mode.
基金Supported by the China’s National Key Research and Development Projects(No.2016YFA0601803)the National Natural Science Foundation of China(Nos.41490641,41521091,U1606402)the Qingdao National Laboratory for Marine Science and Technology(No.2017ASKJ01)
文摘The co-variation of surface wind speed and sea surface temperature (SST) over the Gulf Stream frontal region is investigated using high-resolution satellite measurements and atmospheric reanalysis data. Results show that the pattern of positive SST-surface wind speed correlations is anchored by strong SST gradient and marine atmospheric boundary layer (MABL) height front, with active warm and cold-ocean eddies around. The MABL has an obvious transitional structure along the strong SST front, with greater (lesser) heights over the north (south) side. The significant positive SST-surface wind-speed perturbation correlations are mostly found over both strong warm and cold eddies. The surface wind speed increases (decreases) about 0.32 (0.41) m/s and the MABL elevates (drops) approximate 55 (54) m per 1℃ of SST perturbation induced by warm (cold) eddies. The response of the surface wind speed to SST perturbations over the mesoscale eddies is mainly attributed to the momentum vertical mixing in the MABL, which is confirmed by the linear relationships between the downwind (crosswind) SST gradient and wind divergence (curl).
文摘Maximizing the power capture is an important issue to the turbines that are installed in low wind speed area. In this paper, we focused on the modeling and control of variable speed wind turbine that is composed of two-mass drive train, a Squirrel Cage Induction Generator (SCIG), and voltage source converter control by Space Vector Pulse Width Modulation (SPVWM). To achieve Maximum Power Point Tracking (MPPT), the reference speed to the generator is searched via Extremum Seeking Control (ESC). ESC was designed for wind turbine region II operation based on dither-modulation scheme. ESC is a model-free method that has the ability to increase the captured power in real time under turbulent wind without any requirement for wind measurements. The controller is designed in two loops. In the outer loop, ESC is used to set a desired reference speed to PI controller to regulate the speed of the generator and extract the maximum electrical power. The inner control loop is based on Indirect Field Orientation Control (IFOC) to decouple the currents. Finally, Particle Swarm Optimization (PSO) is used to obtain the optimal PI parameters. Simulation and control of the system have been accomplished using MATLAB/Simulink 2014.
基金the National Science Foundation for funding the project work of Megan Hinzman and Samuel Smock in summer 2011Hannah K.Ross and John Cooney in summer 2012 through the Research Experience for Undergraduates(REU)Program,grant number AGS1005265the Alaska Department of Labor for funding Dr.Gary Sellhorst’s project work
文摘The wind power potential in Interior Alaska is evaluated from a micrometeorological perspective. Based on the local balance equation of momentum and the equation of continuity we derive the local balance equation of kinetic energy for macroscopic and turbulent systems, and in a further step, Bernoulli’s equation and integral equations that customarily serve as the key equations in momentum theory and blade-element analysis, where the Lanchester-Betz-Joukowsky limit, Glauert’s optimum actuator disk, and the results of the blade-element analysis by Okulov and Sorensen are exemplarily illustrated. The wind power potential at three different sites in Interior Alaska (Delta Junction, Eva Creek, and Poker Flat) is assessed by considering the results of wind field predictions for the winter period from October 1, 2008, to April 1, 2009 provided by the Weather Research and Forecasting (WRF) model to avoid time-consuming and expensive tall-tower observations in Interior Alaska which is characterized by a relatively low degree of infrastructure outside of the city of Fairbanks. To predict the average power output we use the Weibull distributions derived from the predicted wind fields for these three different sites and the power curves of five different propeller-type wind turbines with rated powers ranging from 2 MW to 2.5 MW. These power curves are represented by general logistic functions. The predicted power capacity for the Eva Creek site is compared with that of the Eva Creek wind farm established in 2012. The results of our predictions for the winter period 2008/2009 are nearly 20 percent lower than those of the Eva Creek wind farm for the period from January to September 2013.
文摘Based on conventional static line rating method, the actual current carrying capability of overhead conductors cannot be judged. Due to continuous increment in electricity demand and the difficulties associated with new line constructions, the overhead lines are therefore required to be rated based on a method that should establish their real-time capability in terms of electricity transmission. The method used to determine the real-time ampacity of overhead conductors not only can enhance their transmission capacity but can also help in allowing excessive renewable generation in the electricity network. In this research work, the issues related to analyzing an impact of wind power on periodical loading of overhead line as well as finding its static and dynamic ampacities with line current are investigated in detail. Moreover, the investigation related to finding a suitable location for the construction of a 60 MW wind farm is taken on board. Thereafter, the wind park is integrated with a regional grid, owned by Fortum Distribution AB. In addition to that, the electricity generated from the wind park is also calculated in this project. Later on, the work is devoted to finding the static and dynamic line ratings for “VL3” overhead conductor by using IEEE-738-2006 standard. Furthermore, the project also deals with finding the line current and making its comparison with maximum capacity of overhead conductor (VL3) for loading it in such a way that no any violation of safe ground clearance requirements is observed at all. Besides, the line current, knowing the conductor temperature when it transmits the required electricity in the presence of wind power generation is also an important factor to be taken into consideration. Therefore, based on real-time ambient conditions with actual line loading and with the help of IEEE-738-2006 standard, the conductor temperature is also calculated in this project. At the end, an economic analysis is performed to evaluate the financial advantages related to applying the dynamic line ratings approach in place of traditional static line ratings technique across an overhead conductor (VL3) and to know how much beneficial it is to temporarily postpone the rebuilding and/or construction of a new transmission line. Furthermore, an economic analysis related to wind power system is taken into consideration as well to get familiar with the costs related to building and connecting a 60 MW wind farm with the regional grid.
文摘Application of Distributed Generation (DG) to supply the demands of a diverse customer base plays a vital role in the renewable energy environment. Various DG technologies are being integrated into power systems to provide alterna-tives to energy sources and to improve reliability of the system. Power Evacuation from these remotely located DG’s remains a major concern for the power utilities these days. The main cause of concern regarding evacuation is con-sumption of reactive power for excitation by Induction Generators (IG) used in wind power production which affects the power system in variety of ways. This paper deals with the issues related to reactive power consumption by Induc-tion generators during power evacuation. Induction generator based wind turbine model using MATLAB/SIMULINK is simulated and its impact on the grid is observed. The simulated results are analyzed and validated with the real time results for the system considered. A wind farm is also modeled and simulations are carried out to study the various im-pacts it has on the grid &nearby wind turbines during Islanding and system event especially on 3-Phase to ground fault.
基金supported by the State Grid Science and Technology Project (Title: Technology Research On Large Scale EMT Real-time simulation customized platform, FX71-17-001)
文摘As the proportion of renewable energy increases, the interaction between renewable energy devices and the grid continues to enhance. Therefore, the renewable energy dynamic test in a power system has become more and more important. Traditional dynamic simulation systems and digital-analog hybrid simulation systems are difficult to compromise on the economy, flexibility and accuracy. A multi-time scale test system of doubly fed induction generator based on FPGA+ CPU heterogeneous calculation is proposed in this paper. The proposed test system is based on the ADPSS simulation platform. The power circuit part of the test system is setup up using the EMT(electromagnetic transient simulation) simulation, and the control part uses the actual physical devices. In order to realize the close-loop testing for the physical devices, the power circuit must be simulated in real-time. This paper proposes a multi-time scale simulation algorithm, in which the decoupling component divides the power circuit into a large time scale system and a small time scale system in order to reduce computing effort. This paper also proposes the FPGA+CPU heterogeneous computing architecture for implementing this multitime scale simulation. In FPGA, there is a complete small time-scale EMT engine, which support the flexibly circuit modeling with any topology. Finally, the test system is connected to an DFIG controller based on Labview to verify the feasibility of the test system.
文摘Any system designed to simulate the earth's atmosphere general circulation, must necessarily be based on the spatial-or temporal average conditions. Irregularities in the profiles of air motions that we observe on daily weather maps often make lose any real meaning to the general circulation. As complicated and inconsistent that is the daily traffic of air particles, it is interesting to define a general circulation characteristic of the average air transportation around the globe. Indeed, this transport responds to a need to transfer heat from the equator (heat source) to the poles (cold sources). Mbane Biouele formula (2009), derived from Clausius-Clapeyron relation (1832), now allows faithful and unique representation of the tricellular general circulation: Hence, the possibility of access to the earth’s atmosphere prevailing surface winds in summer as well as winter.
文摘The wind turbine with a flanged-diffuser shroud—so called “wind-lens turbine”—is developed as one of high performance wind turbines by Ohya et al. In this paper, the wind turbine performance is investigated for both steady and unsteady winds. The compact-type wind lens turbine shows higher efficiency than the only rotor wind turbine. Also, the flow structure around the compact-type wind turbine is made clear by CFD and PIV in steady wind. Furthermore, the performances of the only rotor and the compact-type wind-lens turbines for unsteady wind are experimentally and numerically investigated. Experimental and numerical results are presented to demonstrate the dependence of frequency of the harmonic oscillating velocity wind on power coefficient. Consequently, the compact-type wind-lens turbine show better performance than the only rotor one in sinusoidally oscillating velocity wind. Furthermore, the numerical estimation can predict the power coefficient in the oscillating flows to an accuracy of 94% to 102%. In addition, the dependence of the turbine performance on turbulent intensity and vortex scale of natural fluctuating wind is presented.
文摘The energy loss of the power grid is one of the key factors affecting the economic operation of power systems. How to calculate the electric energy consumption accurately will have a great influence on the planning, operation and management of the power grid. Currently there is a mountain of theoretical methods to calculate the line loss of the power system. However, these methods have some limitation, such as less considering the volatility of wind power resources. This paper presents an improved method to calculate the energy loss of wind power generation, considering the fluctuations of wind power generation. First, data are collected to obtain the curve of the typical daily expected output of wind farms for one month. Second, the curve of the typical daily expected output are corrected by the average electricity and the shape factor to obtain the curve of the typical daily equivalent output of wind farms for one month. Finally, the power flow is calculated by using typical daily equivalent output curve to describe the energy loss for one month. The results in the 110 kV main network show that the method is feasible.
文摘For the recent expansion of renewable energy applications, Wind Energy System (WES) is receiving much interest all over the world. However, area load change and abnormal conditions lead to mismatches in frequency and scheduled power interchanges between areas. These mismatches have to be corrected by the LFC system. This paper, therefore, proposes a new robust frequency control technique involving the combination of conventional Proportional-Integral (PI) and Model Predictive Control (MPC) controllers in the presence of wind turbines (WT). The PI-MPC technique has been designed such that the effect of the uncertainty due to governor and turbine parameters variation and load disturbance is reduced. A frequency response dynamic model of a single-area power system with an aggregated generator unit is introduced, and physical constraints of the governors and turbines are considered. The proposed technique is tested on the single-area power system, for enhancement of the network frequency quality. The validity of the proposed method is evaluated by computer simulation analyses using Matlab Simulink. The results show that, with the proposed PI-MPC combination technique, the overall closed loop system performance demonstrated robustness regardless of the presence of uncertainties due to variations of the parameters of governors and turbines, and loads disturbances. A performance comparison between the proposed control scheme, the classical PI control scheme and the MPC is carried out confirming the superiority of the proposed technique in presence of doubly fed induction generator (DFIG) WT.
文摘The need to generate power from renewable sources to reduce demand for fossil fuels and the damage of their resulting carbon dioxide emissions is now well understood. Wind is among the most popular and fastest growing sources of alternative energy in the world. It is an inexhaustible, indigenous resource, pollution-free, and available almost any time of the day, especially in coastal regions. As a sustainable energy resource, electrical power generation from the wind is increasingly important in national and international energy policy in response to climate change. Experts predict that, with proper development, wind energy can meet up to 20% of US needs. Horizontal Axis Wind Turbines (HAWTs) are the most popular because of their higher efficiency. The aerodynamic characteristics and vibration of small scale HAWT with various numbers of blade designs have been investigated in this numerical study in order to improve its performance. SolidWorks was used for designing Computer Aided Design (CAD) models, and ANSYS software was used to study the dynamic flow around the turbine. Two, three, and five bladed HAWTs of 87 cm rotor diameter were designed. A HAWT tower of 100 cm long and 6 cm diameter was considered during this study while a shaft of 10.02 cm diameter was chosen. A good choice of airfoils and angle of attack is a key in the designing of a blade of rough surface and maintaining the maximum lift to drag ratio. The S818, S825 and S826 airfoils were used from the root to the tip and 4° critical angle of attack was considered. In this paper, a more appropriate numerical models and an improved method have been adopted in comparable with other models and methods in the literature. The wind flow around the whole wind turbine and static behavior of the HAWT rotor was solved using Moving Reference Frame (MRF) solver. The HAWT rotor results were used to initialize the Sliding Mesh Models (SMM) solver and study the dynamic behavior of HAWT rotor. The pressure and velocity contours on different blades surfaces were analyzed and presented in this work. The pressure and velocity contours around the entire turbine models were also analyzed. The power coefficient was calculated using the Tip Speed Ratio (TSR) and the moment coefficient and the results were compared to the theoretical and other research. The results show that the increase of number of blades from two to three increases the efficiency;however, the power coefficient remains relatively the same or sometimes decreases for five bladed turbine models. HAWT rotors and shaft vibrations were analyzed for two different materials using an applied pressure load imported from ANSYS fluent environment. It has proven that a good choice of material is crucial during the design process.
文摘This paper presents a method for optimal sizing of an off-grid hybrid microgrid (MG) system in order to achieve a certain load demand. The hybrid MG is made of a solar photovoltaic (PV) system, wind turbine (TW) and energy storage system (ESS). The reliability of the MG system is modeled based on the loss of power supply probability (SPSP). For optimization, an enhanced Genetic Algorithm (GA) is used to minimize the total cost of the system over a 20-year period, while satisfying some reliability and operation constraints. A case study addressing optimal sizing of an off-grid hybrid microgrid in Nigeria is discussed. The result is compared with results obtained from the Brute Force and standard GA methods.
文摘Commercially available wind-turbines are optimized to operate at certain wind velocity, known as rated wind velocity. For other values of wind velocity, it has different output which is lower than the rated output of the wind plant. Wind mill can be designed to provide maximum power output at different wind velocities through modification of swept area to match with the wind speed available at the moment. This can result in higher power output at all the velocities except that at rated wind speed because of limitation of generator. This results in increased utilization of generation capacity of wind mill compared to its commercially designed counterpart. A theoretical simulation has been done to prove a new concept about swept area of wind turbine blade which results in a significant increase in the power output through the year. Simulation results of power extracted through normal wind blade design and new concept are studied and compared. The findings of the study are presented in graphical and tabular form. Study establishes that there can be a significant gain in the power output with the new concept.