Nanoparticles provide great advantages but also great risks. Risks associating with nanoparticles are the problem of all technologies, but they increase in many times in nanotechnologies. Adequate methods of outgoing ...Nanoparticles provide great advantages but also great risks. Risks associating with nanoparticles are the problem of all technologies, but they increase in many times in nanotechnologies. Adequate methods of outgoing production inspection are necessary to solve the problem of risks, and the inspection must be based on the safety standard. Existing safety standard results from a principle of “maximum permissible concentrations or MPC”. This principle is not applicable to nanoparticles, but a safety standard reflecting risks inherent in nanoparticles doesn’t exist. Essence of the risks is illustrated by the example from pharmacology, since its safety assurance is conceptually based on MPC and it has already come against this problem. Possible formula of safety standard for nanoparticles is reflected in many publications, but conventional inspection methods cannot provide its realization, and this gap is an obstacle to assumption of similar formulas. Therefore the development of nanoparticle industry as a whole (also development of the pharmacology in particular) is impossible without the creation of an adequate inspection method. There are suggested new inspection methods founded on the new physical principle and satisfying to the adequate safety standard for nanoparticles. These methods demonstrate that creation of the adequate safety standard and the outgoing production inspection in a large-scale manufacturing of nanoparticles are the solvable problems. However there is a great distance between the physical principle and its hardware realization, and a transition from the principle to the hardware demands great intellectual and material costs. Therefore it is desirable to call attention of the public at large to the necessity of urgent expansions of investigations associated with outgoing inspections in nanoparticles technologies. It is necessary also to attract attention, first, of representatives of state structures controlling approvals of the adequate safety standard to this problem, since it is impossible to compel producers providing the safety without the similar standard, and, second, of leaders of pharmacological industry, since their industry already entered into the nanotechnology era, and they have taken an interest in a forthcoming development of inspection methods.展开更多
The purpose of this paper is to provide empirical evidence for the validity of the relationship between service-oriented manufacturing information system (SMIS) customization and performance from three aspects: data f...The purpose of this paper is to provide empirical evidence for the validity of the relationship between service-oriented manufacturing information system (SMIS) customization and performance from three aspects: data flexibility, process flexibility and system flexibility. We select some questionnaires from the third round of High-performance manufacturing (HPM) data to construct the construct, verify the reliability and validity of the construct, extract principal components, and analyze the mediating effect by using multiple chain linear regression and structural equation model. The results show that SMIS customization has a significant impact on its performance, and this effect works through its flexibility. More specifically, it is the multiple chain mediation effect composed of data flexibility, process flexibility and system flexibility. The importance of SMIS customization and flexibility to the organization is made clear, which helps practitioners understand the internal mechanism that affects SMIS performance, so as to use limited resources to improve system performance.展开更多
This study presents a state of the art of several studies dealing with the environmental impact assessment of fuel cell (FC) vehicles and the comparison with their conventional fossil-fuelled counterparts, by means of...This study presents a state of the art of several studies dealing with the environmental impact assessment of fuel cell (FC) vehicles and the comparison with their conventional fossil-fuelled counterparts, by means of the Life Cycle As-sessment (LCA) methodology. Results declare that, depending on the systems characteristics, there are numerous envi-ronmental advantages, but also some disadvantages can be expected. In addition, the significance of the manufac-turing process of the FC, more specifically the Polymer Electrolyte Membrane Fuel Cell (PEMFC) type, in terms of environmental impact is presented. Finally, CIEMAT’s role in HYCHAIN European project, consisting of supporting early adopters for hydrogen FCs in the transport sector, is展开更多
Titanium(Ti)alloys are widely used in high-tech fields like aerospace and biomedical engineering.Laser additive manufacturing(LAM),as an innovative technology,is the key driver for the development of Ti alloys.Despite...Titanium(Ti)alloys are widely used in high-tech fields like aerospace and biomedical engineering.Laser additive manufacturing(LAM),as an innovative technology,is the key driver for the development of Ti alloys.Despite the significant advancements in LAM of Ti alloys,there remain challenges that need further research and development efforts.To recap the potential of LAM high-performance Ti alloy,this article systematically reviews LAM Ti alloys with up-to-date information on process,materials,and properties.Several feasible solutions to advance LAM Ti alloys are reviewed,including intelligent process parameters optimization,LAM process innovation with auxiliary fields and novel Ti alloys customization for LAM.The auxiliary energy fields(e.g.thermal,acoustic,mechanical deformation and magnetic fields)can affect the melt pool dynamics and solidification behaviour during LAM of Ti alloys,altering microstructures and mechanical performances.Different kinds of novel Ti alloys customized for LAM,like peritecticα-Ti,eutectoid(α+β)-Ti,hybrid(α+β)-Ti,isomorphousβ-Ti and eutecticβ-Ti alloys are reviewed in detail.Furthermore,machine learning in accelerating the LAM process optimization and new materials development is also outlooked.This review summarizes the material properties and performance envelops and benchmarks the research achievements in LAM of Ti alloys.In addition,the perspectives and further trends in LAM of Ti alloys are also highlighted.展开更多
Melt extrusion-based additive manufacturing(ME-AM)is a promising technique to fabricate porous scaffolds for tissue engi-neering applications.However,most synthetic semicrystalline polymers do not possess the intrinsi...Melt extrusion-based additive manufacturing(ME-AM)is a promising technique to fabricate porous scaffolds for tissue engi-neering applications.However,most synthetic semicrystalline polymers do not possess the intrinsic biological activity required to control cell fate.Grafting of biomolecules on polymeric surfaces of AM scaffolds enhances the bioactivity of a construct;however,there are limited strategies available to control the surface density.Here,we report a strategy to tune the surface density of bioactive groups by blending a low molecular weight poly(ε-caprolactone)5k(PCL5k)containing orthogonally reactive azide groups with an unfunctionalized high molecular weight PCL75k at different ratios.Stable porous three-dimensional(3D)scaf-folds were then fabricated using a high weight percentage(75 wt.%)of the low molecular weight PCL 5k.As a proof-of-concept test,we prepared films of three different mass ratios of low and high molecular weight polymers with a thermopress and reacted with an alkynated fluorescent model compound on the surface,yielding a density of 201-561 pmol/cm^(2).Subsequently,a bone morphogenetic protein 2(BMP-2)-derived peptide was grafted onto the films comprising different blend compositions,and the effect of peptide surface density on the osteogenic differentiation of human mesenchymal stromal cells(hMSCs)was assessed.After two weeks of culturing in a basic medium,cells expressed higher levels of BMP receptor II(BMPRII)on films with the conjugated peptide.In addition,we found that alkaline phosphatase activity was only significantly enhanced on films contain-ing the highest peptide density(i.e.,561 pmol/cm^(2)),indicating the importance of the surface density.Taken together,these results emphasize that the density of surface peptides on cell differentiation must be considered at the cell-material interface.Moreover,we have presented a viable strategy for ME-AM community that desires to tune the bulk and surface functionality via blending of(modified)polymers.Furthermore,the use of alkyne-azide“click”chemistry enables spatial control over bioconjugation of many tissue-specific moieties,making this approach a versatile strategy for tissue engineering applications.展开更多
The urgent need for integrated molding and sintering across various industries has inspired the development of additive manu-facturing(AM)ceramics.Among the different AM technologies,direct laser additive manufacturin...The urgent need for integrated molding and sintering across various industries has inspired the development of additive manu-facturing(AM)ceramics.Among the different AM technologies,direct laser additive manufacturing(DLAM)stands out as a group of highly promising technology for flexibly manufacturing ceramics without molds and adhesives in a single step.Over the last decade,sig-nificant and encouraging progress has been accomplished in DLAM of high-performance ceramics,including Al_(2)O_(3),ZrO_(2),Al_(2)O_(3)/ZrO_(2),SiC,and others.However,high-performance ceramics fabricated by DLAM face challenges such as formation of pores and cracks and resultant low mechanical properties,hindering their practical application in high-end equipment.Further improvements are necessary be-fore they can be widely adopted.Methods such as field-assisted techniques and post-processing can be employed to address these chal-lenges,but a more systematic review is needed.This work aims to critically review the advancements in direct selective laser sintering/melting(SLS/SLM)and laser directed energy deposition(LDED)for various ceramic material systems.Additionally,it provides an overview of the current challenges,future research opportunities,and potential applications associated with DLAM of high-perform-ance ceramics.展开更多
To improve efficiency, reduce cost, ensure quality effectively, researchers on CNC machining have focused on virtual machine tool, cloud manufacturing, wireless manufacturing. However, low level of information shared ...To improve efficiency, reduce cost, ensure quality effectively, researchers on CNC machining have focused on virtual machine tool, cloud manufacturing, wireless manufacturing. However, low level of information shared among different systems is a common disadvantage. In this paper, a machining database with data evaluation module is set up to ensure integrity and update. An online monitoring system based on internet of things and multi-sensors "feel" a variety of signal features to "percept" the state in CNC machining process. A high efficiency and green machining parameters optimization system "execute" service-oriented manufacturing, intelligent manufacturing and green manufacturing. The intelligent CNC machining system is applied in production. CNC machining database effectively shares and manages process data among different systems. The prediction accuracy of online monitoring system is up to 98.8% by acquiring acceleration and noise in real time. High efficiency and green machining parameters optimization system optimizes the original processing parameters, and the calculation indicates that optimized processing parameters not only improve production efficiency, but also reduce carbon emissions. The application proves that the shared and service-oriented CNC machining system is reliable and effective. This research presents a shared and service-oriented CNC machining system for intelligent manufacturing process.展开更多
Modern additive manufacturing processes enable fabricating architected cellular materials of complex shape,which can be used for different purposes.Among them,lattice structures are increasingly used in applications r...Modern additive manufacturing processes enable fabricating architected cellular materials of complex shape,which can be used for different purposes.Among them,lattice structures are increasingly used in applications requiring a compromise among lightness and suited mechanical properties,like improved energy absorption capacity and specific stiffness-to-weight and strength-to-weight ratios.A dedicated modeling strategy to assess the energy absorption capacity of lattice structures under uni-axial compression loading is presented in this work.The numerical model is developed in a non-linear framework accounting for the strain rate effect on the mechanical responses of the lattice structure.Four geometries,i.e.,cubic body centered cell,octet cell,rhombic-dodecahedron and truncated cuboctahedron 2+,are investigated.Specifically,the influence of the relative density of the representative volume element of each geometry,the strain-rate dependency of the bulk material and of the presence of the manufacturing process-induced geometrical imperfections on the energy absorption capacity of the lattice structure is investigated.The main outcome of this study points out the importance of correctly integrating geometrical imperfections into the modeling strategy when shock absorption applications are aimed for.展开更多
Additive manufacturing technology is highly regarded due to its advantages,such as high precision and the ability to address complex geometric challenges.However,the development of additive manufacturing process is co...Additive manufacturing technology is highly regarded due to its advantages,such as high precision and the ability to address complex geometric challenges.However,the development of additive manufacturing process is constrained by issues like unclear fundamental principles,complex experimental cycles,and high costs.Machine learning,as a novel artificial intelligence technology,has the potential to deeply engage in the development of additive manufacturing process,assisting engineers in learning and developing new techniques.This paper provides a comprehensive overview of the research and applications of machine learning in the field of additive manufacturing,particularly in model design and process development.Firstly,it introduces the background and significance of machine learning-assisted design in additive manufacturing process.It then further delves into the application of machine learning in additive manufacturing,focusing on model design and process guidance.Finally,it concludes by summarizing and forecasting the development trends of machine learning technology in the field of additive manufacturing.展开更多
The laser powder bed fusion(LPBF) process can integrally form geometrically complex and high-performance metallic parts that have attracted much interest,especially in the molds industry.The appearance of the LPBF mak...The laser powder bed fusion(LPBF) process can integrally form geometrically complex and high-performance metallic parts that have attracted much interest,especially in the molds industry.The appearance of the LPBF makes it possible to design and produce complex conformal cooling channel systems in molds.Thus,LPBF-processed tool steels have attracted more and more attention.The complex thermal history in the LPBF process makes the microstructural characteristics and properties different from those of conventional manufactured tool steels.This paper provides an overview of LPBF-processed tool steels by describing the physical phenomena,the microstructural characteristics,and the mechanical/thermal properties,including tensile properties,wear resistance,and thermal properties.The microstructural characteristics are presented through a multiscale perspective,ranging from densification,meso-structure,microstructure,substructure in grains,to nanoprecipitates.Finally,a summary of tool steels and their challenges and outlooks are introduced.展开更多
Metal additive manufacturing(MAM)technology has experienced rapid development in recent years.As both equipment and materials progress towards increased maturity and commercialization,material metallurgy technology ba...Metal additive manufacturing(MAM)technology has experienced rapid development in recent years.As both equipment and materials progress towards increased maturity and commercialization,material metallurgy technology based on high energy sources has become a key factor influencing the future development of MAM.The calculation of phase diagrams(CALPHAD)is an essential method and tool for constructing multi-component phase diagrams by employing experimental phase diagrams and Gibbs free energy models of simple systems.By combining with the element mobility data and non-equilibrium phase transition model,it has been widely used in the analysis of traditional metal materials.The development of CALPHAD application technology for MAM is focused on the compositional design of printable materials,the reduction of metallurgical imperfections,and the control of microstructural attributes.This endeavor carries considerable theoretical and practical significance.This paper summarizes the important achievements of CALPHAD in additive manufacturing(AM)technology in recent years,including material design,process parameter optimization,microstructure evolution simulation,and properties prediction.Finally,the limitations of applying CALPHAD technology to MAM technology are discussed,along with prospective research directions.展开更多
Container ports and hinterland manufacturing are two important forces of the local participation in economic globalization.This study,taking the Pearl River Delta(PRD),China with an export-oriented economy as an examp...Container ports and hinterland manufacturing are two important forces of the local participation in economic globalization.This study,taking the Pearl River Delta(PRD),China with an export-oriented economy as an example,applies Huff and panel regres-sion models to evaluate the impact of hinterland manufacturing on the development of container ports during the period of 1993–2019.The results show that 1)the spatial patterns of hinterlands for hub ports help to determine the distribution range and scale of economic variables that affect port throughput;2)the hinterland’s gross manufacturing output has universally positive influence on port through-put,wherein export-oriented processing and the entire manufacturing industry have significantly positive impact on port throughput in 1993–2011 and 2001–2019,respectively;3)the two internal structural factors related to an export-oriented economy,labor-intensive sectors and foreign-funded terminals,have positively moderate the direct influence of hinterland manufacturing on port throughput.Our results highlight the importance of local context in understanding port-manufacturing relationship in developing economies.Based on our findings,policy implications are further proposed to enhance port network organization in PRD.展开更多
In the context of intelligent manufacturing,machine tools,as core equipment,directly influence production efficiency and product quality through their operational reliability.Traditional maintenance methods for machin...In the context of intelligent manufacturing,machine tools,as core equipment,directly influence production efficiency and product quality through their operational reliability.Traditional maintenance methods for machine tools,often characterized by low efficiency and high costs,fail to meet the demands of modern manufacturing industries.Therefore,leveraging intelligent manufacturing technologies,this paper proposes a solution optimized for the diagnosis and maintenance of machine tool faults.Initially,the paper introduces sensor-based data acquisition technologies combined with big data analytics and machine learning algorithms to achieve intelligent fault diagnosis of machine tools.Subsequently,it discusses predictive maintenance strategies by establishing an optimized model for maintenance strategy and resource allocation,thereby enhancing maintenance efficiency and reducing costs.Lastly,the paper explores the architectural design,integration,and testing evaluation methods of intelligent manufacturing systems.The study indicates that optimization of machine tool fault diagnosis and maintenance in an intelligent manufacturing environment not only enhances equipment reliability but also significantly reduces maintenance costs,offering broad application prospects.展开更多
With Open Grid Service Architecture (OGSA) as system framework, and Globus Toolkit3.0 (GT3) as developing tools, Manufacturing Grid (MG) is proposed in this research to realize resource sharing and collaborative worki...With Open Grid Service Architecture (OGSA) as system framework, and Globus Toolkit3.0 (GT3) as developing tools, Manufacturing Grid (MG) is proposed in this research to realize resource sharing and collaborative working among manufacturing resources, and task scheduling is one of the most critical components in this system. Nevertheless, the Globus Resource Allocation Manager (GRAM) does not provide scheduling system by default, and traditional performance-guided or economy-guided schedulers cannot satisfy our needs in MG. So, in this paper, a TQCS (Time, Quality, Cost, Service)-based scheduling approach is presented and the corresponding scheduler (Manufacturing Grid Task Scheduler, MGTS) is implemented with the functions of Global Process Planning (GPP) analyzing, resource discovery, resource selection, AHP (Analytic Hierarchy Process)-based resource mapping, and fault-tolerant handling. Furthermore, the application architecture is depicted at the end of the paper to illustrate the utilization of our scheduler.展开更多
This article briefly discusses the theoretical basis and overall goals of energy conservation in the steel manufacturing process system.It is proposed that in the process of implementing system energy conservation,it ...This article briefly discusses the theoretical basis and overall goals of energy conservation in the steel manufacturing process system.It is proposed that in the process of implementing system energy conservation,it is necessary to fully recognize and utilize the characteristics and functional advantages of the steel manufacturing process,pay more attention to energy quality,firmly grasp the overall goal of system optimization,focus on the integrated optimization of gas,steam,and waste heat systems,and propose the idea of constructing a"steel chemi-cal gas electricity heating cooling multi generation system".Based on practice,the main principles,models,and effects of implementing systematic energy conservation in steel enterprises have been proposed.展开更多
Since the global financial crisis,global value chain(GVC)have been contracting amid the trend toward economic de-globalization.With GVC participation rate in mind as the core indicator of economic de-globalization,in ...Since the global financial crisis,global value chain(GVC)have been contracting amid the trend toward economic de-globalization.With GVC participation rate in mind as the core indicator of economic de-globalization,in this paper we create a multi-country general equilibrium model to characterize the mechanism by which manufacturing localization affects GVC participation rate.Our theoretical derivation shows that changes in the local manufacturing status of final products in various countries directly influence the GVC participation rate of those countries.When the local proportion of a country’s final products reaches a certain level,rising local proportion of intermediate inputs,economic growth below the world average level,and technology progress all cause the country’s GVC participation rate to decline,giving rise to de-globalization at the manufacturing and trade levels.We further provide a comprehensive interpretation based on an empirical test of the deep-seated causes of economic de-globalization in relation to such economic phenomena as increasing trade concentration,the“technology backlash”effect of the new industrial revolution,and economic growth driven by the combined forces of trade protectionism and quantitative easing.展开更多
This paper explores the integration of Standard Operating Procedures (SOPs) using virtual reality and smart glasses technology in food manufacturing. The study employs a thorough methodology, combining observational i...This paper explores the integration of Standard Operating Procedures (SOPs) using virtual reality and smart glasses technology in food manufacturing. The study employs a thorough methodology, combining observational insights to develop a comprehensive SOP. Implementation at different firms resulted in significant improvements, reducing product waste and enhancing overall efficiency. The use of virtual reality further augments SOP adoption. The findings underscore SOPs’ transformative influence, offering a tangible solution to challenges in the food production sector. Recommendations include regular SOP reviews and ongoing training for sustained success. Different firms exemplify SOPs as indispensable tools for operational excellence.展开更多
An intelligent manufacturing system is a composite intelligent system comprising humans,cyber systems,and physical systems with the aim of achieving specific manufacturing goals at an optimized level.This kind of inte...An intelligent manufacturing system is a composite intelligent system comprising humans,cyber systems,and physical systems with the aim of achieving specific manufacturing goals at an optimized level.This kind of intelligent system is called a human-cyber-physical system(HCPS).In terms of technology,HCPSs can both reveal technological principles and form the technological architecture for intelligent manufacturing.It can be concluded that the essence of intelligent manufacturing is to design,construct,and apply HCPSs in various cases and at different levels.With advances in information technology,intelligent manufacturing has passed through the stages of digital manufacturing and digital-networked manufacturing,and is evolving toward new-generation intelligent manufacturing(NGIM).NGIM is characterized by the in-depth integration of new-generation artificial intelligence(AI)technology(i.e.,enabling technology)with advanced manufacturing technology(i.e.,root technology);it is the core driving force of the new industrial revolution.In this study,the evolutionary footprint of intelligent manufacturing is reviewed from the perspective of HCPSs,and the implications,characteristics,technical frame,and key technologies of HCPSs for NGIM are then discussed in depth.Finally,an outlook of the major challenges of HCPSs for NGIM is proposed.展开更多
This study investigates full liquid phase sintering as a process of fabrication parts from WE43(Mg-4wt.%Y-3wt.%RE-0.7wt.%Zr)alloy using binder jetting additive manufacturing(BJAM).This fabrication process is being dev...This study investigates full liquid phase sintering as a process of fabrication parts from WE43(Mg-4wt.%Y-3wt.%RE-0.7wt.%Zr)alloy using binder jetting additive manufacturing(BJAM).This fabrication process is being developed for use in producing structural or biomedical devices.Specifically,this study focused on achieving a near-dense microstructure with WE43 Mg alloy while substantially reducing the duration of sintering post-processing after BJAM part rendering.The optimal process resulted in microstructure with 2.5%porosity and significantly reduced sintering time.The improved sintering can be explained by the presence of Y_(2)O_(3)and Nd_(2)O_(3)oxide layers,which form spontaneously on the surface of WE43 powder used in BJAM.These layers appear to be crucial in preventing shape distortion of the resulting samples and in enabling the development of sintering necks,particularly under sintering conditions exceeding the liquidus temperature of WE43 alloy.Sintered WE43 specimens rendered by BJAM achieved significant improvement in both corrosion resistance and mechanical properties through reduced porosity levels related to the sintering time.展开更多
Galloping cheetahs,climbing mountain goats,and load hauling horses all show desirable locomotion capability,which motivates the development of quadruped robots.Among various quadruped robots,hydraulically driven quadr...Galloping cheetahs,climbing mountain goats,and load hauling horses all show desirable locomotion capability,which motivates the development of quadruped robots.Among various quadruped robots,hydraulically driven quadruped robots show great potential in unstructured environments due to their discrete landing positions and large payloads.As the most critical movement unit of a quadruped robot,the limb leg unit(LLU)directly affects movement speed and reliability,and requires a compact and lightweight design.Inspired by the dexterous skeleton–muscle systems of cheetahs and humans,this paper proposes a highly integrated bionic actuator system for a better dynamic performance of an LLU.We propose that a cylinder barrel with multiple element interfaces and internal smooth channels is realized using metal additive manufacturing,and hybrid lattice structures are introduced into the lightweight design of the piston rod.In addition,additive manufacturing and topology optimization are incorporated to reduce the redundant material of the structural parts of the LLU.The mechanical properties of the actuator system are verified by numerical simulation and experiments,and the power density of the actuators is far greater than that of cheetah muscle.The mass of the optimized LLU is reduced by 24.5%,and the optimized LLU shows better response time performance when given a step signal,and presents a good trajectory tracking ability with the increase in motion frequency.展开更多
文摘Nanoparticles provide great advantages but also great risks. Risks associating with nanoparticles are the problem of all technologies, but they increase in many times in nanotechnologies. Adequate methods of outgoing production inspection are necessary to solve the problem of risks, and the inspection must be based on the safety standard. Existing safety standard results from a principle of “maximum permissible concentrations or MPC”. This principle is not applicable to nanoparticles, but a safety standard reflecting risks inherent in nanoparticles doesn’t exist. Essence of the risks is illustrated by the example from pharmacology, since its safety assurance is conceptually based on MPC and it has already come against this problem. Possible formula of safety standard for nanoparticles is reflected in many publications, but conventional inspection methods cannot provide its realization, and this gap is an obstacle to assumption of similar formulas. Therefore the development of nanoparticle industry as a whole (also development of the pharmacology in particular) is impossible without the creation of an adequate inspection method. There are suggested new inspection methods founded on the new physical principle and satisfying to the adequate safety standard for nanoparticles. These methods demonstrate that creation of the adequate safety standard and the outgoing production inspection in a large-scale manufacturing of nanoparticles are the solvable problems. However there is a great distance between the physical principle and its hardware realization, and a transition from the principle to the hardware demands great intellectual and material costs. Therefore it is desirable to call attention of the public at large to the necessity of urgent expansions of investigations associated with outgoing inspections in nanoparticles technologies. It is necessary also to attract attention, first, of representatives of state structures controlling approvals of the adequate safety standard to this problem, since it is impossible to compel producers providing the safety without the similar standard, and, second, of leaders of pharmacological industry, since their industry already entered into the nanotechnology era, and they have taken an interest in a forthcoming development of inspection methods.
文摘The purpose of this paper is to provide empirical evidence for the validity of the relationship between service-oriented manufacturing information system (SMIS) customization and performance from three aspects: data flexibility, process flexibility and system flexibility. We select some questionnaires from the third round of High-performance manufacturing (HPM) data to construct the construct, verify the reliability and validity of the construct, extract principal components, and analyze the mediating effect by using multiple chain linear regression and structural equation model. The results show that SMIS customization has a significant impact on its performance, and this effect works through its flexibility. More specifically, it is the multiple chain mediation effect composed of data flexibility, process flexibility and system flexibility. The importance of SMIS customization and flexibility to the organization is made clear, which helps practitioners understand the internal mechanism that affects SMIS performance, so as to use limited resources to improve system performance.
文摘This study presents a state of the art of several studies dealing with the environmental impact assessment of fuel cell (FC) vehicles and the comparison with their conventional fossil-fuelled counterparts, by means of the Life Cycle As-sessment (LCA) methodology. Results declare that, depending on the systems characteristics, there are numerous envi-ronmental advantages, but also some disadvantages can be expected. In addition, the significance of the manufac-turing process of the FC, more specifically the Polymer Electrolyte Membrane Fuel Cell (PEMFC) type, in terms of environmental impact is presented. Finally, CIEMAT’s role in HYCHAIN European project, consisting of supporting early adopters for hydrogen FCs in the transport sector, is
基金financially supported by the Young Individual Research Grants(Grant No:M22K3c0097)Singapore RIE 2025 plan and Singapore Aerospace Programme Cycle 16(Grant No:M2215a0073)led by C Tan+2 种基金supported by the Singapore A*STAR Career Development Funds(Grant No:C210812047)the National Natural Science Foundation of China(52174361 and 52374385)the support by US NSF DMR-2104933。
文摘Titanium(Ti)alloys are widely used in high-tech fields like aerospace and biomedical engineering.Laser additive manufacturing(LAM),as an innovative technology,is the key driver for the development of Ti alloys.Despite the significant advancements in LAM of Ti alloys,there remain challenges that need further research and development efforts.To recap the potential of LAM high-performance Ti alloy,this article systematically reviews LAM Ti alloys with up-to-date information on process,materials,and properties.Several feasible solutions to advance LAM Ti alloys are reviewed,including intelligent process parameters optimization,LAM process innovation with auxiliary fields and novel Ti alloys customization for LAM.The auxiliary energy fields(e.g.thermal,acoustic,mechanical deformation and magnetic fields)can affect the melt pool dynamics and solidification behaviour during LAM of Ti alloys,altering microstructures and mechanical performances.Different kinds of novel Ti alloys customized for LAM,like peritecticα-Ti,eutectoid(α+β)-Ti,hybrid(α+β)-Ti,isomorphousβ-Ti and eutecticβ-Ti alloys are reviewed in detail.Furthermore,machine learning in accelerating the LAM process optimization and new materials development is also outlooked.This review summarizes the material properties and performance envelops and benchmarks the research achievements in LAM of Ti alloys.In addition,the perspectives and further trends in LAM of Ti alloys are also highlighted.
基金the European Research Council starting grant “Cell Hybridge” for financial support under the Horizon2020 framework program (Grant#637308)the Province of Limburg for support and funding
文摘Melt extrusion-based additive manufacturing(ME-AM)is a promising technique to fabricate porous scaffolds for tissue engi-neering applications.However,most synthetic semicrystalline polymers do not possess the intrinsic biological activity required to control cell fate.Grafting of biomolecules on polymeric surfaces of AM scaffolds enhances the bioactivity of a construct;however,there are limited strategies available to control the surface density.Here,we report a strategy to tune the surface density of bioactive groups by blending a low molecular weight poly(ε-caprolactone)5k(PCL5k)containing orthogonally reactive azide groups with an unfunctionalized high molecular weight PCL75k at different ratios.Stable porous three-dimensional(3D)scaf-folds were then fabricated using a high weight percentage(75 wt.%)of the low molecular weight PCL 5k.As a proof-of-concept test,we prepared films of three different mass ratios of low and high molecular weight polymers with a thermopress and reacted with an alkynated fluorescent model compound on the surface,yielding a density of 201-561 pmol/cm^(2).Subsequently,a bone morphogenetic protein 2(BMP-2)-derived peptide was grafted onto the films comprising different blend compositions,and the effect of peptide surface density on the osteogenic differentiation of human mesenchymal stromal cells(hMSCs)was assessed.After two weeks of culturing in a basic medium,cells expressed higher levels of BMP receptor II(BMPRII)on films with the conjugated peptide.In addition,we found that alkaline phosphatase activity was only significantly enhanced on films contain-ing the highest peptide density(i.e.,561 pmol/cm^(2)),indicating the importance of the surface density.Taken together,these results emphasize that the density of surface peptides on cell differentiation must be considered at the cell-material interface.Moreover,we have presented a viable strategy for ME-AM community that desires to tune the bulk and surface functionality via blending of(modified)polymers.Furthermore,the use of alkyne-azide“click”chemistry enables spatial control over bioconjugation of many tissue-specific moieties,making this approach a versatile strategy for tissue engineering applications.
基金the sponsorship of the following fund projects:the Guangdong Basic and Applied Basic Research Foundation,China(No.2023A1515110578)the Guangzhou Basic and Applied Basic Research Project,China(No.2024A04J00725)the Guangdong Academy of Sciences Project of Science and Technology Development,China(Nos.2022GDASZH-2022010107 and 2022GDASZH-2022010108).Dr.Zhao would particularly like to thank his wife,M.S.Guo,for her help with the language of the manuscript and for the encouragement of their newborn baby.
文摘The urgent need for integrated molding and sintering across various industries has inspired the development of additive manu-facturing(AM)ceramics.Among the different AM technologies,direct laser additive manufacturing(DLAM)stands out as a group of highly promising technology for flexibly manufacturing ceramics without molds and adhesives in a single step.Over the last decade,sig-nificant and encouraging progress has been accomplished in DLAM of high-performance ceramics,including Al_(2)O_(3),ZrO_(2),Al_(2)O_(3)/ZrO_(2),SiC,and others.However,high-performance ceramics fabricated by DLAM face challenges such as formation of pores and cracks and resultant low mechanical properties,hindering their practical application in high-end equipment.Further improvements are necessary be-fore they can be widely adopted.Methods such as field-assisted techniques and post-processing can be employed to address these chal-lenges,but a more systematic review is needed.This work aims to critically review the advancements in direct selective laser sintering/melting(SLS/SLM)and laser directed energy deposition(LDED)for various ceramic material systems.Additionally,it provides an overview of the current challenges,future research opportunities,and potential applications associated with DLAM of high-perform-ance ceramics.
基金Supported by National Defense Basic Scientific Research of China(Grant No.A2120110002)National Science Foundation of China(Grant No.11290144)Major National Science and Technology Special Project of China(Grant Nos.2010ZX04014-052,2010ZX0414-017)
文摘To improve efficiency, reduce cost, ensure quality effectively, researchers on CNC machining have focused on virtual machine tool, cloud manufacturing, wireless manufacturing. However, low level of information shared among different systems is a common disadvantage. In this paper, a machining database with data evaluation module is set up to ensure integrity and update. An online monitoring system based on internet of things and multi-sensors "feel" a variety of signal features to "percept" the state in CNC machining process. A high efficiency and green machining parameters optimization system "execute" service-oriented manufacturing, intelligent manufacturing and green manufacturing. The intelligent CNC machining system is applied in production. CNC machining database effectively shares and manages process data among different systems. The prediction accuracy of online monitoring system is up to 98.8% by acquiring acceleration and noise in real time. High efficiency and green machining parameters optimization system optimizes the original processing parameters, and the calculation indicates that optimized processing parameters not only improve production efficiency, but also reduce carbon emissions. The application proves that the shared and service-oriented CNC machining system is reliable and effective. This research presents a shared and service-oriented CNC machining system for intelligent manufacturing process.
文摘Modern additive manufacturing processes enable fabricating architected cellular materials of complex shape,which can be used for different purposes.Among them,lattice structures are increasingly used in applications requiring a compromise among lightness and suited mechanical properties,like improved energy absorption capacity and specific stiffness-to-weight and strength-to-weight ratios.A dedicated modeling strategy to assess the energy absorption capacity of lattice structures under uni-axial compression loading is presented in this work.The numerical model is developed in a non-linear framework accounting for the strain rate effect on the mechanical responses of the lattice structure.Four geometries,i.e.,cubic body centered cell,octet cell,rhombic-dodecahedron and truncated cuboctahedron 2+,are investigated.Specifically,the influence of the relative density of the representative volume element of each geometry,the strain-rate dependency of the bulk material and of the presence of the manufacturing process-induced geometrical imperfections on the energy absorption capacity of the lattice structure is investigated.The main outcome of this study points out the importance of correctly integrating geometrical imperfections into the modeling strategy when shock absorption applications are aimed for.
基金financially supported by the Technology Development Fund of China Academy of Machinery Science and Technology(No.170221ZY01)。
文摘Additive manufacturing technology is highly regarded due to its advantages,such as high precision and the ability to address complex geometric challenges.However,the development of additive manufacturing process is constrained by issues like unclear fundamental principles,complex experimental cycles,and high costs.Machine learning,as a novel artificial intelligence technology,has the potential to deeply engage in the development of additive manufacturing process,assisting engineers in learning and developing new techniques.This paper provides a comprehensive overview of the research and applications of machine learning in the field of additive manufacturing,particularly in model design and process development.Firstly,it introduces the background and significance of machine learning-assisted design in additive manufacturing process.It then further delves into the application of machine learning in additive manufacturing,focusing on model design and process guidance.Finally,it concludes by summarizing and forecasting the development trends of machine learning technology in the field of additive manufacturing.
基金financial supports provided by the China Scholarship Council(Nos.202206 290061 and 202206290062)。
文摘The laser powder bed fusion(LPBF) process can integrally form geometrically complex and high-performance metallic parts that have attracted much interest,especially in the molds industry.The appearance of the LPBF makes it possible to design and produce complex conformal cooling channel systems in molds.Thus,LPBF-processed tool steels have attracted more and more attention.The complex thermal history in the LPBF process makes the microstructural characteristics and properties different from those of conventional manufactured tool steels.This paper provides an overview of LPBF-processed tool steels by describing the physical phenomena,the microstructural characteristics,and the mechanical/thermal properties,including tensile properties,wear resistance,and thermal properties.The microstructural characteristics are presented through a multiscale perspective,ranging from densification,meso-structure,microstructure,substructure in grains,to nanoprecipitates.Finally,a summary of tool steels and their challenges and outlooks are introduced.
基金supported by the National Key Research and Development Program of China(No.2021YFB3702500)。
文摘Metal additive manufacturing(MAM)technology has experienced rapid development in recent years.As both equipment and materials progress towards increased maturity and commercialization,material metallurgy technology based on high energy sources has become a key factor influencing the future development of MAM.The calculation of phase diagrams(CALPHAD)is an essential method and tool for constructing multi-component phase diagrams by employing experimental phase diagrams and Gibbs free energy models of simple systems.By combining with the element mobility data and non-equilibrium phase transition model,it has been widely used in the analysis of traditional metal materials.The development of CALPHAD application technology for MAM is focused on the compositional design of printable materials,the reduction of metallurgical imperfections,and the control of microstructural attributes.This endeavor carries considerable theoretical and practical significance.This paper summarizes the important achievements of CALPHAD in additive manufacturing(AM)technology in recent years,including material design,process parameter optimization,microstructure evolution simulation,and properties prediction.Finally,the limitations of applying CALPHAD technology to MAM technology are discussed,along with prospective research directions.
基金Under the auspices of the National Natural Science Foundation of China(No.41930646)Guangdong Natural Science Foundation(No.2022A1515011572)。
文摘Container ports and hinterland manufacturing are two important forces of the local participation in economic globalization.This study,taking the Pearl River Delta(PRD),China with an export-oriented economy as an example,applies Huff and panel regres-sion models to evaluate the impact of hinterland manufacturing on the development of container ports during the period of 1993–2019.The results show that 1)the spatial patterns of hinterlands for hub ports help to determine the distribution range and scale of economic variables that affect port throughput;2)the hinterland’s gross manufacturing output has universally positive influence on port through-put,wherein export-oriented processing and the entire manufacturing industry have significantly positive impact on port throughput in 1993–2011 and 2001–2019,respectively;3)the two internal structural factors related to an export-oriented economy,labor-intensive sectors and foreign-funded terminals,have positively moderate the direct influence of hinterland manufacturing on port throughput.Our results highlight the importance of local context in understanding port-manufacturing relationship in developing economies.Based on our findings,policy implications are further proposed to enhance port network organization in PRD.
文摘In the context of intelligent manufacturing,machine tools,as core equipment,directly influence production efficiency and product quality through their operational reliability.Traditional maintenance methods for machine tools,often characterized by low efficiency and high costs,fail to meet the demands of modern manufacturing industries.Therefore,leveraging intelligent manufacturing technologies,this paper proposes a solution optimized for the diagnosis and maintenance of machine tool faults.Initially,the paper introduces sensor-based data acquisition technologies combined with big data analytics and machine learning algorithms to achieve intelligent fault diagnosis of machine tools.Subsequently,it discusses predictive maintenance strategies by establishing an optimized model for maintenance strategy and resource allocation,thereby enhancing maintenance efficiency and reducing costs.Lastly,the paper explores the architectural design,integration,and testing evaluation methods of intelligent manufacturing systems.The study indicates that optimization of machine tool fault diagnosis and maintenance in an intelligent manufacturing environment not only enhances equipment reliability but also significantly reduces maintenance costs,offering broad application prospects.
基金This project is supported by Shanghai Science and Technology Committee (No. 025111055)
文摘With Open Grid Service Architecture (OGSA) as system framework, and Globus Toolkit3.0 (GT3) as developing tools, Manufacturing Grid (MG) is proposed in this research to realize resource sharing and collaborative working among manufacturing resources, and task scheduling is one of the most critical components in this system. Nevertheless, the Globus Resource Allocation Manager (GRAM) does not provide scheduling system by default, and traditional performance-guided or economy-guided schedulers cannot satisfy our needs in MG. So, in this paper, a TQCS (Time, Quality, Cost, Service)-based scheduling approach is presented and the corresponding scheduler (Manufacturing Grid Task Scheduler, MGTS) is implemented with the functions of Global Process Planning (GPP) analyzing, resource discovery, resource selection, AHP (Analytic Hierarchy Process)-based resource mapping, and fault-tolerant handling. Furthermore, the application architecture is depicted at the end of the paper to illustrate the utilization of our scheduler.
文摘This article briefly discusses the theoretical basis and overall goals of energy conservation in the steel manufacturing process system.It is proposed that in the process of implementing system energy conservation,it is necessary to fully recognize and utilize the characteristics and functional advantages of the steel manufacturing process,pay more attention to energy quality,firmly grasp the overall goal of system optimization,focus on the integrated optimization of gas,steam,and waste heat systems,and propose the idea of constructing a"steel chemi-cal gas electricity heating cooling multi generation system".Based on practice,the main principles,models,and effects of implementing systematic energy conservation in steel enterprises have been proposed.
基金the major project under the National Social Science Fund of China (NSSFC)“Advancing New-Type Industrialization and the Optimization and Upgrade of the Economic System” for interpreting the spirit of the Fifth Plenary Session of the 19th Communist Party of China (CPC) Central Committee (21ZDA021)and the Innovation Project of the Chinese Academy of Social Sciences (CASS),“Study on the High-Quality Development of Emerging Industries.”
文摘Since the global financial crisis,global value chain(GVC)have been contracting amid the trend toward economic de-globalization.With GVC participation rate in mind as the core indicator of economic de-globalization,in this paper we create a multi-country general equilibrium model to characterize the mechanism by which manufacturing localization affects GVC participation rate.Our theoretical derivation shows that changes in the local manufacturing status of final products in various countries directly influence the GVC participation rate of those countries.When the local proportion of a country’s final products reaches a certain level,rising local proportion of intermediate inputs,economic growth below the world average level,and technology progress all cause the country’s GVC participation rate to decline,giving rise to de-globalization at the manufacturing and trade levels.We further provide a comprehensive interpretation based on an empirical test of the deep-seated causes of economic de-globalization in relation to such economic phenomena as increasing trade concentration,the“technology backlash”effect of the new industrial revolution,and economic growth driven by the combined forces of trade protectionism and quantitative easing.
文摘This paper explores the integration of Standard Operating Procedures (SOPs) using virtual reality and smart glasses technology in food manufacturing. The study employs a thorough methodology, combining observational insights to develop a comprehensive SOP. Implementation at different firms resulted in significant improvements, reducing product waste and enhancing overall efficiency. The use of virtual reality further augments SOP adoption. The findings underscore SOPs’ transformative influence, offering a tangible solution to challenges in the food production sector. Recommendations include regular SOP reviews and ongoing training for sustained success. Different firms exemplify SOPs as indispensable tools for operational excellence.
文摘An intelligent manufacturing system is a composite intelligent system comprising humans,cyber systems,and physical systems with the aim of achieving specific manufacturing goals at an optimized level.This kind of intelligent system is called a human-cyber-physical system(HCPS).In terms of technology,HCPSs can both reveal technological principles and form the technological architecture for intelligent manufacturing.It can be concluded that the essence of intelligent manufacturing is to design,construct,and apply HCPSs in various cases and at different levels.With advances in information technology,intelligent manufacturing has passed through the stages of digital manufacturing and digital-networked manufacturing,and is evolving toward new-generation intelligent manufacturing(NGIM).NGIM is characterized by the in-depth integration of new-generation artificial intelligence(AI)technology(i.e.,enabling technology)with advanced manufacturing technology(i.e.,root technology);it is the core driving force of the new industrial revolution.In this study,the evolutionary footprint of intelligent manufacturing is reviewed from the perspective of HCPSs,and the implications,characteristics,technical frame,and key technologies of HCPSs for NGIM are then discussed in depth.Finally,an outlook of the major challenges of HCPSs for NGIM is proposed.
文摘This study investigates full liquid phase sintering as a process of fabrication parts from WE43(Mg-4wt.%Y-3wt.%RE-0.7wt.%Zr)alloy using binder jetting additive manufacturing(BJAM).This fabrication process is being developed for use in producing structural or biomedical devices.Specifically,this study focused on achieving a near-dense microstructure with WE43 Mg alloy while substantially reducing the duration of sintering post-processing after BJAM part rendering.The optimal process resulted in microstructure with 2.5%porosity and significantly reduced sintering time.The improved sintering can be explained by the presence of Y_(2)O_(3)and Nd_(2)O_(3)oxide layers,which form spontaneously on the surface of WE43 powder used in BJAM.These layers appear to be crucial in preventing shape distortion of the resulting samples and in enabling the development of sintering necks,particularly under sintering conditions exceeding the liquidus temperature of WE43 alloy.Sintered WE43 specimens rendered by BJAM achieved significant improvement in both corrosion resistance and mechanical properties through reduced porosity levels related to the sintering time.
基金The work is supported by the National Natural Science Foundation of China(Nos.U21A20124 and 52205059)the Key Research and Development Program of Zhejiang Province(No.2022C01039)。
文摘Galloping cheetahs,climbing mountain goats,and load hauling horses all show desirable locomotion capability,which motivates the development of quadruped robots.Among various quadruped robots,hydraulically driven quadruped robots show great potential in unstructured environments due to their discrete landing positions and large payloads.As the most critical movement unit of a quadruped robot,the limb leg unit(LLU)directly affects movement speed and reliability,and requires a compact and lightweight design.Inspired by the dexterous skeleton–muscle systems of cheetahs and humans,this paper proposes a highly integrated bionic actuator system for a better dynamic performance of an LLU.We propose that a cylinder barrel with multiple element interfaces and internal smooth channels is realized using metal additive manufacturing,and hybrid lattice structures are introduced into the lightweight design of the piston rod.In addition,additive manufacturing and topology optimization are incorporated to reduce the redundant material of the structural parts of the LLU.The mechanical properties of the actuator system are verified by numerical simulation and experiments,and the power density of the actuators is far greater than that of cheetah muscle.The mass of the optimized LLU is reduced by 24.5%,and the optimized LLU shows better response time performance when given a step signal,and presents a good trajectory tracking ability with the increase in motion frequency.