[Objective] The aim was to study the effects of slow release fertilizer on the yield,economic benefit and nutrient use efficiency of carnation and environmental pollution.[Method] Taking carnation(Dianthus caryophyl...[Objective] The aim was to study the effects of slow release fertilizer on the yield,economic benefit and nutrient use efficiency of carnation and environmental pollution.[Method] Taking carnation(Dianthus caryophyllus)as research object,the application effect and environmental protection effect of slow release fertilizer on carnation were discussed through field plot test.[Result] The main agronomic characters of carnation improved after the application of slow release fertilizer;compared with Conv-F treatment,the yield of carnation with slow release fertilizer increased by 18.67%-20.83%,and its economic benefit increased by 105 500 yuan/hm2,while the ratio of output to input improved by 74.29%;under the same NPK ratio and nutrient amount,the yield,economic benefit and ratio of output to input of carnation after the application of slow release fertilizer increased by 2.11%,14 800 yuan and 16.2%,respectively;besides,the application of slow release fertilizer improved the nutrient use efficiency of carnation,and N,P and K nutrient use efficiency in Opt-F-0.7% treatment increased by 13.88%,8.57% and 30.14% compared with Conv-F treatment.[Conclusion] Slow release fertilizer could not only reduce the waste of fertilizer resources and improve fertilizer use efficiency but also decrease the pollution caused by nutrient loss,which had important practical significance for protecting ecological environment and promoting the sustainable development of agriculture.展开更多
Fertilizer issues such as overuse, leaching and soil degradation are becoming severe?in?worldwide plantation areas. To secure current food production, prevention measures on these issues are relatively limited on agri...Fertilizer issues such as overuse, leaching and soil degradation are becoming severe?in?worldwide plantation areas. To secure current food production, prevention measures on these issues are relatively limited on agricultural production areas. Slow release fertilizer is prevailing over past years due to its significant effects on prevention of fertilizer leaching and less harm to soil and underground water. We presented here the mechanisms of a novel zeolite-based slow release fertilizer including its properties as reservoirs of nutrients, pH balancer and also water retainer in soil. By providing sufficient nutrients to soil, this fertilizer has commercially proven to give better growing environment to grower as well as labor saving and cost saving.展开更多
Excessive or insufficient application of fertilizer has raised broader concerns regarding soil and environmental degradation.One-time application of slow release fertilizer (SF) has been widely used to reduce yield ga...Excessive or insufficient application of fertilizer has raised broader concerns regarding soil and environmental degradation.One-time application of slow release fertilizer (SF) has been widely used to reduce yield gap with potential maize yield and improve nitrogen use efficiency (NUE).A 2-year field experiment (2018–2019) was conducted to evaluate the effects of SF rates from 0 to 405 kg N ha^(–1) (named F0,SF225,SF270,SF315,SF360,and SF405) and 405 kg N ha^(–1) of common fertilizer(CF405) on the grain yield,biomass and N accumulation,enzymatic activities related with carbon–nitrogen metabolism,NUE and economic analysis.Results indicated that the highest grain yields,NUEs and economic returns were achieved at SF360in both varieties.The enzymatic activities related with carbon–nitrogen metabolism,pre-and post-silking accumulation of biomass and N increased with increasing SF rate,and they were the highest at SF360 and SF405.The grain yield at SF360had no significant difference with that at SF405.However,the N partial factor productivity,N agronomic efficiency and N recovery efficiency at SF360 were 9.8,6.6 and 8.9% higher than that at SF405.The results also indicated that the average grain yields,NUE and economic benefit at SF405 were 5.2,12.3 and 18.1% higher than that at CF405.In conclusion,decreasing N rate from 405 kg ha^(–1)(CF) to 360 kg ha^(–1)(SF) could effectively reduce the yield gap between realized and potential maize yields.The N decreased by 11.1%,but the yield,NUE and economic benefit increased by 3.2,22.2 and 17.5%,which created a simple,efficient and business-friendly system for spring maize production in Jiangsu Province,China.展开更多
After the sewage treatment, putting the wet sludge in which the heavy metal content is extremely low, corrupt and broken straw, bentonite, urea in proportioning according to the certain ratio, mixing well-distributed,...After the sewage treatment, putting the wet sludge in which the heavy metal content is extremely low, corrupt and broken straw, bentonite, urea in proportioning according to the certain ratio, mixing well-distributed, taking the shape of Nitrogen slow-release fertilizers, doing the dynamic bioleaching test by the method of Artificial rainfall simulation, researching the slow-release characteristic, water retention. When the mass ratio of the wet sludge whose water content is 82.5%: bentonite: corrupt and broken straw: urea is 62.5: 12.5: 12.5: 12.5, drip washing the 10g Nitrogen slow-release fertilizers by the 80ml distilled water after 48h, the residue rate of urea is 29.63%; Under the room temperature of 25 ℃, 77%RH, moisture evaporate 46.32% after 60 h. The results demonstrate that the slow-release fertilizer has a good release-effect of nitrogen and water conservation effect. It provides the basic for the development and application of the sewage in the aspect of Nitrogen slow-release fertilizers.展开更多
In order to select the long-acting,low toxic,low-risk and multi-functional new pesticides for the control of sugarcane borders and woolly aphids and precise and efficient application technology,the control effect of 1...In order to select the long-acting,low toxic,low-risk and multi-functional new pesticides for the control of sugarcane borders and woolly aphids and precise and efficient application technology,the control effect of 10% monosultap · thiamethoxam granular formulation and 1% Bt · clothianidin granular formulation on sugarcane borders and woolly aphids were studied.The results showed that 10% monosultap·thiamethoxam GR and 1% Bt·clothianidin GR had good control effects on sugarcane borders and woolly aphids.They were ideal slow-release,long-acting,low toxic and multi-functional new pesticides used to control sugarcane borders and woolly aphids.They could be used alternately with other pesticides to delay the emergence and development of pest resistance to pesticides.The best dosage of the two pesticides in the field was 45 kg/hm^2.They could be mixed with fertilizer( 1200-1800 kg/hm^2),scattered in sugarcane ditches or at the base of sugarcane plants,and covered with soil or film from January to July.The control effect on dead heart seedlings damaged by borers could be up to above 79.2%,and the control effect on sugarcane woolly aphids could reach more than 98.8%.In comparison with the control group,the actual yield and sugar content of sugarcane increased by above 41 555 kg/hm^2 and 6.5% respectively.The application of slow-release,long-acting,strong systemic and multi-functional new agents with fertilizer around roots is convenient,precise and efficient,labor-saving,time-saving and environmentally friendly,and is worthy of being widely applied in sugarcane areas.展开更多
Slow/controlled release fertilizers (SRFs/CRFs) have been paid more at- tentions by the researchersin recent years. In this paper, the application effects and methods, types, current problem and development prospect...Slow/controlled release fertilizers (SRFs/CRFs) have been paid more at- tentions by the researchersin recent years. In this paper, the application effects and methods, types, current problem and development prospect of SRFs/CRFsboth at home and abroad were reviewed. The production principles and processes of urea- formaldehyde slow release fertilizers were introduced; and It is suggested that the urea-formaldehyde slow release fertilizers show great development to ease energy and environment pressure.展开更多
[Objective] The aim of this study was to investigate the impacts of slow and controlled release fertilizers(SCRF)on the yield of qiubei hot pepper,its nutrient use efficiency and environment.[Method] Using Qiubei ho...[Objective] The aim of this study was to investigate the impacts of slow and controlled release fertilizers(SCRF)on the yield of qiubei hot pepper,its nutrient use efficiency and environment.[Method] Using Qiubei hot pepper(Capsicum frutescens L.)as the experimental material,we studied the fertilization effect and environment-protecting effect of SCRF.[Result] The result showed that SCRF could improve the agronomic characteristics of hot pepper.Compared to singly applied common fertilizers,SCRF increased economic yield by 20.90% and economic benefit by 13 234.35 Yuan/hm2,and the ratio of output to input was improved by 47.93%.In comparison with common straight fertilizers at same NPK proportion and rate,SCRF increased economic yield by 5.26% and economic benefit by 5 554.80 Yuan/hm2,and the ratio of output to input was improved by 9.91%.Under the reduced use of SCRF by 20%,SCRF increased economic yield by 12.38% and economic benefit by 9595.20 Yuan/hm2 compared with singly applied common fertilizers,and the ratio of output to input was improved by 65.95%.SCRF improved nitrogen,phosphorus and potassium use efficiencies by 12.42-17.53,3.35-5.24 and 5.37-14.02 percents respectively.[Conclusion] As the result of much reduced N and P application rates,SCRF would significantly economize fertilizer resources and minimize the pollution caused by the loss of fertilizer nutrients,which is of practical importance for environment protection.展开更多
Slow-release polymeric fertilizer containing multiple nutrients was synthesized through condensation polymerization from raw materials of homemade low-molecular urea-formaldehyde and the compounds of potassium dihydro...Slow-release polymeric fertilizer containing multiple nutrients was synthesized through condensation polymerization from raw materials of homemade low-molecular urea-formaldehyde and the compounds of potassium dihydrogen phosphate and phosphoric acid. Adjustment of the proportion of raw materials makes the ingredients of the fertilizer are N:P_2O_5:K_2O =1:0.75:0.13, which satisfy the nutritional requirement for maize growth. Field-experiment results prove that the yield of maize increases by 16.56% when using the polymeric fertilizer special for maize alone, by 56.51% when applying the polymeric fertilizer special for maize plus farmyard manure, and by 49.11% when applying the SV fertilizer special for maize plus manure.展开更多
[Objective] A new-type water-absorbent slow release nitrogen fertilizer(WASRNF) was produced through polymerization reaction. Its physicochemical property and application effect in latosol were studied. Feasibility ...[Objective] A new-type water-absorbent slow release nitrogen fertilizer(WASRNF) was produced through polymerization reaction. Its physicochemical property and application effect in latosol were studied. Feasibility of using WASRNF to improve the serious problems of latosol in rubber planting area in Hainan Island including vulnerable nutrient, free-running fertilizer and water was studied. [Result] The results showed that raw materials of WASRNF, urea and water-retention material formed co-polymer through hydrogen-bond interaction that the WASRNF contained many hydrophilic groups. The p H value of WASRNF is near neutral and its water absorbent rate in tap water could reach 167.17 g·g-1. The water absorbent rates in latosol leach liquors with water/soil ratios of 1:5, 1:10 and 1:20 were 104.66, 122.93 and 145.38 g·g^-1, respectively. The maximum water holding ratio of latosol increased by 23.72%, 30.89% and 39.68% when 0.5%, 1% and 2% WASRNFs were added to latosol, and water evaporation rate of latosol decreased efficiently. Compared with common urea, WASRNF could slow down the leaching rate of nitrogen and the initial leaching amount was only 22.17% of the total amount. [Conclusion]The results indicated that WASRNF in latosol had strong water absorption and water-retention abilities in addition to the good slow release effect, and could efficiently decrease nutrient loss, increase utilization ratio of water and fertilizer and promote interaction between water and fertilizer.展开更多
[Objective] The aim was to study on effects of controlled release fertilizer on loss of nitrogen and phosphorus from farmland. [Method] Experiment was conducted in fields planted with rice and corn around Chao Lake an...[Objective] The aim was to study on effects of controlled release fertilizer on loss of nitrogen and phosphorus from farmland. [Method] Experiment was conducted in fields planted with rice and corn around Chao Lake and effects of compound fertilizer, controlled release fertilizer and controlled release fertilizer (reduced by 20%) on loss of nitrogen and phosphorus through runoff and leaching were analyzed. [Result] Loss of nitrogen and phosphorus mainly occurred in early stage of fertilizing; loss caused by runoff accounted for over 98% and caused by leaching was lower than 2%, indicating that nutrients of rice and corn mainly lost through runoff. As for controlled release fertilizers with 20% reduced, total loss of N and P decreased by 60% and 63% in rice field and reduced by 27.8% and 34% in corn field, respectively, indicating that controlled release fertilizer would maintain nutrients in soils high in later period of plant growth, improve use efficiency of N and P, reduce N and P loss in rice and corn fields in rainy season, and decrease non-point pollution. [Conclusion] The research suggested that controlled release fertilizer would slow down the loss of nutrients in farmlands, providing scientific references and technological support for extension of controlled release fertilizer and reduction of agricultural non-point pollution.展开更多
The effects of slow-release fertilizers and sugarcane-specific fertilizers on the growth and quality of sugarcane were studied to provide a theoretical basis for cultivation of sugarcane with lower costs but higher ef...The effects of slow-release fertilizers and sugarcane-specific fertilizers on the growth and quality of sugarcane were studied to provide a theoretical basis for cultivation of sugarcane with lower costs but higher efficiency. Field experiments were carried out in two major sugarcane areas in Guangxi and three fertilization treatments were studied: single application of compound fertilizers( treatment I),compound fertilizers + slow-release fertilizers( treatment II) and sugarcane-specific base fertilizers + sugarcane-specific topdressing( treatment III). Effects of equal fertilization conditions of treatment I,II and III on growth,yield and sugar of sugarcane were studied. The three fertilization treatments had little effects on emergence,tillering,and effective stems of sugarcane,but compared with the treatment of compound fertilizer( treatment I) with a ratio of N,P,and K of 1∶1∶1,treatment II using slow-release fertilizers as topdressing had better growth,higher plant height and stem diameter,so the yield was higher. Treatment III designed sugarcane-specific fertilizers with proper ratio according to fertilizer demands of sugarcane. Besides,the treatment III sugarcane-specific base fertilizers,containing certain amount of organic matters,could promote the sugar accumulation of sugarcane. Therefore,the sugarcane yield of treatment III was higher than that of treatment II. In conclusion,slow-release fertilizers and sugarcane-specific fertilizers can significantly increase sugarcane yield,especially sugarcane-specific fertilizers. Sugarcane-specific fertilizers have reasonable ratio and contain certain amount of organic matters,and can increase sugar content,obtain significant economic benefits,so it is worth popularization in large areas.展开更多
Controlled release fertilizers (CRF) are produced with different rates and durations of nutrient release to cater to different crops with wide ranges of nutrient requirements. A rapid technique is needed to verify the...Controlled release fertilizers (CRF) are produced with different rates and durations of nutrient release to cater to different crops with wide ranges of nutrient requirements. A rapid technique is needed to verify the label specifications of nutrient release rate and duration. Polymer-coated urea (PCU) (43% nitrogen [N]) and polymer-coated N, phosphorus (P), potassium (K) (PC_NPK;14-14-14) fertilizer products were used in this study. Soil incubation of the above CRF products at 25℃ showed that 63.6% to 70.8% of total N was released over 220 days (d). At 100℃ in water 100% of N release occurred in about 168 to 216 hours (h). Regression equations were developed for cumulative nutrient release as a function of release time separately at 25℃ and 100℃. Using the above regressions, the release duration for a given percent nutrient release at each temperature was calculated. These values were then used to establish a relationship between the release duration at 25℃ as a function of that at 100℃. This relationship is useful to predict the release duration at 25℃ of an unknown CRF product by conducting a rapid release test in water at 100℃. This study demonstrated that a rapid nutrient release test at 100℃ successfully predicted nutrient release rate and duration at 25℃, for polymer coated fertilizers. Therefore, this rapid test can be used to verify the label release rate and duration of most CRF products.展开更多
There is limited information about the influence of slow or controlled release fertilizer(S/CRF) on rice yield and quality. In this study, japonica rice cultivar Nanjing 9108 was used to study the effects of three d...There is limited information about the influence of slow or controlled release fertilizer(S/CRF) on rice yield and quality. In this study, japonica rice cultivar Nanjing 9108 was used to study the effects of three different S/CRFs(polymer-coated urea(PCU), sulfur-coated urea(SCU), and urea formaldehyde(UF)) and two fertilization modes(both S/CRF and common urea(CU) as basal fertilizer, S/CRF as basal and CU as tillering fertilizer) on rice yield and quality. CU only was applied separately as control(CK). Results showed that, rice grain yield, chalky kernel rate, chalky area, overall chalkiness, and the content of gliadin, glutenin, and protein, all showed the trends of UF〉PCU〉SCU within the same fertilization mode, and showed the trends of S/CRF as basal and CU as tillering fertilizer〉both S/CRF and CU as basal fertilizer within the same type of S/CRF. In contrast, the contents of amylose, amylopectin, and starch, as well as taste value, and peak and hot viscosity showed trends of SCU〉PCU〉UF, and the trends of both S/CRF and CU as basal fertilizer〉S/CRF as basal and CU as tillering fertilizer. Among S/CRF treatments and fertilization modes, taste values of cooked rice were positively correlated with amylose, amylopectin, and starch contents, as well as gel consistency, peak viscosity, hot viscosity, and cool viscosity, while negatively correlated with globulin, gliadin, glutenin, and protein contents. The types of S/CRF and fertilization modes are important for improving rice yield and quality. Compared to CK, higher yield and similar quality of rice was achieved with UF as basal and CU as tillering fertilizer, and similar yield with improved appearance and eating and cooking quality of rice was achieved with either both UF and CU as basal fertilizer, or PCU as basal and CU as tillering fertilizer.展开更多
This study examined the release characteristics of different N forms in an uncoated slow/controlled-release compound fertilizer (UCRF) and the N uptake and N-use efficiency by rice plants. Water dissolution, soil le...This study examined the release characteristics of different N forms in an uncoated slow/controlled-release compound fertilizer (UCRF) and the N uptake and N-use efficiency by rice plants. Water dissolution, soil leaching, and pot experiments were employed. The dynamics of N release from the UCRF could be quantitatively described by three equations: the first-order kinetics equation [N1=N0 (1-e^-kt)], Elovich equation (N1=a + blnt), and parabola equation (N1=a + bt^0.5), with the best fitting by the first-order kinetics equation for different N (r= 0.9569^**-0.9999^**). The release potentials (No values estimated by the first-order kinetics equation) of different N in the UCRF decreased in the order of total N 〉 DON 〉 urea-N 〉 NH4^+-N 〉 NO3^-N in water, and total N 〉 NH4^+-N 〉 DON 〉 urea-N 〉 NO3^--N in soil, respectively, being in accordance with cumulative amounts of N release. The constants of N release rate (k values and b values) for different N forms were in decreasing order of total N 〉 DON 〉 NH4^+-N 〉 NO3^--N in water, whereas the k values were urea- N 〉DON 〉 NH4^+-N 〉 total N 〉 NO3^--N, and the b values were total N 〉 NH4^+-N 〉 DON 〉 NO3^--N 〉 urea-N in soil. Compared with a common compound fertilizer, the N-use efficiency, N-agronomy efficiency, and N-physiological efficiency of the UCRF were increased by 11.4%, 8.32 kg kg^-1, and 5.17 kg kg^-1, respectively. The ratios of different N to total N in the UCRF showed significant correlation with N uptake by rice plants. The findings showed that the first-order kinetics equation [Nt=N0 (l-e^kt)] could be used to describe the release characteristics of different N forms in the fertilizer. The UCRF containing different N forms was more effective in facilitating N uptake by rice compared with the common compound fertilizer containing single urea-N form.展开更多
Polyurethane coated urea slow/controlled release fertilizer was prepared based on urea granules, isocyanate, polyols and paraffin. Isocyanate reacted with polyols to synthesize the polyurethane skin layer on urea gran...Polyurethane coated urea slow/controlled release fertilizer was prepared based on urea granules, isocyanate, polyols and paraffin. Isocyanate reacted with polyols to synthesize the polyurethane skin layer on urea granules surface. Paraffin serves as a lubricant during syntheses of polyurethane skin layers. The structure and nutrient release characteristics of the polyurethane skin layers were investigated by FTIR, SEM and TG. Urea nitrogen slow-release behavior of the polyurethane coated urea was tested. The experimental results indicated that compact and dense polyurethane skin layers with a thickness of 10-15 lam were formed on urea surface, the urea nitrogen slow-release time can reach 40-50 days. Paraffin proves to play a key role in inhibiting water to penetrate into urea, but excessive addition would decrease the polyurethane crosslinking density.展开更多
[Objective] This study aimed to investigate the effects of gel-based controlled release fertilizers (CRFs) on agronomic characteristics and physiological indices of corn. [Method] Pot experiment was carried out to i...[Objective] This study aimed to investigate the effects of gel-based controlled release fertilizers (CRFs) on agronomic characteristics and physiological indices of corn. [Method] Pot experiment was carried out to investigate the agronomic characteristics and physiological indices of corn fertilized with controlled release fertilizers compared with conventional fertilizer (CF). [Result] Plant height, stem girth, leaf area and root volume of corn were significantly increased under the CRF treatments; photosynthetic rate and soluble protein content were also improved. Dry matter accumulations under the two CRF treatments were increased by 21.3% and 17.0% compared with CF application at one time (CF1), and 19.6% and 15.4% with CF application at two times (CF2), respectively. Accumulation amounts of N, P and K in whole plant under the two CRF treatments were increased by 44.0% -24.7% , 40.0%-25.9% and 20.1% -13.9% ; and the nutrient use efficiencies of N, P and K were improved by 22.9% -13.4% , 11.2% -9.6% and 17.5% -12.1% , respectively. [Conclusion] The results implied that the CRFs could significantly improve nutrient use efficiency and plant yield.展开更多
This experiment explored the effects of single application of seven types of slow-and controlled-release fertilizers on rice yield and various population characteristics.Based on a study of the nitrogen(N)release char...This experiment explored the effects of single application of seven types of slow-and controlled-release fertilizers on rice yield and various population characteristics.Based on a study of the nitrogen(N)release characteristics of these fertilizers,pot experiments were conducted in 2018 and 2019 with split fertilization(CK,urea applied split equally at basal and panicle initiation stages,respectively)as control,which assessed the effects on SPAD value,yield and yield components,dynamic changes of rice tillers and dry matter accumulation.The results showed that the N release characteristics of different types of slow-and controlled-release fertilizers were significantly different.Polymer-coated urea(PCU)showed a controlledrelease mode and provided sustained release throughout the whole growth stages.Sulfur-coated urea(SCU)exhibited a slow-release mode,providing insufficient release at the middle and late stages.Urease inhibitor urea(AHA)and ureaformaldehyde(UF)yielded a rapid-release mode,with an explosive N release at the early stage and no release at the middle and late stages.These results showed that PCU delayed the peak seedling stage.Compared with CK,dry matter accumulation and SPAD showed no significant differences,and due to the continuous release of N throughout the growth stages,rice yield,spikelets per panicle,seed setting rate,and 1000-grain weight were all increased.Owing to the lack of N supply at the late stage and the low number of spikelets,SCU led to a reduction of rice yield,which is nevertheless not statistically significant.AHA and UF were susceptible to environmental factors and had varying effects on rice yield.The results of this experiment indicated that given a fixed amount of N applied in a pot,the stronger the N supply capacity and the longer the effective duration time of the fertilizer,the higher the dry matter accumulation at the late growth stage,and the higher the rice yield.展开更多
The fertiliser industry faces a continuing challenge to improve the efficiency of their products,particularly of nitrogenous fertilisers,and to minimise adverse impacts.Therefore,a new slow release fertilizer,ureaimpr...The fertiliser industry faces a continuing challenge to improve the efficiency of their products,particularly of nitrogenous fertilisers,and to minimise adverse impacts.Therefore,a new slow release fertilizer,ureaimpregnated woodchips from tropical plant biomass(oil palm frond and rubberwood),was developed.The morphology of the impregnated woodchips was investigated by scanning electron microscopy and the success of impregnation of urea and nitrogen deposition into the woodchips was confirmed by energy dispersive X-ray spectrometry.When nitrogen release patterns from impregnated woodchips fertiliser were simulated using a soil solution and distilled water as leaching solutions in a static condition for 768 h,release was slow and steady,although the release rate was lower in distilled water than in the soil solution.展开更多
Functional porous microspheres used for the slow release carrier of actives in cosmetics or pharmaceu- ticals were prepared by modified suspension polymerization of styrene (ST) with divinylbenzene (DVB) in the presen...Functional porous microspheres used for the slow release carrier of actives in cosmetics or pharmaceu- ticals were prepared by modified suspension polymerization of styrene (ST) with divinylbenzene (DVB) in the presence of toluene, cyclohexanol and heptane as porogenic diluents. The use of ultrasonic dispersion decreases the beads’ size and improves the uniformity. The effects of the porogen mixture, DVB content and solvent extraction on the surface performance of the synthesized beads were studied. The microspheres were characterized by scanning electron microscopy (SEM) and BET surface area determination. It was found that a great proportion of the non-solvating porogen increases the pore diameter and the specific surface area. High DVB concentration also re- sults in the great specific surface area and porosity. When the ratio of toluene/cyclohexanol is 1:2, DVB content is at the range of 40%—60% and methylene chloride was used as extractant, the beads with good spherical shape and pore size were obtained. The prepared porous microspheres were applied as active carriers and showed satisfactory slow release effect. Over 10h constantly sustained release was observed in vitro releasing test for hydro- quinone-loaded microspheres. Great surface area promoted high concentration of released hydroquinone.展开更多
基金Supported by National Key Technology R&D Program(2006BAD05B06-04)Kunming Science and Technology Program(08S010201)~~
文摘[Objective] The aim was to study the effects of slow release fertilizer on the yield,economic benefit and nutrient use efficiency of carnation and environmental pollution.[Method] Taking carnation(Dianthus caryophyllus)as research object,the application effect and environmental protection effect of slow release fertilizer on carnation were discussed through field plot test.[Result] The main agronomic characters of carnation improved after the application of slow release fertilizer;compared with Conv-F treatment,the yield of carnation with slow release fertilizer increased by 18.67%-20.83%,and its economic benefit increased by 105 500 yuan/hm2,while the ratio of output to input improved by 74.29%;under the same NPK ratio and nutrient amount,the yield,economic benefit and ratio of output to input of carnation after the application of slow release fertilizer increased by 2.11%,14 800 yuan and 16.2%,respectively;besides,the application of slow release fertilizer improved the nutrient use efficiency of carnation,and N,P and K nutrient use efficiency in Opt-F-0.7% treatment increased by 13.88%,8.57% and 30.14% compared with Conv-F treatment.[Conclusion] Slow release fertilizer could not only reduce the waste of fertilizer resources and improve fertilizer use efficiency but also decrease the pollution caused by nutrient loss,which had important practical significance for protecting ecological environment and promoting the sustainable development of agriculture.
文摘Fertilizer issues such as overuse, leaching and soil degradation are becoming severe?in?worldwide plantation areas. To secure current food production, prevention measures on these issues are relatively limited on agricultural production areas. Slow release fertilizer is prevailing over past years due to its significant effects on prevention of fertilizer leaching and less harm to soil and underground water. We presented here the mechanisms of a novel zeolite-based slow release fertilizer including its properties as reservoirs of nutrients, pH balancer and also water retainer in soil. By providing sufficient nutrients to soil, this fertilizer has commercially proven to give better growing environment to grower as well as labor saving and cost saving.
基金financial support from the National Key Research and Development Program of China(2016YFD0300109)the National Natural Science Foundation of China(31771709)+2 种基金the Jiangsu Agricultural Industry Technology System of China(JATS[2019]458)the High-end Talent Support Program of Yangzhou University,Chinathe Priority Academic Program Development of Jiangsu Higher Education Institutions,China。
文摘Excessive or insufficient application of fertilizer has raised broader concerns regarding soil and environmental degradation.One-time application of slow release fertilizer (SF) has been widely used to reduce yield gap with potential maize yield and improve nitrogen use efficiency (NUE).A 2-year field experiment (2018–2019) was conducted to evaluate the effects of SF rates from 0 to 405 kg N ha^(–1) (named F0,SF225,SF270,SF315,SF360,and SF405) and 405 kg N ha^(–1) of common fertilizer(CF405) on the grain yield,biomass and N accumulation,enzymatic activities related with carbon–nitrogen metabolism,NUE and economic analysis.Results indicated that the highest grain yields,NUEs and economic returns were achieved at SF360in both varieties.The enzymatic activities related with carbon–nitrogen metabolism,pre-and post-silking accumulation of biomass and N increased with increasing SF rate,and they were the highest at SF360 and SF405.The grain yield at SF360had no significant difference with that at SF405.However,the N partial factor productivity,N agronomic efficiency and N recovery efficiency at SF360 were 9.8,6.6 and 8.9% higher than that at SF405.The results also indicated that the average grain yields,NUE and economic benefit at SF405 were 5.2,12.3 and 18.1% higher than that at CF405.In conclusion,decreasing N rate from 405 kg ha^(–1)(CF) to 360 kg ha^(–1)(SF) could effectively reduce the yield gap between realized and potential maize yields.The N decreased by 11.1%,but the yield,NUE and economic benefit increased by 3.2,22.2 and 17.5%,which created a simple,efficient and business-friendly system for spring maize production in Jiangsu Province,China.
文摘After the sewage treatment, putting the wet sludge in which the heavy metal content is extremely low, corrupt and broken straw, bentonite, urea in proportioning according to the certain ratio, mixing well-distributed, taking the shape of Nitrogen slow-release fertilizers, doing the dynamic bioleaching test by the method of Artificial rainfall simulation, researching the slow-release characteristic, water retention. When the mass ratio of the wet sludge whose water content is 82.5%: bentonite: corrupt and broken straw: urea is 62.5: 12.5: 12.5: 12.5, drip washing the 10g Nitrogen slow-release fertilizers by the 80ml distilled water after 48h, the residue rate of urea is 29.63%; Under the room temperature of 25 ℃, 77%RH, moisture evaporate 46.32% after 60 h. The results demonstrate that the slow-release fertilizer has a good release-effect of nitrogen and water conservation effect. It provides the basic for the development and application of the sewage in the aspect of Nitrogen slow-release fertilizers.
基金Supported by Sugar Crop Research System(CARS-170303)Training Project of"Yunling Industry Technology Leading Talent"(2018LJRC56)Special Funds for Construction of Modern Agricultural Industrial Technology System of Yunnan Province(YNGZTX-4-92)
文摘In order to select the long-acting,low toxic,low-risk and multi-functional new pesticides for the control of sugarcane borders and woolly aphids and precise and efficient application technology,the control effect of 10% monosultap · thiamethoxam granular formulation and 1% Bt · clothianidin granular formulation on sugarcane borders and woolly aphids were studied.The results showed that 10% monosultap·thiamethoxam GR and 1% Bt·clothianidin GR had good control effects on sugarcane borders and woolly aphids.They were ideal slow-release,long-acting,low toxic and multi-functional new pesticides used to control sugarcane borders and woolly aphids.They could be used alternately with other pesticides to delay the emergence and development of pest resistance to pesticides.The best dosage of the two pesticides in the field was 45 kg/hm^2.They could be mixed with fertilizer( 1200-1800 kg/hm^2),scattered in sugarcane ditches or at the base of sugarcane plants,and covered with soil or film from January to July.The control effect on dead heart seedlings damaged by borers could be up to above 79.2%,and the control effect on sugarcane woolly aphids could reach more than 98.8%.In comparison with the control group,the actual yield and sugar content of sugarcane increased by above 41 555 kg/hm^2 and 6.5% respectively.The application of slow-release,long-acting,strong systemic and multi-functional new agents with fertilizer around roots is convenient,precise and efficient,labor-saving,time-saving and environmentally friendly,and is worthy of being widely applied in sugarcane areas.
基金Supported by the Special Fund for Construction of National Tea Industry Technology System(CARS-23)Funding Project of Hubei Agricultural Science and Technology Innovation Center(2011-620-005-003-04)~~
文摘Slow/controlled release fertilizers (SRFs/CRFs) have been paid more at- tentions by the researchersin recent years. In this paper, the application effects and methods, types, current problem and development prospect of SRFs/CRFsboth at home and abroad were reviewed. The production principles and processes of urea- formaldehyde slow release fertilizers were introduced; and It is suggested that the urea-formaldehyde slow release fertilizers show great development to ease energy and environment pressure.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest from Ministry of Agriculture(200903025-05)Fund from Kunming Municipal Science and Technology Committee(08S010201)~~
文摘[Objective] The aim of this study was to investigate the impacts of slow and controlled release fertilizers(SCRF)on the yield of qiubei hot pepper,its nutrient use efficiency and environment.[Method] Using Qiubei hot pepper(Capsicum frutescens L.)as the experimental material,we studied the fertilization effect and environment-protecting effect of SCRF.[Result] The result showed that SCRF could improve the agronomic characteristics of hot pepper.Compared to singly applied common fertilizers,SCRF increased economic yield by 20.90% and economic benefit by 13 234.35 Yuan/hm2,and the ratio of output to input was improved by 47.93%.In comparison with common straight fertilizers at same NPK proportion and rate,SCRF increased economic yield by 5.26% and economic benefit by 5 554.80 Yuan/hm2,and the ratio of output to input was improved by 9.91%.Under the reduced use of SCRF by 20%,SCRF increased economic yield by 12.38% and economic benefit by 9595.20 Yuan/hm2 compared with singly applied common fertilizers,and the ratio of output to input was improved by 65.95%.SCRF improved nitrogen,phosphorus and potassium use efficiencies by 12.42-17.53,3.35-5.24 and 5.37-14.02 percents respectively.[Conclusion] As the result of much reduced N and P application rates,SCRF would significantly economize fertilizer resources and minimize the pollution caused by the loss of fertilizer nutrients,which is of practical importance for environment protection.
基金Supported by the Science and Technology Department of Shanxi Province, China(033004).
文摘Slow-release polymeric fertilizer containing multiple nutrients was synthesized through condensation polymerization from raw materials of homemade low-molecular urea-formaldehyde and the compounds of potassium dihydrogen phosphate and phosphoric acid. Adjustment of the proportion of raw materials makes the ingredients of the fertilizer are N:P_2O_5:K_2O =1:0.75:0.13, which satisfy the nutritional requirement for maize growth. Field-experiment results prove that the yield of maize increases by 16.56% when using the polymeric fertilizer special for maize alone, by 56.51% when applying the polymeric fertilizer special for maize plus farmyard manure, and by 49.11% when applying the SV fertilizer special for maize plus manure.
基金Supported by Basal Research Fund of Rubber Research Institute of CATAS:"Development and Application of New Type Fertilizers for Rubber Tree"(No.1630022012003)"Special Funds of China Agriculture Reserach Systems"(No.CARS-34)~~
文摘[Objective] A new-type water-absorbent slow release nitrogen fertilizer(WASRNF) was produced through polymerization reaction. Its physicochemical property and application effect in latosol were studied. Feasibility of using WASRNF to improve the serious problems of latosol in rubber planting area in Hainan Island including vulnerable nutrient, free-running fertilizer and water was studied. [Result] The results showed that raw materials of WASRNF, urea and water-retention material formed co-polymer through hydrogen-bond interaction that the WASRNF contained many hydrophilic groups. The p H value of WASRNF is near neutral and its water absorbent rate in tap water could reach 167.17 g·g-1. The water absorbent rates in latosol leach liquors with water/soil ratios of 1:5, 1:10 and 1:20 were 104.66, 122.93 and 145.38 g·g^-1, respectively. The maximum water holding ratio of latosol increased by 23.72%, 30.89% and 39.68% when 0.5%, 1% and 2% WASRNFs were added to latosol, and water evaporation rate of latosol decreased efficiently. Compared with common urea, WASRNF could slow down the leaching rate of nitrogen and the initial leaching amount was only 22.17% of the total amount. [Conclusion]The results indicated that WASRNF in latosol had strong water absorption and water-retention abilities in addition to the good slow release effect, and could efficiently decrease nutrient loss, increase utilization ratio of water and fertilizer and promote interaction between water and fertilizer.
基金Supported by Major Project of Control and Treatment on Domestic Water Pollution(2012ZX07103003)National 973 Project(2008CB418006)Science and Technology Foundation for Distinguished Young Schlors in Anhui Province(10040606Y30)~~
文摘[Objective] The aim was to study on effects of controlled release fertilizer on loss of nitrogen and phosphorus from farmland. [Method] Experiment was conducted in fields planted with rice and corn around Chao Lake and effects of compound fertilizer, controlled release fertilizer and controlled release fertilizer (reduced by 20%) on loss of nitrogen and phosphorus through runoff and leaching were analyzed. [Result] Loss of nitrogen and phosphorus mainly occurred in early stage of fertilizing; loss caused by runoff accounted for over 98% and caused by leaching was lower than 2%, indicating that nutrients of rice and corn mainly lost through runoff. As for controlled release fertilizers with 20% reduced, total loss of N and P decreased by 60% and 63% in rice field and reduced by 27.8% and 34% in corn field, respectively, indicating that controlled release fertilizer would maintain nutrients in soils high in later period of plant growth, improve use efficiency of N and P, reduce N and P loss in rice and corn fields in rainy season, and decrease non-point pollution. [Conclusion] The research suggested that controlled release fertilizer would slow down the loss of nutrients in farmlands, providing scientific references and technological support for extension of controlled release fertilizer and reduction of agricultural non-point pollution.
基金Supported by Special Project for Construction of Modern Agricultural Industrial Technology System(CARS-20-3-5)Scientific Research and Technological Development Program Project of Guangxi(Gui Ke Neng 14121007-1-5)+1 种基金Natural Science Foundation Project of Guangxi(Gui Ke Zi 0991203)Scientific Development Fund Project of Guangxi Academy of Agricultural Sciences(2015JM23)
文摘The effects of slow-release fertilizers and sugarcane-specific fertilizers on the growth and quality of sugarcane were studied to provide a theoretical basis for cultivation of sugarcane with lower costs but higher efficiency. Field experiments were carried out in two major sugarcane areas in Guangxi and three fertilization treatments were studied: single application of compound fertilizers( treatment I),compound fertilizers + slow-release fertilizers( treatment II) and sugarcane-specific base fertilizers + sugarcane-specific topdressing( treatment III). Effects of equal fertilization conditions of treatment I,II and III on growth,yield and sugar of sugarcane were studied. The three fertilization treatments had little effects on emergence,tillering,and effective stems of sugarcane,but compared with the treatment of compound fertilizer( treatment I) with a ratio of N,P,and K of 1∶1∶1,treatment II using slow-release fertilizers as topdressing had better growth,higher plant height and stem diameter,so the yield was higher. Treatment III designed sugarcane-specific fertilizers with proper ratio according to fertilizer demands of sugarcane. Besides,the treatment III sugarcane-specific base fertilizers,containing certain amount of organic matters,could promote the sugar accumulation of sugarcane. Therefore,the sugarcane yield of treatment III was higher than that of treatment II. In conclusion,slow-release fertilizers and sugarcane-specific fertilizers can significantly increase sugarcane yield,especially sugarcane-specific fertilizers. Sugarcane-specific fertilizers have reasonable ratio and contain certain amount of organic matters,and can increase sugar content,obtain significant economic benefits,so it is worth popularization in large areas.
文摘Controlled release fertilizers (CRF) are produced with different rates and durations of nutrient release to cater to different crops with wide ranges of nutrient requirements. A rapid technique is needed to verify the label specifications of nutrient release rate and duration. Polymer-coated urea (PCU) (43% nitrogen [N]) and polymer-coated N, phosphorus (P), potassium (K) (PC_NPK;14-14-14) fertilizer products were used in this study. Soil incubation of the above CRF products at 25℃ showed that 63.6% to 70.8% of total N was released over 220 days (d). At 100℃ in water 100% of N release occurred in about 168 to 216 hours (h). Regression equations were developed for cumulative nutrient release as a function of release time separately at 25℃ and 100℃. Using the above regressions, the release duration for a given percent nutrient release at each temperature was calculated. These values were then used to establish a relationship between the release duration at 25℃ as a function of that at 100℃. This relationship is useful to predict the release duration at 25℃ of an unknown CRF product by conducting a rapid release test in water at 100℃. This study demonstrated that a rapid nutrient release test at 100℃ successfully predicted nutrient release rate and duration at 25℃, for polymer coated fertilizers. Therefore, this rapid test can be used to verify the label release rate and duration of most CRF products.
基金the National Key R&D Program of China (2016YFD0300503)the Key Research Program of Jiangsu Province, China (BE2016344)+3 种基金the National Rice Industry Technology System, China (CARS01-27)the National Nature Science Foundation of China (31701350)the Program for Scientific Elitists of Yangzhou University, Chinaa Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China
文摘There is limited information about the influence of slow or controlled release fertilizer(S/CRF) on rice yield and quality. In this study, japonica rice cultivar Nanjing 9108 was used to study the effects of three different S/CRFs(polymer-coated urea(PCU), sulfur-coated urea(SCU), and urea formaldehyde(UF)) and two fertilization modes(both S/CRF and common urea(CU) as basal fertilizer, S/CRF as basal and CU as tillering fertilizer) on rice yield and quality. CU only was applied separately as control(CK). Results showed that, rice grain yield, chalky kernel rate, chalky area, overall chalkiness, and the content of gliadin, glutenin, and protein, all showed the trends of UF〉PCU〉SCU within the same fertilization mode, and showed the trends of S/CRF as basal and CU as tillering fertilizer〉both S/CRF and CU as basal fertilizer within the same type of S/CRF. In contrast, the contents of amylose, amylopectin, and starch, as well as taste value, and peak and hot viscosity showed trends of SCU〉PCU〉UF, and the trends of both S/CRF and CU as basal fertilizer〉S/CRF as basal and CU as tillering fertilizer. Among S/CRF treatments and fertilization modes, taste values of cooked rice were positively correlated with amylose, amylopectin, and starch contents, as well as gel consistency, peak viscosity, hot viscosity, and cool viscosity, while negatively correlated with globulin, gliadin, glutenin, and protein contents. The types of S/CRF and fertilization modes are important for improving rice yield and quality. Compared to CK, higher yield and similar quality of rice was achieved with UF as basal and CU as tillering fertilizer, and similar yield with improved appearance and eating and cooking quality of rice was achieved with either both UF and CU as basal fertilizer, or PCU as basal and CU as tillering fertilizer.
文摘This study examined the release characteristics of different N forms in an uncoated slow/controlled-release compound fertilizer (UCRF) and the N uptake and N-use efficiency by rice plants. Water dissolution, soil leaching, and pot experiments were employed. The dynamics of N release from the UCRF could be quantitatively described by three equations: the first-order kinetics equation [N1=N0 (1-e^-kt)], Elovich equation (N1=a + blnt), and parabola equation (N1=a + bt^0.5), with the best fitting by the first-order kinetics equation for different N (r= 0.9569^**-0.9999^**). The release potentials (No values estimated by the first-order kinetics equation) of different N in the UCRF decreased in the order of total N 〉 DON 〉 urea-N 〉 NH4^+-N 〉 NO3^-N in water, and total N 〉 NH4^+-N 〉 DON 〉 urea-N 〉 NO3^--N in soil, respectively, being in accordance with cumulative amounts of N release. The constants of N release rate (k values and b values) for different N forms were in decreasing order of total N 〉 DON 〉 NH4^+-N 〉 NO3^--N in water, whereas the k values were urea- N 〉DON 〉 NH4^+-N 〉 total N 〉 NO3^--N, and the b values were total N 〉 NH4^+-N 〉 DON 〉 NO3^--N 〉 urea-N in soil. Compared with a common compound fertilizer, the N-use efficiency, N-agronomy efficiency, and N-physiological efficiency of the UCRF were increased by 11.4%, 8.32 kg kg^-1, and 5.17 kg kg^-1, respectively. The ratios of different N to total N in the UCRF showed significant correlation with N uptake by rice plants. The findings showed that the first-order kinetics equation [Nt=N0 (l-e^kt)] could be used to describe the release characteristics of different N forms in the fertilizer. The UCRF containing different N forms was more effective in facilitating N uptake by rice compared with the common compound fertilizer containing single urea-N form.
基金the National Key Technology R&D Program of the 11th Five-Year Period (No.2006BAD10B08)
文摘Polyurethane coated urea slow/controlled release fertilizer was prepared based on urea granules, isocyanate, polyols and paraffin. Isocyanate reacted with polyols to synthesize the polyurethane skin layer on urea granules surface. Paraffin serves as a lubricant during syntheses of polyurethane skin layers. The structure and nutrient release characteristics of the polyurethane skin layers were investigated by FTIR, SEM and TG. Urea nitrogen slow-release behavior of the polyurethane coated urea was tested. The experimental results indicated that compact and dense polyurethane skin layers with a thickness of 10-15 lam were formed on urea surface, the urea nitrogen slow-release time can reach 40-50 days. Paraffin proves to play a key role in inhibiting water to penetrate into urea, but excessive addition would decrease the polyurethane crosslinking density.
基金Supported by the Effect and Mechanism of Gel-based Controlled Release Fertilizers on Controlling the Nutrient Loss in Soil Erosion (10501-291)Research and Demonstration of New Special Fertilizer for Seawater Fishes and Shellfish (2012-931)+1 种基金Key Techniques and Demonstration of Tobacco Controlled Release Fertilizer Industrialization (2012-045)Research and Application of Gel-based Controlled Release Fertilizers (2002N002)~~
文摘[Objective] This study aimed to investigate the effects of gel-based controlled release fertilizers (CRFs) on agronomic characteristics and physiological indices of corn. [Method] Pot experiment was carried out to investigate the agronomic characteristics and physiological indices of corn fertilized with controlled release fertilizers compared with conventional fertilizer (CF). [Result] Plant height, stem girth, leaf area and root volume of corn were significantly increased under the CRF treatments; photosynthetic rate and soluble protein content were also improved. Dry matter accumulations under the two CRF treatments were increased by 21.3% and 17.0% compared with CF application at one time (CF1), and 19.6% and 15.4% with CF application at two times (CF2), respectively. Accumulation amounts of N, P and K in whole plant under the two CRF treatments were increased by 44.0% -24.7% , 40.0%-25.9% and 20.1% -13.9% ; and the nutrient use efficiencies of N, P and K were improved by 22.9% -13.4% , 11.2% -9.6% and 17.5% -12.1% , respectively. [Conclusion] The results implied that the CRFs could significantly improve nutrient use efficiency and plant yield.
基金the National Key Research and Development Program of China(22017YFD0301203,2018YFD0300803)the Jiangsu Key Research and Development Program,China(BE2017369)the Jiangsu Agricultural Science and Technology Innovation Fund,China(CX(18)1002)。
文摘This experiment explored the effects of single application of seven types of slow-and controlled-release fertilizers on rice yield and various population characteristics.Based on a study of the nitrogen(N)release characteristics of these fertilizers,pot experiments were conducted in 2018 and 2019 with split fertilization(CK,urea applied split equally at basal and panicle initiation stages,respectively)as control,which assessed the effects on SPAD value,yield and yield components,dynamic changes of rice tillers and dry matter accumulation.The results showed that the N release characteristics of different types of slow-and controlled-release fertilizers were significantly different.Polymer-coated urea(PCU)showed a controlledrelease mode and provided sustained release throughout the whole growth stages.Sulfur-coated urea(SCU)exhibited a slow-release mode,providing insufficient release at the middle and late stages.Urease inhibitor urea(AHA)and ureaformaldehyde(UF)yielded a rapid-release mode,with an explosive N release at the early stage and no release at the middle and late stages.These results showed that PCU delayed the peak seedling stage.Compared with CK,dry matter accumulation and SPAD showed no significant differences,and due to the continuous release of N throughout the growth stages,rice yield,spikelets per panicle,seed setting rate,and 1000-grain weight were all increased.Owing to the lack of N supply at the late stage and the low number of spikelets,SCU led to a reduction of rice yield,which is nevertheless not statistically significant.AHA and UF were susceptible to environmental factors and had varying effects on rice yield.The results of this experiment indicated that given a fixed amount of N applied in a pot,the stronger the N supply capacity and the longer the effective duration time of the fertilizer,the higher the dry matter accumulation at the late growth stage,and the higher the rice yield.
基金supported by Research University Grant Scheme(RUGS)University Putra Malaysia(No.03-02-12-2293RU)
文摘The fertiliser industry faces a continuing challenge to improve the efficiency of their products,particularly of nitrogenous fertilisers,and to minimise adverse impacts.Therefore,a new slow release fertilizer,ureaimpregnated woodchips from tropical plant biomass(oil palm frond and rubberwood),was developed.The morphology of the impregnated woodchips was investigated by scanning electron microscopy and the success of impregnation of urea and nitrogen deposition into the woodchips was confirmed by energy dispersive X-ray spectrometry.When nitrogen release patterns from impregnated woodchips fertiliser were simulated using a soil solution and distilled water as leaching solutions in a static condition for 768 h,release was slow and steady,although the release rate was lower in distilled water than in the soil solution.
基金Supported by Natural Science Foundation of Guangdong Province (No.05006556).
文摘Functional porous microspheres used for the slow release carrier of actives in cosmetics or pharmaceu- ticals were prepared by modified suspension polymerization of styrene (ST) with divinylbenzene (DVB) in the presence of toluene, cyclohexanol and heptane as porogenic diluents. The use of ultrasonic dispersion decreases the beads’ size and improves the uniformity. The effects of the porogen mixture, DVB content and solvent extraction on the surface performance of the synthesized beads were studied. The microspheres were characterized by scanning electron microscopy (SEM) and BET surface area determination. It was found that a great proportion of the non-solvating porogen increases the pore diameter and the specific surface area. High DVB concentration also re- sults in the great specific surface area and porosity. When the ratio of toluene/cyclohexanol is 1:2, DVB content is at the range of 40%—60% and methylene chloride was used as extractant, the beads with good spherical shape and pore size were obtained. The prepared porous microspheres were applied as active carriers and showed satisfactory slow release effect. Over 10h constantly sustained release was observed in vitro releasing test for hydro- quinone-loaded microspheres. Great surface area promoted high concentration of released hydroquinone.