Electrochemical impedance spectroscopy(EIS)flow cytometry offers the advantages of speed,affordability,and portability in cell analysis and cytometry applications.However,the integration challenges of microfluidic and...Electrochemical impedance spectroscopy(EIS)flow cytometry offers the advantages of speed,affordability,and portability in cell analysis and cytometry applications.However,the integration challenges of microfluidic and EIS read-out circuits hinder the downsizing of cytometry devices.To address this,we developed a thermal-bubble-driven impedance flow cytometric application-specific integrated circuit(ASIC).The thermal-bubble micropump avoids external piping and equipment,enabling high-throughput designs.With a total of 36 cell counting channels,each measuring 884×220μm^(2),the chip significantly enhances the throughput of flow cytometers.Each cell counting channel incorporates a differential trans-impedance amplifier(TIA)to amplify weak biosensing signals.By eliminating the parasitic parameters created at the complementary metal-oxidesemiconductor transistor(CMOS)-micro-electromechanical systems(MEMS)interface,the counting accuracy can be increased.The on-chip TIA can adjust feedback resistance from 5 to 60 kΩto accommodate solutions with different impedances.The chip effectively classifies particles of varying sizes,demonstrated by the average peak voltages of 0.0529 and 0.4510 mV for 7 and 14μm polystyrene beads,respectively.Moreover,the counting accuracies of the chip for polystyrene beads and MSTO-211H cells are both greater than 97.6%.The chip exhibits potential for impedance flow cytometer at low cost,high-throughput,and miniaturization for the application of point-of-care diagnostics.展开更多
The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flo...The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flows. In thispaper, we present a theoretical investigation of the double diffusion convection in the peristaltic transport of aPrandtl nanofluid through an asymmetric tapered channel under the combined action of thermal radiation andan induced magnetic field. The equations for the current flow scenario are developed, incorporating relevantassumptions, and considering the effect of viscous dissipation. The impact of thermal radiation and doublediffusion on public health is of particular interest. For instance, infrared radiation techniques have been used totreat various skin-related diseases and can also be employed as a measure of thermotherapy for some bones toenhance blood circulation, with radiation increasing blood flow by approximately 80%. To solve the governingequations, we employ a numerical method with the aid of symbolic software such as Mathematica and MATLAB.The velocity, magnetic force function, pressure rise, temperature, solute (species) concentration, and nanoparticlevolume fraction profiles are analytically derived and graphically displayed. The results outcomes are compared withthe findings of limiting situations for verification.展开更多
This paper proposes a mathematical modeling approach to examine the two-dimensional flow stagnates at x=0 over a heated stretchable sheet in a porous medium influenced by nonlinear thermal radiation,variable viscosity...This paper proposes a mathematical modeling approach to examine the two-dimensional flow stagnates at x=0 over a heated stretchable sheet in a porous medium influenced by nonlinear thermal radiation,variable viscosity,and MHD.This study’s main purpose is to examine how thermal radiation and varying viscosity affect fluid flow motion.Additionally,we consider the convective boundary conditions and incorporate the gyrotactic microorganisms equation,which describes microorganism behavior in response to fluid flow.The partial differential equations(PDEs)that represent the conservation equations for mass,momentum,energy,and microorganisms are then converted into a system of coupled ordinary differential equations(ODEs)through the inclusion of nonsimilarity variables.Using MATLAB’s built-in solver bvp4c,the resulting ODEs are numerically solved.The model’s complexity is assessed by plotting two-dimensional graphics of the solution profiles at various physical parameter values.The physical parameters considered in this study include skin friction coefficient,local Nusselt number,local Sherwood number,and density of motile microorganisms.These parameters measure,respectively,the roughness of the sheet,the transformation rate of heat,the rate at which mass is transferred to it,and the rate at which microorganisms are transferred to it.Our study shows that,depending on the magnetic parameter M,the presence of a porous medium causes a significant increase in fluid velocity,ranging from about 25%to 45%.Furthermore,with an increase in the Prandtl number Pr,we have seen a notable improvement of about 6%in fluid thermal conductivity.Additionally,our latest findings are in good agreement with published research for particular values.This study provides valuable insights into the behavior of fluid flow under various physical conditions and can be useful in designing and optimizing industrial processes.展开更多
The present study examines the thermal distribution of ternary nanofluid flow amid two spinning disks influenced by electric and magnetic fields. Keeping in view the shape of the particles, the electrically conducting...The present study examines the thermal distribution of ternary nanofluid flow amid two spinning disks influenced by electric and magnetic fields. Keeping in view the shape of the particles, the electrically conducting ternary nanofluid is analyzed with variable thermophysical features. Three types of nanoparticles namely Copper, Aluminum Oxide, and Graphene with spherical, cylindrical, and platelet shapes are taken respectively and are immersed in a (50-50)% ratio of water and ethylene glycol mixture which acts as a base fluid. The anticipated problem is addressed by employing a reliable and user-friendly numerical bvp4c built-in collocation scheme. This solution is then showcased through illustrations and tables. Strengthening the radiation results in an enhanced heat transfer rate. Radial and azimuthal velocities once rotation of disks is enhanced. The key findings provide a strong theoretical background in photovoltaic cells, solar collectors, radiators, solar water heaters, and many other applications.展开更多
In fractured geothermal reservoirs,the fracture networks and internal fluid flow behaviors can significantly impact the thermal performance.In this study,we proposed a non-Darcy rough discrete fracture network(NR-DFN)...In fractured geothermal reservoirs,the fracture networks and internal fluid flow behaviors can significantly impact the thermal performance.In this study,we proposed a non-Darcy rough discrete fracture network(NR-DFN)model that can simultaneously consider the fracture evolution and non-Darcy flow dynamics in studying the thermo-hydro-mechanical(THM)coupling processes for heat extraction in geothermal reservoir.We further employed the model on the Habanero enhanced geothermal systems(EGS)project located in Australia.First,our findings illustrate a clear spatial-temporal variation in the thermal stress and pressure perturbations,as well as uneven spatial distribution of shear failure in 3D fracture networks.Activated shear failure is mainly concentrated in the first fracture cluster.Secondly,channeling flow have also been observed in DFNs during heat extraction and are further intensified by the expansion of fractures driven by thermal stresses.Moreover,the combined effect of non-Darcy flow and fracture evolution triggers a rapid decline in the resulting heat rate and temperature.The NR-DFN model framework and the Habanero EGS's results illustrate the importance of both fracture evolution and non-Darcy flow on the efficiency of EGS production and have the potential to promote the development of more sustainable and efficient EGS operations for stakeholders.展开更多
Geothermal energy has gained wide attention as a renewable alternative for mitigating greenhouse gas emissions.The advancements in enhanced geothermal system technology have enabled the exploitation of previously inac...Geothermal energy has gained wide attention as a renewable alternative for mitigating greenhouse gas emissions.The advancements in enhanced geothermal system technology have enabled the exploitation of previously inaccessible geothermal resources.However,the extraction of geothermal energy from deep reservoirs poses many challenges due to high‐temperature and high‐geostress conditions.These factors can significantly impact the surrounding rock and its fracture formation.A comprehensive understanding of the thermal–hydraulic–mechanical(THM)coupling effect is crucial to the safe and efficient exploitation of geothermal resources.This study presented a THM coupling numerical model for the geothermal reservoir of the Yangbajing geothermal system.This proposed model investigated the geothermal exploitation performance and the stress distribution within the reservoir under various combinations of geothermal wells and mass flow rates.The geothermal system performance was evaluated by the criteria of outlet temperature and geothermal productivity.The results indicate that the longer distance between wells can increase the outlet temperature of production wells and improve extraction efficiency in the short term.In contrast,the shorter distance between wells can reduce the heat exchange area and thus mitigate the impact on the reservoir stress.A larger mass flow rate is conducive to the production capacity enhancement of the geothermal system and,in turn causes a wider range of stress disturbance.These findings provide valuable insights into the optimization of geothermal energy extraction while considering reservoir safety and long‐term sustainability.This study deepens the understanding of the THM coupling effects in geothermal systems and provides an efficient and environmentally friendly strategy for a geothermal energy system.展开更多
A reliable multiphase flow simulator is an important tool to improve wellbore integrity and production decision-making.To develop a multiphase flow model with high adaptability and high accuracy,we first build a multi...A reliable multiphase flow simulator is an important tool to improve wellbore integrity and production decision-making.To develop a multiphase flow model with high adaptability and high accuracy,we first build a multiphase flow database with 3561 groups of data and developed a drift closure relationship with stable continuity and high adaptability.Second,a high-order numerical scheme with strong fault capture ability is constructed by effectively combining MUSCL technology,van Albada slope limiter and AUSMV numerical scheme.Finally,the energy equation is coupled into the AUSMV numerical scheme of the drift flow model in the form of finite difference.A transient non-isothermal wellbore multiphase flow model with wide applicability is formed by integrating the three technologies,and the effects of various factors on the calculation accuracy are studied.The accuracy of the simulator is verified by comparing the measurement results with the blowout experiment of a full-scale experimental well.展开更多
Diffusions of multiple components have numerous applications such as underground water flow, pollutant movement, stratospheric warming, and food processing. Particularly, liquid hydrogen is used in the cooling process...Diffusions of multiple components have numerous applications such as underground water flow, pollutant movement, stratospheric warming, and food processing. Particularly, liquid hydrogen is used in the cooling process of the aeroplane. Further, liquid nitrogen can find applications in cooling equipment or electronic devices, i.e., high temperature superconducting(HTS) cables. So, herein, we have analysed the entropy generation(EG), nonlinear thermal radiation and unsteady(time-dependent) nature of the flow on quadratic combined convective flow over a permeable slender cylinder with diffusions of liquid hydrogen and nitrogen. The governing equations for flow and heat transfer characteristics are expressed in terms of nonlinear coupled partial differential equations. The solutions of these equations are attempted numerically by employing the quasilinearization technique with the implicit finite difference approximation. It is found that EG is minimum for double diffusion(liquid hydrogen and heat diffusion)than triple diffusion(diffusion of liquid hydrogen, nitrogen and heat). The enhancing values of the radiation parameter R_(d) and temperature ratio θ_(w) augment the fluid temperature for steady and unsteady cases as well as the local Nusselt number. Because, the fluid absorbs the heat energy released due to radiation, and in turn releases the heat energy from the cylinder to the surrounding surface.展开更多
In this paper,the effects of thermal radiation and viscous dissipation on the stagnation–point flow of a micropolar fluid over a permeable stretching sheet with suction and injection are analyzed and discussed.A suit...In this paper,the effects of thermal radiation and viscous dissipation on the stagnation–point flow of a micropolar fluid over a permeable stretching sheet with suction and injection are analyzed and discussed.A suitable similarity transformation is used to convert the governing nonlinear partial differential equations into a system of nonlinear ordinary differential equations,which are then solved numerically by a fourth–order Runge–Kutta method.It is found that the linear fluid velocity decreases with the enhancement of the porosity,boundary,and suction parameters.Conversely,it increases with the micropolar and injection parameters.The angular velocity grows with the boundary,porosity,and suction parameters,whereas it is reduced if the micropolar and injection parameters become larger.It is concluded that the thermal boundary layer extension increases with the injection parameter and decreases with the suction parameter.展开更多
Blade batteries are extensively used in electric vehicles,but unavoidable thermal runaway is an inherent threat to their safe use.This study experimentally investigated the mechanism underlying thermal runaway propaga...Blade batteries are extensively used in electric vehicles,but unavoidable thermal runaway is an inherent threat to their safe use.This study experimentally investigated the mechanism underlying thermal runaway propagation within a blade battery by using a nail to trigger thermal runaway and thermocouples to track its propagation inside a cell.The results showed that the internal thermal runaway could propagate for up to 272 s,which is comparable to that of a traditional battery module.The velocity of the thermal runaway propagation fluctuated between 1 and 8 mm s^(-1),depending on both the electrolyte content and high-temperature gas diffusion.In the early stages of thermal runaway,the electrolyte participated in the reaction,which intensified the thermal runaway and accelerated its propagation.As the battery temperature increased,the electrolyte evaporated,which attenuated the acceleration effect.Gas diffusion affected thermal runaway propagation through both heat transfer and mass transfer.The experimental results indicated that gas diffusion accelerated the velocity of thermal runaway propagation by 36.84%.We used a 1D mathematical model and confirmed that convective heat transfer induced by gas diffusion increased the velocity of thermal runaway propagation by 5.46%-17.06%.Finally,the temperature rate curve was analyzed,and a three-stage mechanism for internal thermal runaway propagation was proposed.In Stage I,convective heat transfer from electrolyte evaporation locally increased the temperature to 100℃.In Stage II,solid heat transfer locally increases the temperature to trigger thermal runaway.In StageⅢ,thermal runaway sharply increases the local temperature.The proposed mechanism sheds light on the internal thermal runaway propagation of blade batteries and offers valuable insights into safety considerations for future design.展开更多
Safe batteries are the basis for next-generation application scenarios such as portable energy storage devices and electric vehicles,which are crucial to achieving carbon neutralization.Electrolytes,separators,and ele...Safe batteries are the basis for next-generation application scenarios such as portable energy storage devices and electric vehicles,which are crucial to achieving carbon neutralization.Electrolytes,separators,and electrodes as main components of lithium batteries strongly affect the occurrence of safety accidents.Responsive materials,which can respond to external stimuli or environmental change,have triggered extensive attentions recently,holding great promise in facilitating safe and smart batteries.This review thoroughly discusses recent advances regarding the construction of high-safety lithium batteries based on internal thermal-responsive strategies,together with the corresponding changes in electrochemical performance under external stimulus.Furthermore,the existing challenges and outlook for the design of safe batteries are presented,creating valuable insights and proposing directions for the practical implementation of safe lithium batteries.展开更多
This study investigates the suction and magnetic field effects on the two-dimensional nanofluid flow through a stretching/shrinking sheet at the stagnation point in the porous medium with thermal radiation.The governi...This study investigates the suction and magnetic field effects on the two-dimensional nanofluid flow through a stretching/shrinking sheet at the stagnation point in the porous medium with thermal radiation.The governing partial differential equations(PDEs)are converted into ordinary differential equations(ODEs)using the similarity transformation.The resulting ODEs are then solved numerically by using the bvp4c solver in MATLAB software.It was found that dual solutions exist for the shrinking parameter values up to a certain range.The numerical results obtained are compared,and the comparison showed a good agreement with the existing results in the literature.The governing parameters’effect on the velocity,temperature and nanoparticle fraction fields as well as the skin friction coefficient,the local Nusselt number and the Sherwood number are represented graphically and analyzed.The variation of the velocity,temperature and concentration increase with the increase in the suction and magnetic field parameters.It seems that the thermal radiation effect has increased the local Sherwood number while the local Nusselt number is reduced with it.展开更多
基金supported by the Key Project of the National Natural Science Foundation of China(Grant No.82130069).
文摘Electrochemical impedance spectroscopy(EIS)flow cytometry offers the advantages of speed,affordability,and portability in cell analysis and cytometry applications.However,the integration challenges of microfluidic and EIS read-out circuits hinder the downsizing of cytometry devices.To address this,we developed a thermal-bubble-driven impedance flow cytometric application-specific integrated circuit(ASIC).The thermal-bubble micropump avoids external piping and equipment,enabling high-throughput designs.With a total of 36 cell counting channels,each measuring 884×220μm^(2),the chip significantly enhances the throughput of flow cytometers.Each cell counting channel incorporates a differential trans-impedance amplifier(TIA)to amplify weak biosensing signals.By eliminating the parasitic parameters created at the complementary metal-oxidesemiconductor transistor(CMOS)-micro-electromechanical systems(MEMS)interface,the counting accuracy can be increased.The on-chip TIA can adjust feedback resistance from 5 to 60 kΩto accommodate solutions with different impedances.The chip effectively classifies particles of varying sizes,demonstrated by the average peak voltages of 0.0529 and 0.4510 mV for 7 and 14μm polystyrene beads,respectively.Moreover,the counting accuracies of the chip for polystyrene beads and MSTO-211H cells are both greater than 97.6%.The chip exhibits potential for impedance flow cytometer at low cost,high-throughput,and miniaturization for the application of point-of-care diagnostics.
基金Institutional Fund Projects under No.(IFP-A-2022-2-5-24)by Ministry of Education and University of Hafr Al Batin,Saudi Arabia.
文摘The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flows. In thispaper, we present a theoretical investigation of the double diffusion convection in the peristaltic transport of aPrandtl nanofluid through an asymmetric tapered channel under the combined action of thermal radiation andan induced magnetic field. The equations for the current flow scenario are developed, incorporating relevantassumptions, and considering the effect of viscous dissipation. The impact of thermal radiation and doublediffusion on public health is of particular interest. For instance, infrared radiation techniques have been used totreat various skin-related diseases and can also be employed as a measure of thermotherapy for some bones toenhance blood circulation, with radiation increasing blood flow by approximately 80%. To solve the governingequations, we employ a numerical method with the aid of symbolic software such as Mathematica and MATLAB.The velocity, magnetic force function, pressure rise, temperature, solute (species) concentration, and nanoparticlevolume fraction profiles are analytically derived and graphically displayed. The results outcomes are compared withthe findings of limiting situations for verification.
文摘This paper proposes a mathematical modeling approach to examine the two-dimensional flow stagnates at x=0 over a heated stretchable sheet in a porous medium influenced by nonlinear thermal radiation,variable viscosity,and MHD.This study’s main purpose is to examine how thermal radiation and varying viscosity affect fluid flow motion.Additionally,we consider the convective boundary conditions and incorporate the gyrotactic microorganisms equation,which describes microorganism behavior in response to fluid flow.The partial differential equations(PDEs)that represent the conservation equations for mass,momentum,energy,and microorganisms are then converted into a system of coupled ordinary differential equations(ODEs)through the inclusion of nonsimilarity variables.Using MATLAB’s built-in solver bvp4c,the resulting ODEs are numerically solved.The model’s complexity is assessed by plotting two-dimensional graphics of the solution profiles at various physical parameter values.The physical parameters considered in this study include skin friction coefficient,local Nusselt number,local Sherwood number,and density of motile microorganisms.These parameters measure,respectively,the roughness of the sheet,the transformation rate of heat,the rate at which mass is transferred to it,and the rate at which microorganisms are transferred to it.Our study shows that,depending on the magnetic parameter M,the presence of a porous medium causes a significant increase in fluid velocity,ranging from about 25%to 45%.Furthermore,with an increase in the Prandtl number Pr,we have seen a notable improvement of about 6%in fluid thermal conductivity.Additionally,our latest findings are in good agreement with published research for particular values.This study provides valuable insights into the behavior of fluid flow under various physical conditions and can be useful in designing and optimizing industrial processes.
文摘The present study examines the thermal distribution of ternary nanofluid flow amid two spinning disks influenced by electric and magnetic fields. Keeping in view the shape of the particles, the electrically conducting ternary nanofluid is analyzed with variable thermophysical features. Three types of nanoparticles namely Copper, Aluminum Oxide, and Graphene with spherical, cylindrical, and platelet shapes are taken respectively and are immersed in a (50-50)% ratio of water and ethylene glycol mixture which acts as a base fluid. The anticipated problem is addressed by employing a reliable and user-friendly numerical bvp4c built-in collocation scheme. This solution is then showcased through illustrations and tables. Strengthening the radiation results in an enhanced heat transfer rate. Radial and azimuthal velocities once rotation of disks is enhanced. The key findings provide a strong theoretical background in photovoltaic cells, solar collectors, radiators, solar water heaters, and many other applications.
基金funded by the National Natural Science Foundation of China (No.U22A20166)Science and Technology Foundation of Guizhou Province (No.QKHJC-ZK[2023]YB074)+2 种基金Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical EngineeringInstitute of Rock and Soil MechanicsChinese Academy of Sciences (No.SKLGME022009)。
文摘In fractured geothermal reservoirs,the fracture networks and internal fluid flow behaviors can significantly impact the thermal performance.In this study,we proposed a non-Darcy rough discrete fracture network(NR-DFN)model that can simultaneously consider the fracture evolution and non-Darcy flow dynamics in studying the thermo-hydro-mechanical(THM)coupling processes for heat extraction in geothermal reservoir.We further employed the model on the Habanero enhanced geothermal systems(EGS)project located in Australia.First,our findings illustrate a clear spatial-temporal variation in the thermal stress and pressure perturbations,as well as uneven spatial distribution of shear failure in 3D fracture networks.Activated shear failure is mainly concentrated in the first fracture cluster.Secondly,channeling flow have also been observed in DFNs during heat extraction and are further intensified by the expansion of fractures driven by thermal stresses.Moreover,the combined effect of non-Darcy flow and fracture evolution triggers a rapid decline in the resulting heat rate and temperature.The NR-DFN model framework and the Habanero EGS's results illustrate the importance of both fracture evolution and non-Darcy flow on the efficiency of EGS production and have the potential to promote the development of more sustainable and efficient EGS operations for stakeholders.
基金supported by the financial support from the National Natural Science Foundation of China(52204084)Project funded by the China Postdoctoral Science Foundation(2021M700388).
文摘Geothermal energy has gained wide attention as a renewable alternative for mitigating greenhouse gas emissions.The advancements in enhanced geothermal system technology have enabled the exploitation of previously inaccessible geothermal resources.However,the extraction of geothermal energy from deep reservoirs poses many challenges due to high‐temperature and high‐geostress conditions.These factors can significantly impact the surrounding rock and its fracture formation.A comprehensive understanding of the thermal–hydraulic–mechanical(THM)coupling effect is crucial to the safe and efficient exploitation of geothermal resources.This study presented a THM coupling numerical model for the geothermal reservoir of the Yangbajing geothermal system.This proposed model investigated the geothermal exploitation performance and the stress distribution within the reservoir under various combinations of geothermal wells and mass flow rates.The geothermal system performance was evaluated by the criteria of outlet temperature and geothermal productivity.The results indicate that the longer distance between wells can increase the outlet temperature of production wells and improve extraction efficiency in the short term.In contrast,the shorter distance between wells can reduce the heat exchange area and thus mitigate the impact on the reservoir stress.A larger mass flow rate is conducive to the production capacity enhancement of the geothermal system and,in turn causes a wider range of stress disturbance.These findings provide valuable insights into the optimization of geothermal energy extraction while considering reservoir safety and long‐term sustainability.This study deepens the understanding of the THM coupling effects in geothermal systems and provides an efficient and environmentally friendly strategy for a geothermal energy system.
基金The work was supported by the National Natural Science Foundation of China(No.51874045)National Natural Science Foundation-Youth Foundation(52104056)+2 种基金Department of Natural Resources of Guangdong Province(GDNRC[2021]56)Postdoctoral innovative talents support program in China(BX2021374)Scientific Research Program of Hubei Provincial Department of Education(T2021004).
文摘A reliable multiphase flow simulator is an important tool to improve wellbore integrity and production decision-making.To develop a multiphase flow model with high adaptability and high accuracy,we first build a multiphase flow database with 3561 groups of data and developed a drift closure relationship with stable continuity and high adaptability.Second,a high-order numerical scheme with strong fault capture ability is constructed by effectively combining MUSCL technology,van Albada slope limiter and AUSMV numerical scheme.Finally,the energy equation is coupled into the AUSMV numerical scheme of the drift flow model in the form of finite difference.A transient non-isothermal wellbore multiphase flow model with wide applicability is formed by integrating the three technologies,and the effects of various factors on the calculation accuracy are studied.The accuracy of the simulator is verified by comparing the measurement results with the blowout experiment of a full-scale experimental well.
文摘Diffusions of multiple components have numerous applications such as underground water flow, pollutant movement, stratospheric warming, and food processing. Particularly, liquid hydrogen is used in the cooling process of the aeroplane. Further, liquid nitrogen can find applications in cooling equipment or electronic devices, i.e., high temperature superconducting(HTS) cables. So, herein, we have analysed the entropy generation(EG), nonlinear thermal radiation and unsteady(time-dependent) nature of the flow on quadratic combined convective flow over a permeable slender cylinder with diffusions of liquid hydrogen and nitrogen. The governing equations for flow and heat transfer characteristics are expressed in terms of nonlinear coupled partial differential equations. The solutions of these equations are attempted numerically by employing the quasilinearization technique with the implicit finite difference approximation. It is found that EG is minimum for double diffusion(liquid hydrogen and heat diffusion)than triple diffusion(diffusion of liquid hydrogen, nitrogen and heat). The enhancing values of the radiation parameter R_(d) and temperature ratio θ_(w) augment the fluid temperature for steady and unsteady cases as well as the local Nusselt number. Because, the fluid absorbs the heat energy released due to radiation, and in turn releases the heat energy from the cylinder to the surrounding surface.
文摘In this paper,the effects of thermal radiation and viscous dissipation on the stagnation–point flow of a micropolar fluid over a permeable stretching sheet with suction and injection are analyzed and discussed.A suitable similarity transformation is used to convert the governing nonlinear partial differential equations into a system of nonlinear ordinary differential equations,which are then solved numerically by a fourth–order Runge–Kutta method.It is found that the linear fluid velocity decreases with the enhancement of the porosity,boundary,and suction parameters.Conversely,it increases with the micropolar and injection parameters.The angular velocity grows with the boundary,porosity,and suction parameters,whereas it is reduced if the micropolar and injection parameters become larger.It is concluded that the thermal boundary layer extension increases with the injection parameter and decreases with the suction parameter.
基金supported by the National Key R&D Program-Strategic Scientific and Technological Innovation Cooperation(Grant No.2022YFE0207900)the National Natural Science Foundation of China(Grant Nos.51706117,52076121)。
文摘Blade batteries are extensively used in electric vehicles,but unavoidable thermal runaway is an inherent threat to their safe use.This study experimentally investigated the mechanism underlying thermal runaway propagation within a blade battery by using a nail to trigger thermal runaway and thermocouples to track its propagation inside a cell.The results showed that the internal thermal runaway could propagate for up to 272 s,which is comparable to that of a traditional battery module.The velocity of the thermal runaway propagation fluctuated between 1 and 8 mm s^(-1),depending on both the electrolyte content and high-temperature gas diffusion.In the early stages of thermal runaway,the electrolyte participated in the reaction,which intensified the thermal runaway and accelerated its propagation.As the battery temperature increased,the electrolyte evaporated,which attenuated the acceleration effect.Gas diffusion affected thermal runaway propagation through both heat transfer and mass transfer.The experimental results indicated that gas diffusion accelerated the velocity of thermal runaway propagation by 36.84%.We used a 1D mathematical model and confirmed that convective heat transfer induced by gas diffusion increased the velocity of thermal runaway propagation by 5.46%-17.06%.Finally,the temperature rate curve was analyzed,and a three-stage mechanism for internal thermal runaway propagation was proposed.In Stage I,convective heat transfer from electrolyte evaporation locally increased the temperature to 100℃.In Stage II,solid heat transfer locally increases the temperature to trigger thermal runaway.In StageⅢ,thermal runaway sharply increases the local temperature.The proposed mechanism sheds light on the internal thermal runaway propagation of blade batteries and offers valuable insights into safety considerations for future design.
基金supported by the National Natural Science Foundation of China(22179070,U1932220)the Natural Science Foundation of Jiangsu Province(BK20220073)the Fundamental Research Funds for the Central Universities(RF1028623157)。
文摘Safe batteries are the basis for next-generation application scenarios such as portable energy storage devices and electric vehicles,which are crucial to achieving carbon neutralization.Electrolytes,separators,and electrodes as main components of lithium batteries strongly affect the occurrence of safety accidents.Responsive materials,which can respond to external stimuli or environmental change,have triggered extensive attentions recently,holding great promise in facilitating safe and smart batteries.This review thoroughly discusses recent advances regarding the construction of high-safety lithium batteries based on internal thermal-responsive strategies,together with the corresponding changes in electrochemical performance under external stimulus.Furthermore,the existing challenges and outlook for the design of safe batteries are presented,creating valuable insights and proposing directions for the practical implementation of safe lithium batteries.
基金the Fundamental Research Grant Scheme(FRGS)under a grant number of FRGS/1/2018/STG06/UNIMAP/02/3 from the Ministry of Education Malaysia。
文摘This study investigates the suction and magnetic field effects on the two-dimensional nanofluid flow through a stretching/shrinking sheet at the stagnation point in the porous medium with thermal radiation.The governing partial differential equations(PDEs)are converted into ordinary differential equations(ODEs)using the similarity transformation.The resulting ODEs are then solved numerically by using the bvp4c solver in MATLAB software.It was found that dual solutions exist for the shrinking parameter values up to a certain range.The numerical results obtained are compared,and the comparison showed a good agreement with the existing results in the literature.The governing parameters’effect on the velocity,temperature and nanoparticle fraction fields as well as the skin friction coefficient,the local Nusselt number and the Sherwood number are represented graphically and analyzed.The variation of the velocity,temperature and concentration increase with the increase in the suction and magnetic field parameters.It seems that the thermal radiation effect has increased the local Sherwood number while the local Nusselt number is reduced with it.