Artificial vegetation restoration is the main measure for vegetation restoration and soil and water conservation in alpine mine dumps on the Qinghai-Tibet Plateau,China.However,there are few reports on the dynamic cha...Artificial vegetation restoration is the main measure for vegetation restoration and soil and water conservation in alpine mine dumps on the Qinghai-Tibet Plateau,China.However,there are few reports on the dynamic changes and the influencing factors of the soil reinforcement effect of plant species after artificial vegetation restoration under different recovery periods.We selected dump areas of the Delni Copper Mine in Qinghai Province,China to study the relationship between the shear strength and the peak displacement of the root-soil composite on the slope during the recovery period,and the influence of the root traits and soil physical properties on the shear resistance characteristics of the root-soil composite via in situ direct shear tests.The results indicate that the shear strength and peak displacement of the rooted soil initially decreased and then increased with the increase of the recovery period.The shear strength of the rooted soil and the recovery period exhibited a quadratic function relationship.There is no significant function relationship between the peak displacement and the recovery period.Significant positive correlations(P<0.05)exists between the shear strength of the root-soil composite and the root biomass density,root volume density,and root area ratio,and they show significant linear correlations(P<0.05).There are no significant correlations(P>0.05)between the shear strength of the root-soil composite and the root length density,and the root volume ratio of the coarse roots to the fine roots.A significant negative linear correlation(P<0.05)exists between the peak displacement of the rooted soil and the coarse-grain content,but no significant correlations(P>0.05)with the root traits,other soil physical property indices(the moisture content and dry density of the soil),and slope gradient.The coarse-grain content is the main factor controlling the peak displacement of the rooted soil.展开更多
Computational fluid dynamics(CFD)was used in conjunction with BP neural network to study theflow resistance characteristic of the combination-channel inside hydraulic manifold block(HMB).The in-put parameters of the c...Computational fluid dynamics(CFD)was used in conjunction with BP neural network to study theflow resistance characteristic of the combination-channel inside hydraulic manifold block(HMB).The in-put parameters of the combination-channel model were confirmed to have effect on the pressure-drop bythe numerical method,and a BP neural network model was accordingly constructed to predict the channelpressure-drops.The flow resistance characteristic curves of various channels were achieved,and a perfor-mance parameter was given to evaluate the through-flow characteristic of the channel according to thecurves.The predictions are' in agreement with the numerical computation,indicating that the method canbe utilized to accurately determine the flow characteristic of the combination channel with high efficiency.展开更多
Debris flow deposits in natural channels typically have a wide grain size distribution(GSD).The effects of bed sediment GSD on the basal entrainment rate are neglected in current debris flow erosion models.Field inves...Debris flow deposits in natural channels typically have a wide grain size distribution(GSD).The effects of bed sediment GSD on the basal entrainment rate are neglected in current debris flow erosion models.Field investigations have detected three different vertical graded bedding structures:normal,inverse,and mixed-gradation,characterized by discontinuous gradation sediment and almost without intermediate-sized particles.This study conducted small-scale flume experiments to investigate the debris flow resistance forces and entrainment characteristics by incorporating the effects of discontinuous grading bed sediments.Discontinuous graded bed sediments with varying fine particle content,volumetric water content(VWC),and roundness were designed for comparison.Debris flow resistance in erodible beds generally increased in the group with gravel of larger-sized coarse particle,lower roundness,and higher bed sediment VWC.For discontinuous grading bed sediment,the entrained depths increased in the group with gravel of smaller coarse particle sizes,larger amounts of fine particles,and higher sediment roundness,and decreased with larger VWCs.This abnormality may be attributed to the disproportionately large effects of viscous flow resistance in our small-scale flume tests.The maximum erosion rates of the continuous bed sediment were higher than those of the corresponding discontinuous bed sediment with the same maximum coarse gravel size.This is because,for discontinuous grading bed sediments,localized failure of intermediate-sized sediment grains may cause a large-scale collapse of the solid grain skeleton and enhance basal entrainment rates.A revised formula for calculating the debris flow entrainment rate is proposed by incorporating the kurtosis coefficient,which describes the distribution of discontinuous bed sediments and fine particle content.Our revised formula could facilitate an elaborate estimation of basin erosion and sediment runoff and reveal the development and recession of debris flow fans.展开更多
Considering the special resistance characteristics of fluids flowing through ducts with small gaps, experiments are performed to investigate the resistance characteristics of single-phase water, which is forced to flo...Considering the special resistance characteristics of fluids flowing through ducts with small gaps, experiments are performed to investigate the resistance characteristics of single-phase water, which is forced to flow through ver tical annuli. The gap sizes are 0.9, 1.4 and 2.4mm, respectively. The experiments are conducted under condition of 1atm. The water in the annuli is heated by high temperature water reversely flowing through the inner tube and the outer annulus. The results show that the flow pattern begin to change from laminar to turbulent before Reynolds number approaches 2000, the flow resistance in annulus has little relations with the temperature difference and ways of being heated, but mainly depends on the ratio of mass flux to the width of annulus.展开更多
[Objective] The aim was to separate chromium-resistant microorganism from soil contaminated by chromium.[Method] Separation and purification technique was used as follows:different concentrations of Cr^6+ were added...[Objective] The aim was to separate chromium-resistant microorganism from soil contaminated by chromium.[Method] Separation and purification technique was used as follows:different concentrations of Cr^6+ were added into medium,and chromium-resistant fungi were screened after separations and domestications.The selected fungi were under preliminary identification according to its morphological and colony characteristics.Then,related biological characteristics were studied,including measurement of growth curve,growing effects by temperature,pH value and osmotic pressure.[Result] The Cr(VI) with concentration of 1 000 mg/L was separated and selected from soils in ten different places contaminated seriously by heavy metal in adjacent region of Yulin City.Considering its morphological and colony characteristics,it was preliminarily identified as saccharomycetes,which can well grow within 15-37 ℃,and whose most suitable temperature was 28℃.Bacterial strain can grow well with pH of 4-10,and the optimum pH was 7.2;besides,it can grow well with NaCl concentration of 0.5%-5.0%.Through the experiment,the bacteria was found with resistance not only to chromium,but also to heavy metals such as Pb+Cu,Cu+Fe,Pb+Fe,and Pb+Cu+Fe.[Conclusion] The fungi selected from the experiment were of good adaptability to natural environment,and it also had resistance to other heavy metals.展开更多
In this paper,the formation process,morphology,and electrochemical performance of PEO coatings on AM50 magnesium alloy prepared in low concentration phosphate,aluminate,and phosphate-aluminate electrolytes were system...In this paper,the formation process,morphology,and electrochemical performance of PEO coatings on AM50 magnesium alloy prepared in low concentration phosphate,aluminate,and phosphate-aluminate electrolytes were systematically studied.The results show that the coatings prepared from the phosphate electrolytes have a higher thickness and better corrosion resistance properties compared to the other electrolytes.The coatings prepared from low concentration phosphate-aluminate mixed electrolytes have slightly thinner thickness,a similar coating structure and an order of magnitude lower value of electrochemical impedance compared with phosphate electrolyte coatings.The Coatings prepared from low concentration aluminate electrolytes have the lowest thickness and the worst corrosion resistance properties which gets close to corrosion behavior of the bare AM50 under the same test conditions.Considering application,coatings prepared from single low concentration phosphate electrolytes and low concentration phosphate-aluminate electrolytes have greater potential than single low concentration aluminate coatings.However,reducing the electrolyte concentrations of coating forming ions too much has negative influence on the coating growth rate.展开更多
[Objectives]To evaluate the cold resistance and semi-lethal temperature of pear cultivars,and provide a theoretical basis for the regional extension and breeding of cold-resistant pear cultivars.[Methods]Nine pear cul...[Objectives]To evaluate the cold resistance and semi-lethal temperature of pear cultivars,and provide a theoretical basis for the regional extension and breeding of cold-resistant pear cultivars.[Methods]Nine pear cultivars were used to study the changes in relative conductivity and cell injury rate of pear branches under low temperature stress,and the semi-lethal temperature(LT_(50))of pear branches was analyzed by fitting Logistic equation.[Results]The relative conductivity and cell injury rate of pear branches took on the trend of slow increase,rapid increase,and slow increase the decrease of treatment temperature.The LC_(50) of the nine pear cultivars were as follows:Nanguo pear-33.9℃,Wanyu-32.3℃,Red D Anjou-31.8℃,Jinfeng-31.3℃,Wujiuxiang-29.2℃,20 th Century Pear-29.1℃,Hanxiang-35.1℃,Yuluxiang-27.9℃ and Korla Fragrant Pear-29.2℃.[Conclusions]The semi-lethal temperature could reflect the cold resistance of pear trees,and Wanxiang had better cold resistance.The evaluation of cold resistance and semi-lethal temperature of pear cultivars can provide theoretical basis for regional extension and breeding of cold-resistant pear cultivars.展开更多
Rational determination and reduction of local energy loss of oil flow at pipe junctions are of important significance to improve hydraulic pipeline's work efficiency, especially for complex hydraulic pipeline connect...Rational determination and reduction of local energy loss of oil flow at pipe junctions are of important significance to improve hydraulic pipeline's work efficiency, especially for complex hydraulic pipeline connected by isodiametric T-type ducts with sharp comers to get combined and divided flow. From this point of view, the formulae of resistance loss for combined flow and divided flow through isodiametric T-type duct with sharp comers as well as the correlations of resistance loss coefficients in the branches of the duct are derived using energy method. On this basis, resistance characteristics of hydraulic oil in the duct are obtained by numerical simulation of different flow modes, which are commonly applied in hydraulic pipelines, using computational fluid dynamics (CFD) method, and the reasons for the resistance loss are analyzed based on the pressure change mechanism in the flow field. A part of simulation results was validated with the reference data. The research shows that for combined flows the resistance loss of symmetrical is lower than that of unsymmetrical to obtain low speed in common branch, but to gain high speed is quite the contrary, for divided flows, the symmetrical is always a reasonable choice to reduce resistance loss. These conclusions can be applied to optimize the design of hydraulic pipeline.展开更多
In deep underground engineering,rock burst and other dynamic disasters are prone to occur due to stress concentration and energy accumulation in surrounding rock.The control of dynamic disasters requires bolts and cab...In deep underground engineering,rock burst and other dynamic disasters are prone to occur due to stress concentration and energy accumulation in surrounding rock.The control of dynamic disasters requires bolts and cables with high strength,high elongation,and high energy-absorbing capacity.Therefore,a constant resistance energy-absorbing(CREA)material is developed.In this study,the dynamic characteristics of the new material are obtained via the drop hammer tests and the Split Hopkinson Pressure Bar(SHPB)tests of the new material and two common bolt(CB)materials widely used in the field.The test results of drop hammer test and SHPB test show that the percentage elongation of CREA material is more than 2.64 and 3.22 times those of the CB material,and the total impact energy acting on CREA material is more than 18.50 and 21.84 times,respectively,indicating that the new material has high elongation and high energy-absorbing capacity.Subsequently,the CREA bolts and cables using the new material are developed,which are applied in roadways with high stress and strong dynamic disturbance.The field monitoring results show that CREA bolts and cables can effectively control the surrounding rock deformation and ensure engineering safety.展开更多
Resistance in iron ore undergoes a sharp change of up to several orders of magnitude when the sintered solid phase changes to liquid phase.In view of the insufficiency of existing assimilation detection methods,a timi...Resistance in iron ore undergoes a sharp change of up to several orders of magnitude when the sintered solid phase changes to liquid phase.In view of the insufficiency of existing assimilation detection methods,a timing-of-assimilation reaction is proposed,which was judged by continuously detecting the changes in resistance at the reaction interface.Effects of pole position and additional amounts of iron ore on assimilation reaction timing were investigated.The results showed that the suitable depth of pole groove was about 2 mm,and there was no obvious impact when the distance of the poles changed from 4 to 6 mm,or the amount of iron ore changed from 0.4 to 0.6 g.The temperature of sudden change of resistance in the temperature-resistant image was considered to be the lowest assimilation temperature of iron ore.The accuracy of this resistance method was clarified by X-ray diffraction,optical microscope,and scanning electron microscope/energy dispersive spectrometer(SEM/EDS)analyses.展开更多
The contact resistance between the armature and rails is an important indicator of the contact characteristics in electromagnetic launches.As the contact resistance depends not only on the contact state but also on th...The contact resistance between the armature and rails is an important indicator of the contact characteristics in electromagnetic launches.As the contact resistance depends not only on the contact state but also on the contact stress and temperature,there are some limitations in analyzing the contact characteristics using only the contact resistance.In this paper,the contact characteristics of the augmented railgun are analyzed by the combination of contact resistance and sliding friction coefficient.Firstly,the theoretical calculation model of the contact resistance and friction coefficient of the augmented electromagnetic railgun is established.Then the contact resistance and friction coefficient are calculated by the measured values of the muzzle voltage,rail current and armature displacement.Finally,the contact characteristics are analyzed according to the features of the waveforms of the contact resistance and the friction coefficient,and the analysis conclusions are verified by experimental rail images.The results showed that:the aluminum melt film gradually formed on the contact surface reduces the contact resistance and the friction coefficient;the wear and erosion of the armature cause deterioration of the contact state;after the transition,the reliability of the sliding contact between the armature and rails decreases,resulting in an increase in contact resistance.展开更多
The equivalent simplification of large wind farms is essential for evaluating the safety of power systems.However,sub-synchronous oscillations can significantly affect the stability of power systems.Although detailed ...The equivalent simplification of large wind farms is essential for evaluating the safety of power systems.However,sub-synchronous oscillations can significantly affect the stability of power systems.Although detailed mathematical models of wind farms can help accurately analyze the oscillation mechanism,the solution process is complicated and may lead to problems such as the“dimensional disaster.”Therefore,this paper proposes a sub-synchronous frequency domain-equivalent modeling method for wind farms based on the nature of the equivalent resistance of the rotor,in order to analyze sub-synchronous oscillations accurately.To this end,Matlab/Simulink is used to simulate a detailed model,a single-unit model,and an equivalent model,considering a wind farm as an example.A simulation analysis is then performed under the sub-synchronous frequency to prove that the model is effective and that the wind farm equivalence model method is valid.展开更多
The key to high-yielding peanut cultivation is the optimization of agricultural production practices.Regulating single-seed precise sowing(SSPS)density and paclobutrazol(Pbz)application concentration are effective pra...The key to high-yielding peanut cultivation is the optimization of agricultural production practices.Regulating single-seed precise sowing(SSPS)density and paclobutrazol(Pbz)application concentration are effective practices that increase peanut yield by improving plant architecture,lodging resistance,and photosynthetic characteristics.Therefore,we conducted a two-factor field optimization experiment for the sowing density(D1:1.95×10^(5)plants ha^(-1),D52:2.40×10plants ha^(-1),D3:2.85×10^(5)plants ha^(-1),and D4:3.30×10^(5)plants ha^(-1))and Pbzapplication concentration(P0:0 mg L^(-1)and P1:100 mg L^(-1)).The objective was to optimize agricultural production practices and provide a theoretical basis for highyielding peanut cultivation by evaluating the effects of sowing density and Pbzapplication on plant architecture,lodging resistance,photosynthetic characteristics,and yield.The results showed that at the same Pbzapplication concentration,increasing sowing density increased lodging percentage and reduced leaf photosynthetic capacity.At the same sowing density,Pbzapplication reduced lodging percentage by decreasing plant height(PH),improving lignin biosynthesis-related enzyme activities,and enhancing stem puncture strength(SPS)and breaking strength(SBS).The paclobutrazol-induced alterations in plant architecture and lodging resistance improved light transmission at the middle and bottom leaf strata,resulting in the increase in relative chlorophyll content and net photosynthetic rate(Pn)of leaves.Furthermore,D3P1treatment had the highest peanut yield among all treatments.In summary,the production strategy combining the sowing density of 2.85×10^(5)plants ha^(-1)with the application of100 mg L^(-1)Pbzwas found to be the optimal agricultural production practice for giving full play to production potential and achieving higher peanut yield.展开更多
A mathematical model is established on the basis of the physical characteristic of the negative resistance arc when a low current of 0—50 A is applied in pulsed TIG welding. The simulation model converted from the ma...A mathematical model is established on the basis of the physical characteristic of the negative resistance arc when a low current of 0—50 A is applied in pulsed TIG welding. The simulation model converted from the mathematical model is run in MATLAB environment, and the discussion is focused on the way the peak current ranging from 29 A to 50 A and the time constant of arc in the span of 0.003—0.006 s influence the simulating results and the dynamic characteristic. The simulating data are close to that of welding experiments and correspond to the theoretical conclusion.展开更多
Triggering scheme is a significant factor that may influence the process of vacuum arc initiation. In this work, the characteristics of resistance triggering of a pulsed vacuum arc ion source are investigated and comp...Triggering scheme is a significant factor that may influence the process of vacuum arc initiation. In this work, the characteristics of resistance triggering of a pulsed vacuum arc ion source are investigated and compared with the independent pulse generator triggering. The results show that although the resistance triggering method is capable of triggering a vacuum arc ion source by properly choosing the resistance and electric parameters, it inevitably increases the rise time of the arc current. A high speed multiframe camera is used to reveal the transition process o~ arc initiation during one shot. From the images it is conjectured that the lower voltage between the cathode and the anode may be the reason that leads to the lower transition speed of discharge at the moment of arc initiation.展开更多
The resistance characteristics of a continuously-graded distributed Bragg reflector(DBR) in a 980-nm verticalcavity surface-emitting laser(VCSEL) are modeled in detail.The junction resistances between the layers o...The resistance characteristics of a continuously-graded distributed Bragg reflector(DBR) in a 980-nm verticalcavity surface-emitting laser(VCSEL) are modeled in detail.The junction resistances between the layers of both the p-and n-DBR mirrors are analysed by combining the thermionic emission model and the finite difference method.In the meantime,the intrinsic resistance of the DBR material system is calculated to make a comparison with the junction resistance.The minimal values of series resistances of the graded p-and n-type DBR mirrors and the lateral temperature-dependent resistance variation are calculated and discussed.The result indicates the potential to optimize the design of the DBR reflectors of the 980-nm VCSELs.展开更多
Effect of working temperature on the resistance characteristic including the permeability coefficient and the pressure drop evolution of a pleated stainless steel woven filter with a nominal pore size of 0.5 μm has b...Effect of working temperature on the resistance characteristic including the permeability coefficient and the pressure drop evolution of a pleated stainless steel woven filter with a nominal pore size of 0.5 μm has been studied. The permeability coefficient was obtained based on the pressure drop data and the Darcy's law. In three filtration experiments, pure carbon dioxide at 283 K, nitrogen at 85 K and liquid helium at 18 K are adopted, respectively. It is found that the permeability coefficient decreases at the working temperature due to the cold shrink of the filter element at cryogenic temperature. Then, two kinds of feed slurries, mixture of liquid nitrogen and solid carbon dioxide at 85 K, and mixture of liquid helium and solid nitrogen at 18 K, flow into the filter cell. The solid particles are deposited on the filter surface to form a filter cake and the purified liquid flows through the filter. It is found that the pressure drop evolution shows the same trend on these two temperatures, which can be divided into three stages with high filtration efficiency, indicating the feasibility of the filter for cryogenic application. However, variant cake resistances are obtained, which is resulted from the different interactions between solid particles in the feed slurry at lower working temperature.展开更多
In order to evaluate the accumulation characteristics of heavy metals in the cultivars of Agaricus bisporus in Shanxi Province and to select the varieties with high resistances to heavy metal pollution, atomic absorpt...In order to evaluate the accumulation characteristics of heavy metals in the cultivars of Agaricus bisporus in Shanxi Province and to select the varieties with high resistances to heavy metal pollution, atomic absorption spectrophotometer and the atomic fluorescence spectrophotometer were used as the determination methods to compare the heavy metal contents and accumulation characteristics of 6 different varieties. The results showed that 3 heavy metal elements (lead, chromium and cadmium) were tested in the 6 varieties of A. bisporus , all of which were contaminated by heavy metals, but basically no beyond the national standards for food safety. In general, these varieties had less quality risk and could be eaten safely. The accumulation characteristics of heavy metals in these varieties were analyzed, and the varieties were screened according to the resistance to heavy metals pollution. The results showed that variety No. 1 and No. 6 were the varieties with strong comprehensive resistance to the 3 types of heavy metal pollution, and variety No. 3 was a species with weak comprehensive ability in resisting heavy metal pollution.展开更多
There exist different response characteristics in the resistivity measurements of dual laterolog (DLL) and logging while drilling (LWD) electromagnetic wave propagation logging in highly deviated and horizontal we...There exist different response characteristics in the resistivity measurements of dual laterolog (DLL) and logging while drilling (LWD) electromagnetic wave propagation logging in highly deviated and horizontal wells due to the difference in their measuring principles. In this study, we first use the integral equation method simulated the response characteristics of LWD resistivity and use the three dimensional finite element method (3D-FEM) simulated the response characteristics of DLL resistivity in horizontal wells, and then analyzed the response differences between the DLL and LWD resistivity. The comparative analysis indicated that the response differences may be caused by different factors such as differences in the angle of instrument inclination, anisotropy, formation interface, and mud intrusion. In the interface, the curves of the LWD resistivity become sharp with increases in the deviation while those of the DLL resistivity gradually become smooth. Both curves are affected by the anisotropy although the effect on DLL resistivity is lower than the LWD resistivity. These differences aid in providing a reasonable explanation in the horizontal well. However, this can also simultaneously lead to false results. At the end of the study, we explain the effects of the differences in the interpretation of the horizontal well based on the results and actual data analysis.展开更多
基金supported by the Project of Qinghai Science&Technology Department(Grant No.2021-ZJ-956Q).
文摘Artificial vegetation restoration is the main measure for vegetation restoration and soil and water conservation in alpine mine dumps on the Qinghai-Tibet Plateau,China.However,there are few reports on the dynamic changes and the influencing factors of the soil reinforcement effect of plant species after artificial vegetation restoration under different recovery periods.We selected dump areas of the Delni Copper Mine in Qinghai Province,China to study the relationship between the shear strength and the peak displacement of the root-soil composite on the slope during the recovery period,and the influence of the root traits and soil physical properties on the shear resistance characteristics of the root-soil composite via in situ direct shear tests.The results indicate that the shear strength and peak displacement of the rooted soil initially decreased and then increased with the increase of the recovery period.The shear strength of the rooted soil and the recovery period exhibited a quadratic function relationship.There is no significant function relationship between the peak displacement and the recovery period.Significant positive correlations(P<0.05)exists between the shear strength of the root-soil composite and the root biomass density,root volume density,and root area ratio,and they show significant linear correlations(P<0.05).There are no significant correlations(P>0.05)between the shear strength of the root-soil composite and the root length density,and the root volume ratio of the coarse roots to the fine roots.A significant negative linear correlation(P<0.05)exists between the peak displacement of the rooted soil and the coarse-grain content,but no significant correlations(P>0.05)with the root traits,other soil physical property indices(the moisture content and dry density of the soil),and slope gradient.The coarse-grain content is the main factor controlling the peak displacement of the rooted soil.
基金the National Natural Science Foundation of China(No.50375023)
文摘Computational fluid dynamics(CFD)was used in conjunction with BP neural network to study theflow resistance characteristic of the combination-channel inside hydraulic manifold block(HMB).The in-put parameters of the combination-channel model were confirmed to have effect on the pressure-drop bythe numerical method,and a BP neural network model was accordingly constructed to predict the channelpressure-drops.The flow resistance characteristic curves of various channels were achieved,and a perfor-mance parameter was given to evaluate the through-flow characteristic of the channel according to thecurves.The predictions are' in agreement with the numerical computation,indicating that the method canbe utilized to accurately determine the flow characteristic of the combination channel with high efficiency.
基金funded by the National Natural Science Foundation of China(Grant No.41801002)the National Key Foundation for Exploring Scientific Instrument Program(Grant No.42027806)+2 种基金the Natural Science Foundation of Shanxi Province(Grant No.2021JQ-452)the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(Grant No.2019QZKK0902)the National Key Research and Development Plan(Grant No.2018YFC1504703)。
文摘Debris flow deposits in natural channels typically have a wide grain size distribution(GSD).The effects of bed sediment GSD on the basal entrainment rate are neglected in current debris flow erosion models.Field investigations have detected three different vertical graded bedding structures:normal,inverse,and mixed-gradation,characterized by discontinuous gradation sediment and almost without intermediate-sized particles.This study conducted small-scale flume experiments to investigate the debris flow resistance forces and entrainment characteristics by incorporating the effects of discontinuous grading bed sediments.Discontinuous graded bed sediments with varying fine particle content,volumetric water content(VWC),and roundness were designed for comparison.Debris flow resistance in erodible beds generally increased in the group with gravel of larger-sized coarse particle,lower roundness,and higher bed sediment VWC.For discontinuous grading bed sediment,the entrained depths increased in the group with gravel of smaller coarse particle sizes,larger amounts of fine particles,and higher sediment roundness,and decreased with larger VWCs.This abnormality may be attributed to the disproportionately large effects of viscous flow resistance in our small-scale flume tests.The maximum erosion rates of the continuous bed sediment were higher than those of the corresponding discontinuous bed sediment with the same maximum coarse gravel size.This is because,for discontinuous grading bed sediments,localized failure of intermediate-sized sediment grains may cause a large-scale collapse of the solid grain skeleton and enhance basal entrainment rates.A revised formula for calculating the debris flow entrainment rate is proposed by incorporating the kurtosis coefficient,which describes the distribution of discontinuous bed sediments and fine particle content.Our revised formula could facilitate an elaborate estimation of basin erosion and sediment runoff and reveal the development and recession of debris flow fans.
文摘Considering the special resistance characteristics of fluids flowing through ducts with small gaps, experiments are performed to investigate the resistance characteristics of single-phase water, which is forced to flow through ver tical annuli. The gap sizes are 0.9, 1.4 and 2.4mm, respectively. The experiments are conducted under condition of 1atm. The water in the annuli is heated by high temperature water reversely flowing through the inner tube and the outer annulus. The results show that the flow pattern begin to change from laminar to turbulent before Reynolds number approaches 2000, the flow resistance in annulus has little relations with the temperature difference and ways of being heated, but mainly depends on the ratio of mass flux to the width of annulus.
基金Supported by Chinese National Natural Science Foundation(30960008 )Educational Commission of Guangxi Province(200810LX393)+2 种基金Starting Project of Yulin Normal College,Guangxi ProvinceSpecialized Research Project of Yulin Normal College,Guangxi Province (2011YJZX01)Project Supported by the Science Foundation for Young Scientists of Guangxi Yulin Normal College (2010YJQN24)~~
文摘[Objective] The aim was to separate chromium-resistant microorganism from soil contaminated by chromium.[Method] Separation and purification technique was used as follows:different concentrations of Cr^6+ were added into medium,and chromium-resistant fungi were screened after separations and domestications.The selected fungi were under preliminary identification according to its morphological and colony characteristics.Then,related biological characteristics were studied,including measurement of growth curve,growing effects by temperature,pH value and osmotic pressure.[Result] The Cr(VI) with concentration of 1 000 mg/L was separated and selected from soils in ten different places contaminated seriously by heavy metal in adjacent region of Yulin City.Considering its morphological and colony characteristics,it was preliminarily identified as saccharomycetes,which can well grow within 15-37 ℃,and whose most suitable temperature was 28℃.Bacterial strain can grow well with pH of 4-10,and the optimum pH was 7.2;besides,it can grow well with NaCl concentration of 0.5%-5.0%.Through the experiment,the bacteria was found with resistance not only to chromium,but also to heavy metals such as Pb+Cu,Cu+Fe,Pb+Fe,and Pb+Cu+Fe.[Conclusion] The fungi selected from the experiment were of good adaptability to natural environment,and it also had resistance to other heavy metals.
基金China Scholarship Council for the award of fellowship and funding(No.202006370022).
文摘In this paper,the formation process,morphology,and electrochemical performance of PEO coatings on AM50 magnesium alloy prepared in low concentration phosphate,aluminate,and phosphate-aluminate electrolytes were systematically studied.The results show that the coatings prepared from the phosphate electrolytes have a higher thickness and better corrosion resistance properties compared to the other electrolytes.The coatings prepared from low concentration phosphate-aluminate mixed electrolytes have slightly thinner thickness,a similar coating structure and an order of magnitude lower value of electrochemical impedance compared with phosphate electrolyte coatings.The Coatings prepared from low concentration aluminate electrolytes have the lowest thickness and the worst corrosion resistance properties which gets close to corrosion behavior of the bare AM50 under the same test conditions.Considering application,coatings prepared from single low concentration phosphate electrolytes and low concentration phosphate-aluminate electrolytes have greater potential than single low concentration aluminate coatings.However,reducing the electrolyte concentrations of coating forming ions too much has negative influence on the coating growth rate.
基金Supported by Basic Research Fund of Hebei Academy of Agriculture and Forestry Sciences(2024020202)"Three-Three-Three"Talent Project of Hebei Province(C20231157)+2 种基金Science and Technology Innovation Project of Hebei Academy of Agriculture and Forestry Sciences(2022KJCXZX-CGS-7)Hebei Agricultural Industry Research System(HBCT2024170406)Key Research and Development Program of Hebei Province(21326308D-1-2).
文摘[Objectives]To evaluate the cold resistance and semi-lethal temperature of pear cultivars,and provide a theoretical basis for the regional extension and breeding of cold-resistant pear cultivars.[Methods]Nine pear cultivars were used to study the changes in relative conductivity and cell injury rate of pear branches under low temperature stress,and the semi-lethal temperature(LT_(50))of pear branches was analyzed by fitting Logistic equation.[Results]The relative conductivity and cell injury rate of pear branches took on the trend of slow increase,rapid increase,and slow increase the decrease of treatment temperature.The LC_(50) of the nine pear cultivars were as follows:Nanguo pear-33.9℃,Wanyu-32.3℃,Red D Anjou-31.8℃,Jinfeng-31.3℃,Wujiuxiang-29.2℃,20 th Century Pear-29.1℃,Hanxiang-35.1℃,Yuluxiang-27.9℃ and Korla Fragrant Pear-29.2℃.[Conclusions]The semi-lethal temperature could reflect the cold resistance of pear trees,and Wanxiang had better cold resistance.The evaluation of cold resistance and semi-lethal temperature of pear cultivars can provide theoretical basis for regional extension and breeding of cold-resistant pear cultivars.
基金supported by Hebei Provincial Natural Science Foundation of China (Grant No. 503292)
文摘Rational determination and reduction of local energy loss of oil flow at pipe junctions are of important significance to improve hydraulic pipeline's work efficiency, especially for complex hydraulic pipeline connected by isodiametric T-type ducts with sharp comers to get combined and divided flow. From this point of view, the formulae of resistance loss for combined flow and divided flow through isodiametric T-type duct with sharp comers as well as the correlations of resistance loss coefficients in the branches of the duct are derived using energy method. On this basis, resistance characteristics of hydraulic oil in the duct are obtained by numerical simulation of different flow modes, which are commonly applied in hydraulic pipelines, using computational fluid dynamics (CFD) method, and the reasons for the resistance loss are analyzed based on the pressure change mechanism in the flow field. A part of simulation results was validated with the reference data. The research shows that for combined flows the resistance loss of symmetrical is lower than that of unsymmetrical to obtain low speed in common branch, but to gain high speed is quite the contrary, for divided flows, the symmetrical is always a reasonable choice to reduce resistance loss. These conclusions can be applied to optimize the design of hydraulic pipeline.
基金This work was supported by the National Natural Science Foundation of China(Nos.41941018,52074164,and 42077267);the Natural Science Foundation of Shandong Province,China(Nos.2019SDZY04 and ZR2020JQ23)the Project of Shandong Province Higher Educational Youth Innovation Science and Technology Program,China(No.2019KJG013).
文摘In deep underground engineering,rock burst and other dynamic disasters are prone to occur due to stress concentration and energy accumulation in surrounding rock.The control of dynamic disasters requires bolts and cables with high strength,high elongation,and high energy-absorbing capacity.Therefore,a constant resistance energy-absorbing(CREA)material is developed.In this study,the dynamic characteristics of the new material are obtained via the drop hammer tests and the Split Hopkinson Pressure Bar(SHPB)tests of the new material and two common bolt(CB)materials widely used in the field.The test results of drop hammer test and SHPB test show that the percentage elongation of CREA material is more than 2.64 and 3.22 times those of the CB material,and the total impact energy acting on CREA material is more than 18.50 and 21.84 times,respectively,indicating that the new material has high elongation and high energy-absorbing capacity.Subsequently,the CREA bolts and cables using the new material are developed,which are applied in roadways with high stress and strong dynamic disturbance.The field monitoring results show that CREA bolts and cables can effectively control the surrounding rock deformation and ensure engineering safety.
基金financially supported by the China Postdoctoral Science Foundation (No. 2019M662130)the National Natural Science Foundation of China (No. 51674002)
文摘Resistance in iron ore undergoes a sharp change of up to several orders of magnitude when the sintered solid phase changes to liquid phase.In view of the insufficiency of existing assimilation detection methods,a timing-of-assimilation reaction is proposed,which was judged by continuously detecting the changes in resistance at the reaction interface.Effects of pole position and additional amounts of iron ore on assimilation reaction timing were investigated.The results showed that the suitable depth of pole groove was about 2 mm,and there was no obvious impact when the distance of the poles changed from 4 to 6 mm,or the amount of iron ore changed from 0.4 to 0.6 g.The temperature of sudden change of resistance in the temperature-resistant image was considered to be the lowest assimilation temperature of iron ore.The accuracy of this resistance method was clarified by X-ray diffraction,optical microscope,and scanning electron microscope/energy dispersive spectrometer(SEM/EDS)analyses.
文摘The contact resistance between the armature and rails is an important indicator of the contact characteristics in electromagnetic launches.As the contact resistance depends not only on the contact state but also on the contact stress and temperature,there are some limitations in analyzing the contact characteristics using only the contact resistance.In this paper,the contact characteristics of the augmented railgun are analyzed by the combination of contact resistance and sliding friction coefficient.Firstly,the theoretical calculation model of the contact resistance and friction coefficient of the augmented electromagnetic railgun is established.Then the contact resistance and friction coefficient are calculated by the measured values of the muzzle voltage,rail current and armature displacement.Finally,the contact characteristics are analyzed according to the features of the waveforms of the contact resistance and the friction coefficient,and the analysis conclusions are verified by experimental rail images.The results showed that:the aluminum melt film gradually formed on the contact surface reduces the contact resistance and the friction coefficient;the wear and erosion of the armature cause deterioration of the contact state;after the transition,the reliability of the sliding contact between the armature and rails decreases,resulting in an increase in contact resistance.
基金supported by the National Key R&D Program of China“Response-driven intelligent enhanced analysis and control for bulk power system stability”(No.2021YFB2400800)。
文摘The equivalent simplification of large wind farms is essential for evaluating the safety of power systems.However,sub-synchronous oscillations can significantly affect the stability of power systems.Although detailed mathematical models of wind farms can help accurately analyze the oscillation mechanism,the solution process is complicated and may lead to problems such as the“dimensional disaster.”Therefore,this paper proposes a sub-synchronous frequency domain-equivalent modeling method for wind farms based on the nature of the equivalent resistance of the rotor,in order to analyze sub-synchronous oscillations accurately.To this end,Matlab/Simulink is used to simulate a detailed model,a single-unit model,and an equivalent model,considering a wind farm as an example.A simulation analysis is then performed under the sub-synchronous frequency to prove that the model is effective and that the wind farm equivalence model method is valid.
基金supported by the National Key Research and Development Program of China(2020YFD1000902)the Shandong Key Research and Development Program(2018YFJH0601-3)+1 种基金the Major Agricultural Applied Technological Innovation Projects in Shandong Province(SD2019ZZ11)the Shandong Modern Agricultural Technology and Industry System(SDAIT-04-01)。
文摘The key to high-yielding peanut cultivation is the optimization of agricultural production practices.Regulating single-seed precise sowing(SSPS)density and paclobutrazol(Pbz)application concentration are effective practices that increase peanut yield by improving plant architecture,lodging resistance,and photosynthetic characteristics.Therefore,we conducted a two-factor field optimization experiment for the sowing density(D1:1.95×10^(5)plants ha^(-1),D52:2.40×10plants ha^(-1),D3:2.85×10^(5)plants ha^(-1),and D4:3.30×10^(5)plants ha^(-1))and Pbzapplication concentration(P0:0 mg L^(-1)and P1:100 mg L^(-1)).The objective was to optimize agricultural production practices and provide a theoretical basis for highyielding peanut cultivation by evaluating the effects of sowing density and Pbzapplication on plant architecture,lodging resistance,photosynthetic characteristics,and yield.The results showed that at the same Pbzapplication concentration,increasing sowing density increased lodging percentage and reduced leaf photosynthetic capacity.At the same sowing density,Pbzapplication reduced lodging percentage by decreasing plant height(PH),improving lignin biosynthesis-related enzyme activities,and enhancing stem puncture strength(SPS)and breaking strength(SBS).The paclobutrazol-induced alterations in plant architecture and lodging resistance improved light transmission at the middle and bottom leaf strata,resulting in the increase in relative chlorophyll content and net photosynthetic rate(Pn)of leaves.Furthermore,D3P1treatment had the highest peanut yield among all treatments.In summary,the production strategy combining the sowing density of 2.85×10^(5)plants ha^(-1)with the application of100 mg L^(-1)Pbzwas found to be the optimal agricultural production practice for giving full play to production potential and achieving higher peanut yield.
基金National Natural Science Foundation of China (No 59975068) Natural Science Foundation of Tianjin (No993602911)
文摘A mathematical model is established on the basis of the physical characteristic of the negative resistance arc when a low current of 0—50 A is applied in pulsed TIG welding. The simulation model converted from the mathematical model is run in MATLAB environment, and the discussion is focused on the way the peak current ranging from 29 A to 50 A and the time constant of arc in the span of 0.003—0.006 s influence the simulating results and the dynamic characteristic. The simulating data are close to that of welding experiments and correspond to the theoretical conclusion.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11105130 and 11475156
文摘Triggering scheme is a significant factor that may influence the process of vacuum arc initiation. In this work, the characteristics of resistance triggering of a pulsed vacuum arc ion source are investigated and compared with the independent pulse generator triggering. The results show that although the resistance triggering method is capable of triggering a vacuum arc ion source by properly choosing the resistance and electric parameters, it inevitably increases the rise time of the arc current. A high speed multiframe camera is used to reveal the transition process o~ arc initiation during one shot. From the images it is conjectured that the lower voltage between the cathode and the anode may be the reason that leads to the lower transition speed of discharge at the moment of arc initiation.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10974012)
文摘The resistance characteristics of a continuously-graded distributed Bragg reflector(DBR) in a 980-nm verticalcavity surface-emitting laser(VCSEL) are modeled in detail.The junction resistances between the layers of both the p-and n-DBR mirrors are analysed by combining the thermionic emission model and the finite difference method.In the meantime,the intrinsic resistance of the DBR material system is calculated to make a comparison with the junction resistance.The minimal values of series resistances of the graded p-and n-type DBR mirrors and the lateral temperature-dependent resistance variation are calculated and discussed.The result indicates the potential to optimize the design of the DBR reflectors of the 980-nm VCSELs.
基金Supported by the Shanghai Committee of Science and Technology,China (03 DZ14014)
文摘Effect of working temperature on the resistance characteristic including the permeability coefficient and the pressure drop evolution of a pleated stainless steel woven filter with a nominal pore size of 0.5 μm has been studied. The permeability coefficient was obtained based on the pressure drop data and the Darcy's law. In three filtration experiments, pure carbon dioxide at 283 K, nitrogen at 85 K and liquid helium at 18 K are adopted, respectively. It is found that the permeability coefficient decreases at the working temperature due to the cold shrink of the filter element at cryogenic temperature. Then, two kinds of feed slurries, mixture of liquid nitrogen and solid carbon dioxide at 85 K, and mixture of liquid helium and solid nitrogen at 18 K, flow into the filter cell. The solid particles are deposited on the filter surface to form a filter cake and the purified liquid flows through the filter. It is found that the pressure drop evolution shows the same trend on these two temperatures, which can be divided into three stages with high filtration efficiency, indicating the feasibility of the filter for cryogenic application. However, variant cake resistances are obtained, which is resulted from the different interactions between solid particles in the feed slurry at lower working temperature.
基金Supported by the Science and Technology Infrastructure Platform of Shanxi Province(201705D121012)the Technology Independent Innovation Capability Upgrading Project(2017zzcx-20)the Doctoral Fund Project of Shanxi Academy of Agricultural Sciences(YBSJJ1616)
文摘In order to evaluate the accumulation characteristics of heavy metals in the cultivars of Agaricus bisporus in Shanxi Province and to select the varieties with high resistances to heavy metal pollution, atomic absorption spectrophotometer and the atomic fluorescence spectrophotometer were used as the determination methods to compare the heavy metal contents and accumulation characteristics of 6 different varieties. The results showed that 3 heavy metal elements (lead, chromium and cadmium) were tested in the 6 varieties of A. bisporus , all of which were contaminated by heavy metals, but basically no beyond the national standards for food safety. In general, these varieties had less quality risk and could be eaten safely. The accumulation characteristics of heavy metals in these varieties were analyzed, and the varieties were screened according to the resistance to heavy metals pollution. The results showed that variety No. 1 and No. 6 were the varieties with strong comprehensive resistance to the 3 types of heavy metal pollution, and variety No. 3 was a species with weak comprehensive ability in resisting heavy metal pollution.
基金supported by the National Science and Technology Major Project of China(Nos.2016ZX05014-002-001,2016ZX05002-005-001,and 2017ZX05005-005-005)
文摘There exist different response characteristics in the resistivity measurements of dual laterolog (DLL) and logging while drilling (LWD) electromagnetic wave propagation logging in highly deviated and horizontal wells due to the difference in their measuring principles. In this study, we first use the integral equation method simulated the response characteristics of LWD resistivity and use the three dimensional finite element method (3D-FEM) simulated the response characteristics of DLL resistivity in horizontal wells, and then analyzed the response differences between the DLL and LWD resistivity. The comparative analysis indicated that the response differences may be caused by different factors such as differences in the angle of instrument inclination, anisotropy, formation interface, and mud intrusion. In the interface, the curves of the LWD resistivity become sharp with increases in the deviation while those of the DLL resistivity gradually become smooth. Both curves are affected by the anisotropy although the effect on DLL resistivity is lower than the LWD resistivity. These differences aid in providing a reasonable explanation in the horizontal well. However, this can also simultaneously lead to false results. At the end of the study, we explain the effects of the differences in the interpretation of the horizontal well based on the results and actual data analysis.