In iron-based superconductor Fe(Se,Te), a flat band-like feature near the Fermi level was observed around the Brillouin zone center in the superconducting state. It is under debate whether this is the evidence on the ...In iron-based superconductor Fe(Se,Te), a flat band-like feature near the Fermi level was observed around the Brillouin zone center in the superconducting state. It is under debate whether this is the evidence on the presence of the BCS–BEC[Bardeen–Cooper–Schrieffer(BCS), Bose–Einstein condensation(BEC)] crossover in the superconductor. High-resolution laser-based angle-resolved photoemission measurements are carried out on high quality single crystals of FeSe_(0.45)Te_(0.55) superconductor to address the issue. By employing different polarization geometries, we have resolved and isolated the dyz band and the topological surface band, making it possible to study their superconducting behaviors separately. The dyz band alone does not form a flat band-like feature in the superconducting state and the measured dispersion can be well described by the BCS picture. We find that the flat band-like feature is formed from the combination of the dyz band and the topological surface state band in the superconducting state. These results reveal the origin of the flat band-like feature and rule out the presence of BCS-BEC crossover in Fe(Se,Te) superconductor.展开更多
We trace the conceptual basis of the Multi-Band Approach (MBA) and recall the reasons for its wide following for composite superconductors (SCs). Attention is then drawn to a feature that MBA ignores: the possibility ...We trace the conceptual basis of the Multi-Band Approach (MBA) and recall the reasons for its wide following for composite superconductors (SCs). Attention is then drawn to a feature that MBA ignores: the possibility that electrons in such an SC may also be bound via simultaneous exchanges of quanta with more than one ion-species—a lacuna which is addressed by the Generalized BCS Equations (GBCSEs). Based on several papers, we give a concise account of how this approach: 1) despite employing a single band, meets the criteria satisfied by MBA because a) GBCSEs are derived from a temperature-incorporated Bethe-Salpeter Equation the kernel of which is taken to be a “superpropagator” for a composite SC-each ion-species of which is distinguished by its own Debye temperature and interaction parameter and b) the band overlapping the Fermi surface is allowed to be of variable width. GBCSEs so-obtained reduce to the usual equations for the Tc and Δ of an elemental SC in the limit superpropagator → 1-phonon propagator;2) accommodates moving Cooper pairs and thereby extends the scope of the original BCS theory which restricts the Hamiltonian at the outset to terms that correspond to pairs having zero centre-of-mass momentum. One can now derive an equation for the critical current density (j0) of a composite SC at T = 0 in terms of the Debye temperatures of its ions and their interaction parameters— parameters that also determine its Tc and Δs;3) transforms the problem of optimizing j0 of a composite SC, and hence its Tc, into a problem of chemical engineering;4) provides a common canopy for most composite SCs, including those that are usually regarded as outside the purview of the BCS theory and have therefore been called “exceptional”, e.g., the heavy-fermion SCs;5) incorporates s±-wave superconductivity as an in-built feature and can therefore deal with the iron-based SCs, and 6) leads to presumably verifiable predictions for the values of some relevant parameters, e.g., the effective mass of electrons, for the SCs for which it has been employed.展开更多
We address the Tc (s) and multiple gaps of La2CuO4 (LCO) via generalized BCS equations incorporating chemical potential. Appealing to the structure of the unit cell of LCO, which comprises sub- lattices with LaO and O...We address the Tc (s) and multiple gaps of La2CuO4 (LCO) via generalized BCS equations incorporating chemical potential. Appealing to the structure of the unit cell of LCO, which comprises sub- lattices with LaO and OLa layers and brings into play two Debye temperatures, the concept of itinerancy of electrons, and an insight provided by Tacon et al.’s recent experimental work concerned with YBa2Cu3O6.6 which reveals that very large electron-phonon coupling can occur in a very narrow region of phonon wavelengths, we are enabled to account for all values of its gap-to-Tc ratio (2Δ0/kBTc), i.e., 4.3, 7.1, ≈8 and 9.3, which were reported by Bednorz and Müller in their Nobel lecture. Our study predicts carrier concentrations corresponding to these gap values to lie in the range 1.3 × 1021 - 5.6 × 1021 cm-3, and values of 0.27 - 0.29 and 1.12 for the gap-to-Tc ratios of the smaller gaps.展开更多
直接定义模型,不定义框架是条件句逻辑研究中的一个惯常现象。作者以唐纳德.纽特在Topics in Conditional Logic一书中给出的条件句逻辑系统W为出发点,引入了Wo=W+RCEA,并证明了Wo的框架完全性,进而讨论RCEA的取舍对条件句逻辑完全性的...直接定义模型,不定义框架是条件句逻辑研究中的一个惯常现象。作者以唐纳德.纽特在Topics in Conditional Logic一书中给出的条件句逻辑系统W为出发点,引入了Wo=W+RCEA,并证明了Wo的框架完全性,进而讨论RCEA的取舍对条件句逻辑完全性的影响,指出没有RCEA的条件句逻辑直接定义模型,不定义框架是有原因的,而有RCEA的系统则可以进一步讨论框架完全性问题。展开更多
Recently an algorithm that acts the variational principle directly to a coherent-pair condensate (VDPC) has been proposed. This algorithm can avoid time-consuming projection while maintaining particle number conservat...Recently an algorithm that acts the variational principle directly to a coherent-pair condensate (VDPC) has been proposed. This algorithm can avoid time-consuming projection while maintaining particle number conservation. Quickly computation of many-pair density matrix (MPDM) is one of the keys to improve the computational efficiency of VDPC algorithm. In this work, we propose a scheme that limits the energy range of block particles to the vicinity of the Fermi surface, which reduces the time complexity of computing the MPDM without losing physical details. The results show that by appropriately limiting the energy range, we can greatly reduce the number of matrix elements that need to be computed, and reducing the time required for the computation.展开更多
A quantum statistical theory of the superconductivity in MgB<sub>2</sub> is developed regarding it as a member of the graphite intercalation compound. The superconducting temperature T<sub>c</sub&...A quantum statistical theory of the superconductivity in MgB<sub>2</sub> is developed regarding it as a member of the graphite intercalation compound. The superconducting temperature T<sub>c</sub> for MgB<sub>2</sub>, C<sub>8</sub>K ≡ KC<sub>8</sub>, CaC<sub>6</sub>, are 39 K, 0.6 K, 11.5 K, respectively. The differences arise from the lattice structures. In the plane perpendicular to the c-axis, B’s form a honeycomb lattice with the nearest neighbour distance while Mg’s form a base-hexagonal lattice with the nearest neighbour distance above and below the B-plane distanced by . The more compact B-plane becomes superconducting due to the electron-phonon attraction. Starting with the generalized Bardeen- Cooper-Schrieffer (BCS) Hamiltonian and solving the generalized Cooper equation, we obtain a linear dispersion relation for moving Cooper pairs. The superconducting temperature T<sub>c</sub> identified as the Bose-Einstein condensation temperature of the Cooper pairs in two dimensions is given by , where is the Cooper pair density, the Boltzmann constant. The lattices of KC<sub>8</sub> and CaC<sub>6</sub> are clearly specified.展开更多
基金Projects supported by the National Key Research and Development Program of China(GrantNos.2021YFA1401800,2022YFA1604200,2022YFA1403900,and2023YFA1406000)the National Natural Science Foundation of China(Grant Nos.12488201,12374066,12074411,and 12374154)+3 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant Nos.XDB25000000 and XDB33000000)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301800)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.Y2021006)the Synergetic Extreme Condition User Facility(SECUF)。
文摘In iron-based superconductor Fe(Se,Te), a flat band-like feature near the Fermi level was observed around the Brillouin zone center in the superconducting state. It is under debate whether this is the evidence on the presence of the BCS–BEC[Bardeen–Cooper–Schrieffer(BCS), Bose–Einstein condensation(BEC)] crossover in the superconductor. High-resolution laser-based angle-resolved photoemission measurements are carried out on high quality single crystals of FeSe_(0.45)Te_(0.55) superconductor to address the issue. By employing different polarization geometries, we have resolved and isolated the dyz band and the topological surface band, making it possible to study their superconducting behaviors separately. The dyz band alone does not form a flat band-like feature in the superconducting state and the measured dispersion can be well described by the BCS picture. We find that the flat band-like feature is formed from the combination of the dyz band and the topological surface state band in the superconducting state. These results reveal the origin of the flat band-like feature and rule out the presence of BCS-BEC crossover in Fe(Se,Te) superconductor.
文摘We trace the conceptual basis of the Multi-Band Approach (MBA) and recall the reasons for its wide following for composite superconductors (SCs). Attention is then drawn to a feature that MBA ignores: the possibility that electrons in such an SC may also be bound via simultaneous exchanges of quanta with more than one ion-species—a lacuna which is addressed by the Generalized BCS Equations (GBCSEs). Based on several papers, we give a concise account of how this approach: 1) despite employing a single band, meets the criteria satisfied by MBA because a) GBCSEs are derived from a temperature-incorporated Bethe-Salpeter Equation the kernel of which is taken to be a “superpropagator” for a composite SC-each ion-species of which is distinguished by its own Debye temperature and interaction parameter and b) the band overlapping the Fermi surface is allowed to be of variable width. GBCSEs so-obtained reduce to the usual equations for the Tc and Δ of an elemental SC in the limit superpropagator → 1-phonon propagator;2) accommodates moving Cooper pairs and thereby extends the scope of the original BCS theory which restricts the Hamiltonian at the outset to terms that correspond to pairs having zero centre-of-mass momentum. One can now derive an equation for the critical current density (j0) of a composite SC at T = 0 in terms of the Debye temperatures of its ions and their interaction parameters— parameters that also determine its Tc and Δs;3) transforms the problem of optimizing j0 of a composite SC, and hence its Tc, into a problem of chemical engineering;4) provides a common canopy for most composite SCs, including those that are usually regarded as outside the purview of the BCS theory and have therefore been called “exceptional”, e.g., the heavy-fermion SCs;5) incorporates s±-wave superconductivity as an in-built feature and can therefore deal with the iron-based SCs, and 6) leads to presumably verifiable predictions for the values of some relevant parameters, e.g., the effective mass of electrons, for the SCs for which it has been employed.
文摘We address the Tc (s) and multiple gaps of La2CuO4 (LCO) via generalized BCS equations incorporating chemical potential. Appealing to the structure of the unit cell of LCO, which comprises sub- lattices with LaO and OLa layers and brings into play two Debye temperatures, the concept of itinerancy of electrons, and an insight provided by Tacon et al.’s recent experimental work concerned with YBa2Cu3O6.6 which reveals that very large electron-phonon coupling can occur in a very narrow region of phonon wavelengths, we are enabled to account for all values of its gap-to-Tc ratio (2Δ0/kBTc), i.e., 4.3, 7.1, ≈8 and 9.3, which were reported by Bednorz and Müller in their Nobel lecture. Our study predicts carrier concentrations corresponding to these gap values to lie in the range 1.3 × 1021 - 5.6 × 1021 cm-3, and values of 0.27 - 0.29 and 1.12 for the gap-to-Tc ratios of the smaller gaps.
文摘直接定义模型,不定义框架是条件句逻辑研究中的一个惯常现象。作者以唐纳德.纽特在Topics in Conditional Logic一书中给出的条件句逻辑系统W为出发点,引入了Wo=W+RCEA,并证明了Wo的框架完全性,进而讨论RCEA的取舍对条件句逻辑完全性的影响,指出没有RCEA的条件句逻辑直接定义模型,不定义框架是有原因的,而有RCEA的系统则可以进一步讨论框架完全性问题。
文摘Recently an algorithm that acts the variational principle directly to a coherent-pair condensate (VDPC) has been proposed. This algorithm can avoid time-consuming projection while maintaining particle number conservation. Quickly computation of many-pair density matrix (MPDM) is one of the keys to improve the computational efficiency of VDPC algorithm. In this work, we propose a scheme that limits the energy range of block particles to the vicinity of the Fermi surface, which reduces the time complexity of computing the MPDM without losing physical details. The results show that by appropriately limiting the energy range, we can greatly reduce the number of matrix elements that need to be computed, and reducing the time required for the computation.
文摘A quantum statistical theory of the superconductivity in MgB<sub>2</sub> is developed regarding it as a member of the graphite intercalation compound. The superconducting temperature T<sub>c</sub> for MgB<sub>2</sub>, C<sub>8</sub>K ≡ KC<sub>8</sub>, CaC<sub>6</sub>, are 39 K, 0.6 K, 11.5 K, respectively. The differences arise from the lattice structures. In the plane perpendicular to the c-axis, B’s form a honeycomb lattice with the nearest neighbour distance while Mg’s form a base-hexagonal lattice with the nearest neighbour distance above and below the B-plane distanced by . The more compact B-plane becomes superconducting due to the electron-phonon attraction. Starting with the generalized Bardeen- Cooper-Schrieffer (BCS) Hamiltonian and solving the generalized Cooper equation, we obtain a linear dispersion relation for moving Cooper pairs. The superconducting temperature T<sub>c</sub> identified as the Bose-Einstein condensation temperature of the Cooper pairs in two dimensions is given by , where is the Cooper pair density, the Boltzmann constant. The lattices of KC<sub>8</sub> and CaC<sub>6</sub> are clearly specified.