As a high-performance material with great application potential,the application of carbon nanotubes has been limited by their production volume.A distributor-less conical fluidized bed is the main equipment used in th...As a high-performance material with great application potential,the application of carbon nanotubes has been limited by their production volume.A distributor-less conical fluidized bed is the main equipment used in the industrial production of carbon nanotubes.To improve the production volume and product quality of carbon nanotubes,the study of fluidized-bed-diameter scaling is important.Three different diameters of distributor-less conical fluidized beds were established,and then the particle behavior and bubble characteristics of carbon nanotube clusters at these bed diameters were investigated.Time-series and wavelet analysis methods were used to analyze the pressure-fluctuation signals inside the fluidized beds.Results showed that the distributor-less design caused the airflow to break through the middle of the bed,which did not change with the change in bed diameter.The powder-bridging phenomenon of carbon nanotube clusters in a 100-mm-diameter fluidized bed was related to the special microstructure of carbon nanotube clusters.The frequency of pressure fluctuations in the bed decreased nonlinearly with increasing bed diameter.This study can guide the design and scale-up of distributor-less conical fluidized beds,especially for the scale-up of carbon nanotube production equipment,which can contribute to the improvement of carbon nanotubes’capacity and quality in industrial production.展开更多
Circulating fluidized bed flue gas desulfurization(CFB-FGD) process has been widely applied in recent years. However, high cost caused by the use of high-quality slaked lime and difficult operation due to the complex ...Circulating fluidized bed flue gas desulfurization(CFB-FGD) process has been widely applied in recent years. However, high cost caused by the use of high-quality slaked lime and difficult operation due to the complex flow field are two issues which have received great attention. Accordingly, a laboratory-scale fluidized bed reactor was constructed to investigate the effects of physical properties and external conditions on desulfurization performance of slaked lime, and the conclusions were tried out in an industrial-scale CFB-FGD tower. After that, a numerical model of the tower was established based on computational particle fluid dynamics(CPFD) and two-film theory. After comparison and validation with actual operation data, the effects of operating parameters on gas-solid distribution and desulfurization characteristics were investigated. The results of experiments and industrial trials showed that the use of slaked lime with a calcium hydroxide content of approximately 80% and particle size greater than 40 μm could significantly reduce the cost of desulfurizer. Simulation results showed that the flow field in the desulfurization tower was skewed under the influence of circulating ash. We obtained optimal operating conditions of 7.5 kg·s^(-1)for the atomized water flow, 70 kg·s^(-1)for circulating ash flow, and 0.56 kg·s^(-1)for slaked lime flow, with desulfurization efficiency reaching 98.19% and the exit flue gas meeting the ultraclean emission and safety requirements. All parameters selected in the simulation were based on engineering examples and had certain application reference significance.展开更多
Under the pressure of carbon neutrality,many carbon capture,utilization and storage technologies have witnessed rapid development in the recent years,including oxy-fuel combustion(OFC)technology.However,the convention...Under the pressure of carbon neutrality,many carbon capture,utilization and storage technologies have witnessed rapid development in the recent years,including oxy-fuel combustion(OFC)technology.However,the conventional OFC technology usually depends on the flue gas recirculation system,which faces significant investment,high energy consumption,and potential low-temperature corrosion problem.Considering these deficiencies,the direct utilization of pure oxygen to achieve particle fluidization and fuel combustion may reduce the overall energy consumption and CO_(2)-capture costs.In this paper,the fundamental structure of a self-designed 130 t·h^(-1) pure-oxygen combustion circulating fluidized bed(CFB)boiler was provided,and the computational particle fluid dynamics method was used to analyze the gas-solid flow characteristics of this new-concept boiler under different working conditions.The results indicate that through the careful selection of design or operational parameters,such as average bed-material size and fluidization velocity,the pure-oxygen combustion CFB system can maintain the ideal fluidization state,namely significant internal and external particle circulation.Besides,the contraction section of the boiler leads to the particle backflow in the lower furnace,resulting in the particle suspension concentration near the wall region being higher than that in the center region.Conversely,the upper furnace still retains the classic core-annulus flow structure.In addition to increasing solid circulation rate by reducing the average bed-material size,altering primary gas ratio and bed inventory can also exert varying degrees of influence on the gas-solid flow characteristics of the pure-oxygen combustion CFB boiler.展开更多
A multitracer-gas method was proposed to study the secondary air(SA)mixing along the bed height in a circulating fluidized bed(CFB)using carbon monoxide(CO),oxygen(O_(2)),and carbon dioxide(CO_(2))as tracer gases.Expe...A multitracer-gas method was proposed to study the secondary air(SA)mixing along the bed height in a circulating fluidized bed(CFB)using carbon monoxide(CO),oxygen(O_(2)),and carbon dioxide(CO_(2))as tracer gases.Experiments were carried out on a cold CFB test rig with a cross-section of 0.42 m×0.73 m and a height of 5.50 m.The effects of superficial velocity,SA ratio,bed inventory,and particle diameter on the SA mixing were investigated.The results indicate that there are some differences in the measurement results obtained using different tracer gases,wherein the deviation between CO and CO_(2) ranges from 42%to 66%and that between O_(2) and CO_(2) ranges from 45%to 71%in the lower part of the fluidized bed.However,these differences became less pronounced as the bed height increased.Besides,the high solid concentration and fine particle diameter in the CFB may weaken the difference.The measurement results of different tracer gases show the same trends under the variation of operating parameters.Increasing superficial velocity and SA ratio and decreasing particle diameter result in better mixing of the SA.The effect of bed inventory on SA mixing is not monotonic.展开更多
The particle residence time distribution(RTD)and axial dispersion coefficient are key parameters for the design and operation of a pressurized circulating fluidized bed(PCFB).In this study,the effects of pressure(0.1-...The particle residence time distribution(RTD)and axial dispersion coefficient are key parameters for the design and operation of a pressurized circulating fluidized bed(PCFB).In this study,the effects of pressure(0.1-0.6 MPa),fluidizing gas velocity(2-7 m·s^(-1)),and solid circulation rate(10-90 kg·m^(-2)·s^(-1))on particle RTD and axial dispersion coefficient in a PCFB are numerically investigated based on the multiphase particle-in-cell(MP-PIC)method.The details of the gas-solid flow behaviors of PCFB are revealed.Based on the gas-solid flow pattern,the particles tend to move more orderly under elevated pressures.With an increase in either fluidizing gas velocity or solid circulation rate,the mean residence time of particles decreases while the axial dispersion coefficient increases.With an increase in pressure,the core-annulus flow is strengthened,which leads to a wider shape of the particle RTD curve and a larger mean particle residence time.The back-mixing of particles increases with increasing pressure,resulting in an increase in the axial dispersion coefficient.展开更多
In global industrialization, efforts have been made to increase the rate of heat transfer in heat exchanger, minimizing the size of heat exchanger to reduce cost as well as increasing the effectiveness. Helical coil h...In global industrialization, efforts have been made to increase the rate of heat transfer in heat exchanger, minimizing the size of heat exchanger to reduce cost as well as increasing the effectiveness. Helical coil heat exchanger (HCHE) has been proven to be effective in improving heat transfer due to its large surface area. In this study, HCHE was designed to provide hot air needed for fluidized bed drying processes. The HCHE design model was fabricated and evaluated to study the efficiency of the hot air output for a laboratory fluidized bed dryer. The mathematical model for estimation of the final (output) temperature of air, Taf, passing through the HCHE was developed and validated experimentally. The drying of bitter kola particulates was carried out with a drying temperature of 50C 3C and a bed height-to-bed diameter ratio (H/D) of 1.5. The time taken to dry bitter kola particulates to 0.4% moisture content was 1 hour 45 minutes. Hence, HCHE is recommended for use in the production of hot for laboratory-scale fluidized bed dryers.展开更多
This research entails the study of heat and mass transfer of nanofluid flow in a fluidized bed dryer used in tea drying processes in presence of induced magnetic field. A mathematical model describing the fluid flow i...This research entails the study of heat and mass transfer of nanofluid flow in a fluidized bed dryer used in tea drying processes in presence of induced magnetic field. A mathematical model describing the fluid flow in a Fluidized bed dryer was developed using the nonlinear partial differential equations. Due to their non-linearity, the equations were solved numerically by use of the finite difference method. The effects of physical flow parameters on velocity, temperature, concentration and magnetic induction profiles were studied and results were presented graphically. From the mathematical analysis, it was deduced that addition of silver nanoparticles into the fluid flow enhanced velocity and temperature profiles. This led to improved heat transfer in the fluidized bed dryer, hence amplifying the tea drying process. Furthermore, it was noted that induced magnetic field tends to decrease the fluid velocity, which results in uniform distribution of heat leading to efficient heat transfer between the tea particles and the fluid, thus improving the drying process. The research findings provide information to industries on ways to optimize thermal performance of fluidized bed dryers.展开更多
Using a newly developed experimental setup,the features and advantages of an autothermal single-casing atmospheric sub-bituminous coal fluidized bed air-blown gasifier,combining a combustion and gasification section,a...Using a newly developed experimental setup,the features and advantages of an autothermal single-casing atmospheric sub-bituminous coal fluidized bed air-blown gasifier,combining a combustion and gasification section,and mixing the dispersed phase(inert material,char)and heat exchange between them through an annular transfer device,have been revealed.To increase the efficiency of the gasifier,an experimental-computational method was developed find the conditions for optimal operation,combining changing the annular flow's geometry and regulating the primary air for gasification.A simple and reliable multizone thermodynamic calculation model makes it possible to predict the composition of char and syngas in the gasification section with acceptable accuracy.This method confirmed that a two-section fluidized bed gasifier can provide efficient gasification of solid fuels and is suitable for use in small-scale cogeneration plants.Syngas with a heating value of 3.6-4.5 MJ/m^(3)and CGE of 38.2%-42.3%was obtained in the experimental setup without optimizing the primary air flow rate.With optimization,the indicators increased to the heating value of syngas of 5.20-5.34 MJ/m^(3)and CGE of 42.5%-50.0%.With heat regeneration of 0.8,CGE increases to 70%.展开更多
In this study,the open-source software MFIX-DEM simulations of a bubbling fluidized bed(BFB)are applied to assess nine drag models according to experimental and direct numerical simulation(DNS)results.The influence of...In this study,the open-source software MFIX-DEM simulations of a bubbling fluidized bed(BFB)are applied to assess nine drag models according to experimental and direct numerical simulation(DNS)results.The influence of superficial gas velocity on gas–solid flow is also examined.The results show that according to the distribution of time-averaged particle axial velocity in y direction,except for Wen–Yu and Tenneti–Garg–Subramaniam(TGS),other drag models are consistent with the experimental and DNS results.For the TGS drag model,the layer-by-layer movement of particles is observed,which indicates the particle velocity is not correctly predicted.The time domain and frequency domain analysis results of pressure drop of each drag model are similar.It is recommended to use the drag model derived from DNS or fine grid computational fluid dynamics–discrete element method(CFD-DEM)data first for CFD-DEM simulations.For the investigated BFB,the superficial gas velocity less than 0.9 m·s^(-1) should be adopted to obtain normal hydrodynamics.展开更多
A set of hydrodynamic similarity laws is applied to the scale-up of ethylene polymerization fluidized bed reactors(FBRs)under the condensed mode operation.The thermal stability of open-loop controlled FBRs is investig...A set of hydrodynamic similarity laws is applied to the scale-up of ethylene polymerization fluidized bed reactors(FBRs)under the condensed mode operation.The thermal stability of open-loop controlled FBRs is investigated by the homotopy continuation method.And the Hopf bifurcation point is selected as an index of the thermal stability similarity.The simulation results show the similarity in state variables,operation parameters,the space-time yield(STY),and the thermal stability of FBRs with different scales.Furthermore,the thermal stability behaviors and similarity of the closed-loop controlled FBRs with different scales are analyzed.The observed similar trend of Hopf bifurcation curves reveals the similarity in the thermal stability of closed-loop controlled FBRs with different scaling ratios.In general,the results of the thermal stability similarity confirm that the hydrodynamics scaling laws proposed in the work are applicable to the scale-up of FBRs under the condensed mode operation.展开更多
A liquid-solid circulating fluidized bed boiler is designed and built for visualization research by applying the fluidized bed heat transfer and fouling prevention technology to the water side of the boiler. Four type...A liquid-solid circulating fluidized bed boiler is designed and built for visualization research by applying the fluidized bed heat transfer and fouling prevention technology to the water side of the boiler. Four types of engineering plastic particles with different physical properties are selected as the solid working media. The effect of particle types on the fluidization and distribution of particles in the boiler is investigated under different feedwater flow rates and amount of added particles by using the charge couple device image measurement and acquisition system. The results show that all kinds of particles can't be normally fluidized and accumulate in the drum at low amount of added particles and feedwater flow rate. The particles with great density and low sphericity are more likely to accumulate. The average solid holdup in the riser tubes increases with the increase in feedwater flow rate and the amount of added particles. The non-uniform degree of particle distribution in the riser tubes generally decreases with the increase in feedwater flow rate and the amount of added particles. The particles with small density and settling velocity have high average solid holdup in the riser tubes under close sphericity. In generally,the smaller the density and settling velocity, the more uniform the particle distribution in the riser tubes.Three-dimensional diagrams of the non-uniform degree of particle distribution in the riser tubes of the boiler are established.展开更多
To utilize CFBC Al-rich fly ash, a mild hydrochemical extraction process was investigated for recovery of alumina. An alumina extraction efficiency of 92.31%was attained using a 45%NaOH solution, an original caustic r...To utilize CFBC Al-rich fly ash, a mild hydrochemical extraction process was investigated for recovery of alumina. An alumina extraction efficiency of 92.31%was attained using a 45%NaOH solution, an original caustic ratio (molar ratio of Na2O to Al2O3 in the sodium aluminate solution) of 25, a molar ratio of CaO to SiO2 in the fly ash of 1.1, a liquid volume to solid mass ratio of 9, a reaction temperature of 280 ℃, and a residence time of 1 h when treating fly ash with an alumina to silica mass ratio (A/S) of 0.78 and an alumina content of 32.43%. Additionally, the alumina leaching mechanism was explored via structural and chemical analysis, which revealed that after alkaline digestion, the main solid phase containing silica was NaCaHSiO4 with a theoretical A/S of zero.展开更多
Natural rutile and gaseous chlorine with carbon as reductant were used to prepare titanium tetrachloride. Thermodynamics and kinetics of chlorination of Kenya natural rutile particles in a batch-type fluidized bed wer...Natural rutile and gaseous chlorine with carbon as reductant were used to prepare titanium tetrachloride. Thermodynamics and kinetics of chlorination of Kenya natural rutile particles in a batch-type fluidized bed were studied at 1173-1273 K. Thermodynamic analysis of this system revealed that the equation of producing CO was dominant at high temperatures. Based on the gas-solid multi-phase reaction theory and a two-phase model for the fluidized bed, the mathematical description for the chlorination reaction of rutile was proposed. The reaction parameters and the average concentration of gaseous chlorine in the emulsion phase were estimated. The average concentration of emulsion phase in the range of fluidized bed was calculated as 0.3 mol/m^3. The results showed that the chlorination of natural rutile proceeded principally in the emulsion phase, and the reaction rate was mainly controlled by the surface reaction.展开更多
The pressurized combustion experiments of bituminous coal and lignite under air and O2/CO2 atmospheres were conducted to study the influences of pressure and atmosphere on combustion and the CO, NO, SO2 release proces...The pressurized combustion experiments of bituminous coal and lignite under air and O2/CO2 atmospheres were conducted to study the influences of pressure and atmosphere on combustion and the CO, NO, SO2 release process. Two indices, the maximum concentration and the total emission, were applied to quantitatively evaluate the influence of several different operating parameters such as pressure, atmosphere and temperature on the formation of NO and SO2 during coal combustion in the fluidized bed. The experimental results show that the releasing profiles of CO, NO and SO2 during coal combustion under a pressurized oxy- fuel atmosphere are similar to those under a pressurized air atmosphere, and the curves of measured gas components are all unimodal. Under the oxy-fuel condition, pressure increasing from 0.1 to 0.7 MPa can cause the inhibition of NO and SO2 emission. The elevation of temperature can lead to an increase in the maximum concentration and the total production of NO and SO2, and the increase under atmospheric pressure is higher than that under high pressure.展开更多
In order to solve the agglomeration problem in TiCl4 preparation,a new test in a multistage series combined fluidized bed was studied on a pilot scale.The pilot plant can make full use of titanium slag with a high con...In order to solve the agglomeration problem in TiCl4 preparation,a new test in a multistage series combined fluidized bed was studied on a pilot scale.The pilot plant can make full use of titanium slag with a high content of MgO and CaO as the feedstock.Several experimental parameters such as chlorine flow and reaction temperature were discussed and the morphology and components of reaction product were analyzed.According to the results,the conversion rate of TiO2 is up to 90%.It is found that the combined fluidized bed has good anti-agglomeration ability because the accumulation of MgCl2 and CaCl2 on the surface of unreacted slag was carried out of the reactor.展开更多
Combustion and sulfur retention experiments of mixed fuel of petroleum cokeand coal were conducted on a pilot-scale circulating fluidized bed (CFB) combustor with the thermalinput of 0. 6 MW. The effects of several pa...Combustion and sulfur retention experiments of mixed fuel of petroleum cokeand coal were conducted on a pilot-scale circulating fluidized bed (CFB) combustor with the thermalinput of 0. 6 MW. The effects of several parameters, such as the primary air percentage, excess aircoefficient, bed temperature, Ca/S molar ratio and mass ratio of petroleum coke to coal on SO_2emission were verified. Experimental results show that when the ratio of petroleum coke to coal inthe mixed fuel increases, the SO_2emission increases. The maximum SO_2 emission appears when purecoke burns. The SO_2 concentration in flue gas reduces with the increase in the primary airpercentage, excess air coefficient and Ca/S molar ratio for all kinds of fuel mixtures. Therangebetween 830 t and 850 t is the optimal temperature for sulfur retention during co-firing ofpetroleum coke and coal with the mass ratio R of 1 and 3 in CFB.展开更多
A three-dimensional numerical model verified by previous experimental data is developed to simulate the fluidized bed gasification of refuse derived fuel (RDF). The CaO dechlorination model obtained by the thermal g...A three-dimensional numerical model verified by previous experimental data is developed to simulate the fluidized bed gasification of refuse derived fuel (RDF). The CaO dechlorination model obtained by the thermal gravity analysis (TGA) is coupled to investigate the process of CaO dechlorination. An Eulerian-Eulerian method is adopted to simulate the gas-solid flow and self-developed chemical reaction modules are used to simulate chemical reactions. Flow patterns, gasification results and dechlorination efficiency are obtained by numerical simulation. Meanwhile, simulations are performed to evaluate the effects of Ca/Cl molar ratio and temperature on dechlorination efficiency. The simulation results show that the presence of bubbles in the gasifier lowers the CaO dechlorination efficiency. Increasing the Ca/Cl molar ratio can enhance the dechlorination efficiency. However, with the temperature increasing, the dechlorination efficiency increases initially and then decreases. The optimal Ca/Cl molar ratio is in the range of 3. 0 to 3. 5 and the optimal temperature is 923K.展开更多
Numerical simulation study is conducted for a pressurized spouted fluidized bed coal carbonizer, in which hydrodynamics of pressurized spouted fluidized bed, chemical reactions and energy balance are taken into accoun...Numerical simulation study is conducted for a pressurized spouted fluidized bed coal carbonizer, in which hydrodynamics of pressurized spouted fluidized bed, chemical reactions and energy balance are taken into account. The effect of operating conditions such as bed pressure, air and steam mass flow ratio, temperature on product compositions in the bed is investigated. According to the calculated results, bed pressure and bed temperature have the key effects on coal semi gasification.展开更多
To determine and calculate the stable fluidization zone in a magnetically fluidized bed, the fluidization characteristics of magnetic particles are investigated. Four kinds of magnetic particles with different average...To determine and calculate the stable fluidization zone in a magnetically fluidized bed, the fluidization characteristics of magnetic particles are investigated. Four kinds of magnetic particles with different average diameters, ranging from 231 to 512 μm, are fluidized in the presence of magnetic fields with specified values of the intensity in the range of zero to 7330 A/m, and the particle fluidization curves are plotted. For marking the stable fluidization zone in the curves, the minimum bubbling velocities of particles are measured by the pressure-drop fluctuation. Based on the fluidization curves, the influences of the average particle diameter and magnetic field intensity on the zone are analyzed and discussed. A correlation to determine the stable fluidization zone is derived from the experimental data, using three dimensionless numbers, i. e., the ratio of magnetic potential to gravity potential, the Reynolds number and the Archimedes number. Compared with available data reported, it is shown that the correlation is more simplified to predict relative parameters for the bed operating in the state of stable fluidization under reasonable conditions.展开更多
This paper presents the technical parameters and features of 1 MWth test facilities for circulating fluidized bed combustion (CFBC) at Thermal Power Research Institute (TPRI) of State Power Corporation (SP), introduce...This paper presents the technical parameters and features of 1 MWth test facilities for circulating fluidized bed combustion (CFBC) at Thermal Power Research Institute (TPRI) of State Power Corporation (SP), introduces the test items that can be proceeded and trial combustion projects completed. The development status of CFBC technologies abroad and the level of China in this field are also introduced in the paper.展开更多
基金supported by the National Natural Science Foundation of China(52336003,52206096,52176076)the Special Expert Project of Shandong Province Taishan Scholars Program(ts20190937).
文摘As a high-performance material with great application potential,the application of carbon nanotubes has been limited by their production volume.A distributor-less conical fluidized bed is the main equipment used in the industrial production of carbon nanotubes.To improve the production volume and product quality of carbon nanotubes,the study of fluidized-bed-diameter scaling is important.Three different diameters of distributor-less conical fluidized beds were established,and then the particle behavior and bubble characteristics of carbon nanotube clusters at these bed diameters were investigated.Time-series and wavelet analysis methods were used to analyze the pressure-fluctuation signals inside the fluidized beds.Results showed that the distributor-less design caused the airflow to break through the middle of the bed,which did not change with the change in bed diameter.The powder-bridging phenomenon of carbon nanotube clusters in a 100-mm-diameter fluidized bed was related to the special microstructure of carbon nanotube clusters.The frequency of pressure fluctuations in the bed decreased nonlinearly with increasing bed diameter.This study can guide the design and scale-up of distributor-less conical fluidized beds,especially for the scale-up of carbon nanotube production equipment,which can contribute to the improvement of carbon nanotubes’capacity and quality in industrial production.
基金supported by National Natural Science Foundation of China(52336005 and 52106133).
文摘Circulating fluidized bed flue gas desulfurization(CFB-FGD) process has been widely applied in recent years. However, high cost caused by the use of high-quality slaked lime and difficult operation due to the complex flow field are two issues which have received great attention. Accordingly, a laboratory-scale fluidized bed reactor was constructed to investigate the effects of physical properties and external conditions on desulfurization performance of slaked lime, and the conclusions were tried out in an industrial-scale CFB-FGD tower. After that, a numerical model of the tower was established based on computational particle fluid dynamics(CPFD) and two-film theory. After comparison and validation with actual operation data, the effects of operating parameters on gas-solid distribution and desulfurization characteristics were investigated. The results of experiments and industrial trials showed that the use of slaked lime with a calcium hydroxide content of approximately 80% and particle size greater than 40 μm could significantly reduce the cost of desulfurizer. Simulation results showed that the flow field in the desulfurization tower was skewed under the influence of circulating ash. We obtained optimal operating conditions of 7.5 kg·s^(-1)for the atomized water flow, 70 kg·s^(-1)for circulating ash flow, and 0.56 kg·s^(-1)for slaked lime flow, with desulfurization efficiency reaching 98.19% and the exit flue gas meeting the ultraclean emission and safety requirements. All parameters selected in the simulation were based on engineering examples and had certain application reference significance.
基金supported by the National Key Research and Development Program of China(2022YFB4100305).
文摘Under the pressure of carbon neutrality,many carbon capture,utilization and storage technologies have witnessed rapid development in the recent years,including oxy-fuel combustion(OFC)technology.However,the conventional OFC technology usually depends on the flue gas recirculation system,which faces significant investment,high energy consumption,and potential low-temperature corrosion problem.Considering these deficiencies,the direct utilization of pure oxygen to achieve particle fluidization and fuel combustion may reduce the overall energy consumption and CO_(2)-capture costs.In this paper,the fundamental structure of a self-designed 130 t·h^(-1) pure-oxygen combustion circulating fluidized bed(CFB)boiler was provided,and the computational particle fluid dynamics method was used to analyze the gas-solid flow characteristics of this new-concept boiler under different working conditions.The results indicate that through the careful selection of design or operational parameters,such as average bed-material size and fluidization velocity,the pure-oxygen combustion CFB system can maintain the ideal fluidization state,namely significant internal and external particle circulation.Besides,the contraction section of the boiler leads to the particle backflow in the lower furnace,resulting in the particle suspension concentration near the wall region being higher than that in the center region.Conversely,the upper furnace still retains the classic core-annulus flow structure.In addition to increasing solid circulation rate by reducing the average bed-material size,altering primary gas ratio and bed inventory can also exert varying degrees of influence on the gas-solid flow characteristics of the pure-oxygen combustion CFB boiler.
基金the Key Project of the National Research Program of China(2020YFB0606201)。
文摘A multitracer-gas method was proposed to study the secondary air(SA)mixing along the bed height in a circulating fluidized bed(CFB)using carbon monoxide(CO),oxygen(O_(2)),and carbon dioxide(CO_(2))as tracer gases.Experiments were carried out on a cold CFB test rig with a cross-section of 0.42 m×0.73 m and a height of 5.50 m.The effects of superficial velocity,SA ratio,bed inventory,and particle diameter on the SA mixing were investigated.The results indicate that there are some differences in the measurement results obtained using different tracer gases,wherein the deviation between CO and CO_(2) ranges from 42%to 66%and that between O_(2) and CO_(2) ranges from 45%to 71%in the lower part of the fluidized bed.However,these differences became less pronounced as the bed height increased.Besides,the high solid concentration and fine particle diameter in the CFB may weaken the difference.The measurement results of different tracer gases show the same trends under the variation of operating parameters.Increasing superficial velocity and SA ratio and decreasing particle diameter result in better mixing of the SA.The effect of bed inventory on SA mixing is not monotonic.
基金Financial support of this work by National Natural Science Foundation of China(51976037)。
文摘The particle residence time distribution(RTD)and axial dispersion coefficient are key parameters for the design and operation of a pressurized circulating fluidized bed(PCFB).In this study,the effects of pressure(0.1-0.6 MPa),fluidizing gas velocity(2-7 m·s^(-1)),and solid circulation rate(10-90 kg·m^(-2)·s^(-1))on particle RTD and axial dispersion coefficient in a PCFB are numerically investigated based on the multiphase particle-in-cell(MP-PIC)method.The details of the gas-solid flow behaviors of PCFB are revealed.Based on the gas-solid flow pattern,the particles tend to move more orderly under elevated pressures.With an increase in either fluidizing gas velocity or solid circulation rate,the mean residence time of particles decreases while the axial dispersion coefficient increases.With an increase in pressure,the core-annulus flow is strengthened,which leads to a wider shape of the particle RTD curve and a larger mean particle residence time.The back-mixing of particles increases with increasing pressure,resulting in an increase in the axial dispersion coefficient.
文摘In global industrialization, efforts have been made to increase the rate of heat transfer in heat exchanger, minimizing the size of heat exchanger to reduce cost as well as increasing the effectiveness. Helical coil heat exchanger (HCHE) has been proven to be effective in improving heat transfer due to its large surface area. In this study, HCHE was designed to provide hot air needed for fluidized bed drying processes. The HCHE design model was fabricated and evaluated to study the efficiency of the hot air output for a laboratory fluidized bed dryer. The mathematical model for estimation of the final (output) temperature of air, Taf, passing through the HCHE was developed and validated experimentally. The drying of bitter kola particulates was carried out with a drying temperature of 50C 3C and a bed height-to-bed diameter ratio (H/D) of 1.5. The time taken to dry bitter kola particulates to 0.4% moisture content was 1 hour 45 minutes. Hence, HCHE is recommended for use in the production of hot for laboratory-scale fluidized bed dryers.
文摘This research entails the study of heat and mass transfer of nanofluid flow in a fluidized bed dryer used in tea drying processes in presence of induced magnetic field. A mathematical model describing the fluid flow in a Fluidized bed dryer was developed using the nonlinear partial differential equations. Due to their non-linearity, the equations were solved numerically by use of the finite difference method. The effects of physical flow parameters on velocity, temperature, concentration and magnetic induction profiles were studied and results were presented graphically. From the mathematical analysis, it was deduced that addition of silver nanoparticles into the fluid flow enhanced velocity and temperature profiles. This led to improved heat transfer in the fluidized bed dryer, hence amplifying the tea drying process. Furthermore, it was noted that induced magnetic field tends to decrease the fluid velocity, which results in uniform distribution of heat leading to efficient heat transfer between the tea particles and the fluid, thus improving the drying process. The research findings provide information to industries on ways to optimize thermal performance of fluidized bed dryers.
基金funding from the Ministry of Science and Higher Education of the Russian Federation (Ural Federal University Program of Development within the Priority-2030 Program)is gratefully acknowledged.
文摘Using a newly developed experimental setup,the features and advantages of an autothermal single-casing atmospheric sub-bituminous coal fluidized bed air-blown gasifier,combining a combustion and gasification section,and mixing the dispersed phase(inert material,char)and heat exchange between them through an annular transfer device,have been revealed.To increase the efficiency of the gasifier,an experimental-computational method was developed find the conditions for optimal operation,combining changing the annular flow's geometry and regulating the primary air for gasification.A simple and reliable multizone thermodynamic calculation model makes it possible to predict the composition of char and syngas in the gasification section with acceptable accuracy.This method confirmed that a two-section fluidized bed gasifier can provide efficient gasification of solid fuels and is suitable for use in small-scale cogeneration plants.Syngas with a heating value of 3.6-4.5 MJ/m^(3)and CGE of 38.2%-42.3%was obtained in the experimental setup without optimizing the primary air flow rate.With optimization,the indicators increased to the heating value of syngas of 5.20-5.34 MJ/m^(3)and CGE of 42.5%-50.0%.With heat regeneration of 0.8,CGE increases to 70%.
基金the China-CEEC Joint Higher Education Project(Cultivation Project)(CEEC2021001)Srdjan Beloševic,Aleksandar Milicevic and Ivan Tomanovic acknowledge the financial support by the Ministry of Science,Technological Development and Innovation of the Republic of Serbia(Contract Annex:451-03-47/2023-01/200017).
文摘In this study,the open-source software MFIX-DEM simulations of a bubbling fluidized bed(BFB)are applied to assess nine drag models according to experimental and direct numerical simulation(DNS)results.The influence of superficial gas velocity on gas–solid flow is also examined.The results show that according to the distribution of time-averaged particle axial velocity in y direction,except for Wen–Yu and Tenneti–Garg–Subramaniam(TGS),other drag models are consistent with the experimental and DNS results.For the TGS drag model,the layer-by-layer movement of particles is observed,which indicates the particle velocity is not correctly predicted.The time domain and frequency domain analysis results of pressure drop of each drag model are similar.It is recommended to use the drag model derived from DNS or fine grid computational fluid dynamics–discrete element method(CFD-DEM)data first for CFD-DEM simulations.For the investigated BFB,the superficial gas velocity less than 0.9 m·s^(-1) should be adopted to obtain normal hydrodynamics.
基金financial supports from the Project of the National Natural Science Foundation of China(22178304,22108239)the Start-up Funding of Ningbo Research Institute of Zhejiang University(20201207Z0204).
文摘A set of hydrodynamic similarity laws is applied to the scale-up of ethylene polymerization fluidized bed reactors(FBRs)under the condensed mode operation.The thermal stability of open-loop controlled FBRs is investigated by the homotopy continuation method.And the Hopf bifurcation point is selected as an index of the thermal stability similarity.The simulation results show the similarity in state variables,operation parameters,the space-time yield(STY),and the thermal stability of FBRs with different scales.Furthermore,the thermal stability behaviors and similarity of the closed-loop controlled FBRs with different scales are analyzed.The observed similar trend of Hopf bifurcation curves reveals the similarity in the thermal stability of closed-loop controlled FBRs with different scaling ratios.In general,the results of the thermal stability similarity confirm that the hydrodynamics scaling laws proposed in the work are applicable to the scale-up of FBRs under the condensed mode operation.
基金supported by the open foundation of State Key Laboratory of Chemical Engineering (SKL–ChE–18B03)the Municipal Science and Technology Commission of Tianjin, China (2009ZCKFGX01900)。
文摘A liquid-solid circulating fluidized bed boiler is designed and built for visualization research by applying the fluidized bed heat transfer and fouling prevention technology to the water side of the boiler. Four types of engineering plastic particles with different physical properties are selected as the solid working media. The effect of particle types on the fluidization and distribution of particles in the boiler is investigated under different feedwater flow rates and amount of added particles by using the charge couple device image measurement and acquisition system. The results show that all kinds of particles can't be normally fluidized and accumulate in the drum at low amount of added particles and feedwater flow rate. The particles with great density and low sphericity are more likely to accumulate. The average solid holdup in the riser tubes increases with the increase in feedwater flow rate and the amount of added particles. The non-uniform degree of particle distribution in the riser tubes generally decreases with the increase in feedwater flow rate and the amount of added particles. The particles with small density and settling velocity have high average solid holdup in the riser tubes under close sphericity. In generally,the smaller the density and settling velocity, the more uniform the particle distribution in the riser tubes.Three-dimensional diagrams of the non-uniform degree of particle distribution in the riser tubes of the boiler are established.
基金Project (2012BAF03B01) supported by the National Science and Technology Support Program of ChinaProject (2011AA060701) supported by the Hi-tech Research and Development Program of China
文摘To utilize CFBC Al-rich fly ash, a mild hydrochemical extraction process was investigated for recovery of alumina. An alumina extraction efficiency of 92.31%was attained using a 45%NaOH solution, an original caustic ratio (molar ratio of Na2O to Al2O3 in the sodium aluminate solution) of 25, a molar ratio of CaO to SiO2 in the fly ash of 1.1, a liquid volume to solid mass ratio of 9, a reaction temperature of 280 ℃, and a residence time of 1 h when treating fly ash with an alumina to silica mass ratio (A/S) of 0.78 and an alumina content of 32.43%. Additionally, the alumina leaching mechanism was explored via structural and chemical analysis, which revealed that after alkaline digestion, the main solid phase containing silica was NaCaHSiO4 with a theoretical A/S of zero.
基金Projects(51374064,51004033,51074044)supported by the National Natural Science Foundation of ChinaProject(2012AA062303)supported by High-tech Research and Development Program of China
文摘Natural rutile and gaseous chlorine with carbon as reductant were used to prepare titanium tetrachloride. Thermodynamics and kinetics of chlorination of Kenya natural rutile particles in a batch-type fluidized bed were studied at 1173-1273 K. Thermodynamic analysis of this system revealed that the equation of producing CO was dominant at high temperatures. Based on the gas-solid multi-phase reaction theory and a two-phase model for the fluidized bed, the mathematical description for the chlorination reaction of rutile was proposed. The reaction parameters and the average concentration of gaseous chlorine in the emulsion phase were estimated. The average concentration of emulsion phase in the range of fluidized bed was calculated as 0.3 mol/m^3. The results showed that the chlorination of natural rutile proceeded principally in the emulsion phase, and the reaction rate was mainly controlled by the surface reaction.
基金The National Natural Science Foundation of China(No.51206023)the National Key Basic Research Program of China(973 Program)(No.2011CB707301-3)the Fundamental Research Funds for the Central Universities
文摘The pressurized combustion experiments of bituminous coal and lignite under air and O2/CO2 atmospheres were conducted to study the influences of pressure and atmosphere on combustion and the CO, NO, SO2 release process. Two indices, the maximum concentration and the total emission, were applied to quantitatively evaluate the influence of several different operating parameters such as pressure, atmosphere and temperature on the formation of NO and SO2 during coal combustion in the fluidized bed. The experimental results show that the releasing profiles of CO, NO and SO2 during coal combustion under a pressurized oxy- fuel atmosphere are similar to those under a pressurized air atmosphere, and the curves of measured gas components are all unimodal. Under the oxy-fuel condition, pressure increasing from 0.1 to 0.7 MPa can cause the inhibition of NO and SO2 emission. The elevation of temperature can lead to an increase in the maximum concentration and the total production of NO and SO2, and the increase under atmospheric pressure is higher than that under high pressure.
基金Project(2008AA06Z1071) supported by the National High-Tech Research and Development Program of ChinaProject(20306030) supported by the National Natural Science Foundation of China
文摘In order to solve the agglomeration problem in TiCl4 preparation,a new test in a multistage series combined fluidized bed was studied on a pilot scale.The pilot plant can make full use of titanium slag with a high content of MgO and CaO as the feedstock.Several experimental parameters such as chlorine flow and reaction temperature were discussed and the morphology and components of reaction product were analyzed.According to the results,the conversion rate of TiO2 is up to 90%.It is found that the combined fluidized bed has good anti-agglomeration ability because the accumulation of MgCl2 and CaCl2 on the surface of unreacted slag was carried out of the reactor.
文摘Combustion and sulfur retention experiments of mixed fuel of petroleum cokeand coal were conducted on a pilot-scale circulating fluidized bed (CFB) combustor with the thermalinput of 0. 6 MW. The effects of several parameters, such as the primary air percentage, excess aircoefficient, bed temperature, Ca/S molar ratio and mass ratio of petroleum coke to coal on SO_2emission were verified. Experimental results show that when the ratio of petroleum coke to coal inthe mixed fuel increases, the SO_2emission increases. The maximum SO_2 emission appears when purecoke burns. The SO_2 concentration in flue gas reduces with the increase in the primary airpercentage, excess air coefficient and Ca/S molar ratio for all kinds of fuel mixtures. Therangebetween 830 t and 850 t is the optimal temperature for sulfur retention during co-firing ofpetroleum coke and coal with the mass ratio R of 1 and 3 in CFB.
基金The National Natural Science Foundation of China(No.51476032)
文摘A three-dimensional numerical model verified by previous experimental data is developed to simulate the fluidized bed gasification of refuse derived fuel (RDF). The CaO dechlorination model obtained by the thermal gravity analysis (TGA) is coupled to investigate the process of CaO dechlorination. An Eulerian-Eulerian method is adopted to simulate the gas-solid flow and self-developed chemical reaction modules are used to simulate chemical reactions. Flow patterns, gasification results and dechlorination efficiency are obtained by numerical simulation. Meanwhile, simulations are performed to evaluate the effects of Ca/Cl molar ratio and temperature on dechlorination efficiency. The simulation results show that the presence of bubbles in the gasifier lowers the CaO dechlorination efficiency. Increasing the Ca/Cl molar ratio can enhance the dechlorination efficiency. However, with the temperature increasing, the dechlorination efficiency increases initially and then decreases. The optimal Ca/Cl molar ratio is in the range of 3. 0 to 3. 5 and the optimal temperature is 923K.
文摘Numerical simulation study is conducted for a pressurized spouted fluidized bed coal carbonizer, in which hydrodynamics of pressurized spouted fluidized bed, chemical reactions and energy balance are taken into account. The effect of operating conditions such as bed pressure, air and steam mass flow ratio, temperature on product compositions in the bed is investigated. According to the calculated results, bed pressure and bed temperature have the key effects on coal semi gasification.
基金The National Natural Science Foundation of China(No50576013)
文摘To determine and calculate the stable fluidization zone in a magnetically fluidized bed, the fluidization characteristics of magnetic particles are investigated. Four kinds of magnetic particles with different average diameters, ranging from 231 to 512 μm, are fluidized in the presence of magnetic fields with specified values of the intensity in the range of zero to 7330 A/m, and the particle fluidization curves are plotted. For marking the stable fluidization zone in the curves, the minimum bubbling velocities of particles are measured by the pressure-drop fluctuation. Based on the fluidization curves, the influences of the average particle diameter and magnetic field intensity on the zone are analyzed and discussed. A correlation to determine the stable fluidization zone is derived from the experimental data, using three dimensionless numbers, i. e., the ratio of magnetic potential to gravity potential, the Reynolds number and the Archimedes number. Compared with available data reported, it is shown that the correlation is more simplified to predict relative parameters for the bed operating in the state of stable fluidization under reasonable conditions.
基金This paper is an introduction of a key laboratory of SP.
文摘This paper presents the technical parameters and features of 1 MWth test facilities for circulating fluidized bed combustion (CFBC) at Thermal Power Research Institute (TPRI) of State Power Corporation (SP), introduces the test items that can be proceeded and trial combustion projects completed. The development status of CFBC technologies abroad and the level of China in this field are also introduced in the paper.