Objective:To investigate the importance of immunization in preventing measles infection and to determine the most useful laboratory tests for confirmation of measles.Methods:This study included pediatric cases evaluat...Objective:To investigate the importance of immunization in preventing measles infection and to determine the most useful laboratory tests for confirmation of measles.Methods:This study included pediatric cases evaluated with a presumed diagnosis of measles between December 2022 and June 2023,at Marmara University Pendik Training and Research Hospital.The effects of vaccination status and underlying disease on the clinical course,treatments,and complications were evaluated.Results:In total,117 patients were enrolled in the study with a median age of 80 months(IQR:32.5-125.0).Twelve patients with contact history were asymptomatic and had an underlying disorder,and intravenous immunoglobulin was given to them for post-exposure prophylaxis.Fifty-one patients had confirmed measles diagnosis.Ribavirin treatment was given to three patients(a newborn,a girl with rhabdomyosarcoma,and a healthy boy)with respiratory distress.Seventy-eight percent of confirmed measles cases were unvaccinated,and all hospitalized cases were unvaccinated or under-vaccinated.Four full-vaccinated children had confirmed measles infection.Measles PCR from nasopharyngeal swabs was negative in all of them,and their diagnosis was established with anti-measles IgM positivity.Conclusions:The measles vaccine is the most effective way to protect from measles and measles-related complications.Although measles can also occur in fully vaccinated patients,the disease is milder than in unvaccinated patients.Using ELISA and RT-PCR tests together may be beneficial in patients with high clinical suspicion for early diagnosis.展开更多
Background:Solid organ transplant(SOT)activities,such as liver transplant,have been greatly influenced by the pandemic of coronavirus disease 2019(COVID-19),a disease caused by severe acute respiratory syndrome corona...Background:Solid organ transplant(SOT)activities,such as liver transplant,have been greatly influenced by the pandemic of coronavirus disease 2019(COVID-19),a disease caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).Immunosuppressed individuals of liver transplant recipients(LTRs)tend to have a high risk of COVID-19 infection and related complications.Therefore,COVID-19 vaccination has been recommended to be administered as early as possible in LTRs.Data sources:The keywords“liver transplant”,“SARS-CoV-2”,and“vaccine”were used to retrieve articles published in PubMed.Results:The antibody response following the 1st and 2nd doses of vaccination was disappointingly low,and the immune responses among LTRs remarkably improved after the 3rd or 4th dose of vaccination.Although the 3rd or 4th dose of COVID-19 vaccine increased the antibody titer,a proportion of patients remained unresponsive.Furthermore,recent studies showed that SARS-CoV-2 vaccine could trigger adverse events in LTRs,including allograft rejection and liver injury.Conclusions:This review provides the recently reported data on the antibody response of LTRs following various doses of vaccine,risk factors for poor serological response and adverse events after vaccination.展开更多
Tumor vaccines are a promising avenue in cancer immunotherapy.Despite the progress in targeting specific immune epitopes,tumor cells lacking these epitopes can evade the treatment.Here,we aimed to construct an efficie...Tumor vaccines are a promising avenue in cancer immunotherapy.Despite the progress in targeting specific immune epitopes,tumor cells lacking these epitopes can evade the treatment.Here,we aimed to construct an efficient in situ tumor vaccine called Vac-SM,utilizing shikonin(SKN)to induce immunogenic cell death(ICD)and Mycobacterium smegmatis as an immune adjuvant to enhance in situ tumor vaccine efficacy.SKN showed a dose-dependent and time-dependent cytotoxic effect on the tumor cell line and induced ICD in tumor cells as evidenced by the CCK-8 assay and the detection of the expression of relevant indicators,respectively.Compared with the control group,the in situ Vac-SM injection in mouse subcutaneous metastatic tumors significantly inhibited tumor growth and distant tumor metastasis,while also improving survival rates.Mycobacterium smegmatis effectively induced maturation and activation of bone marrow-derived dendritic cells(DCs),and in vivo tumor-draining lymph nodes showed an increased maturation of DCs and a higher proportion of effector memory T-cell subsets with the Vac-SM treatment,based on flow cytometry analysis results.Collectively,the Vac-SM vaccine effectively induces ICD,improves antigen presentation by DCs,activates a specific systemic antitumor T-cell immune response,exhibits a favorable safety profile,and holds the promise for clinical translation for local tumor immunotherapy.展开更多
Zika virus(ZIKV)is the causative agent of a viral infection that causes neurological complications in newborns and adults worldwide.Its wide transmission route and alarming spread rates are of great concern to the sci...Zika virus(ZIKV)is the causative agent of a viral infection that causes neurological complications in newborns and adults worldwide.Its wide transmission route and alarming spread rates are of great concern to the scientific community.Numerous trials have been conducted to develop treatment options for ZIKV infection.This review highlights the latest developments in the fields of vaccinology and pharmaceuticals developments for ZIKV infection.A systematic and comprehensive approach was used to gather relevant and up-to-date data so that inferences could be made about the gaps in therapeutic development.The results indicate that several therapeutic interventions are being tested against ZIKV infection,such as DNA vaccines,subunit vaccines,live-attenuated vaccines,virus-vector-based vaccines,inactivated vaccines,virus-like particles,and mRNA-based vaccines.In addition,approved anti-ZIKV drugs that can reduce the global burden are discussed.Although many vaccine candidates for ZIKV are at different stages of development,none of them have received Food and Drug Authority approval for use up to now.The issue of side effects associated with these drugs in vulnerable newborns and pregnant women is a major obstacle in the therapeutic pathway.展开更多
Immunotherapy represents a promising strategy for cancer treatment that utilizes immune cells or drugs to activate the patient's own immune system and eliminate cancer cells.One of the most exciting advances withi...Immunotherapy represents a promising strategy for cancer treatment that utilizes immune cells or drugs to activate the patient's own immune system and eliminate cancer cells.One of the most exciting advances within this field is the targeting of neoantigens,which are peptides derived from non-synonymous somatic mutations that are found exclusively within cancer cells and absent in normal cells.Although neoantigen-based therapeutic vaccines have not received approval for standard cancer treatment,early clinical trials have yielded encouraging outcomes as standalone monotherapy or when combined with checkpoint inhibitors.Progress made in high-throughput sequencing and bioinformatics have greatly facilitated the precise and efficient identification of neoantigens.Consequently,personalized neoantigen-based vaccines tailored to each patient have been developed that are capable of eliciting a robust and long-lasting immune response which effectively eliminates tumors and prevents recurrences.This review provides a concise overview consolidating the latest clinical advances in neoantigen-based therapeutic vaccines,and also discusses challenges and future perspectives for this innovative approach,particularly emphasizing the potential of neoantigen-based therapeutic vaccines to enhance clinical efficacy against advanced solid tumors.展开更多
Avian metapneumovirus(aMPV) is a highly contagious pathogen that causes acute upper respiratory tract diseases in chickens and turkeys, resulting in serious economic losses. Subtype B aMPV has recently become the domi...Avian metapneumovirus(aMPV) is a highly contagious pathogen that causes acute upper respiratory tract diseases in chickens and turkeys, resulting in serious economic losses. Subtype B aMPV has recently become the dominant epidemic strain in China. We developed an attenuated aMPV subtype B strain by serial passaging in Vero cells and evaluated its safety and efficacy as a vaccine candidate. The safety test showed that after the 30th passage, the LN16-A strain was fully attenuated, as clinical signs of infection and histological lesions were absent after inoculation.The LN16-A strain did not revert to a virulent strain after five serial passages in chickens. The genomic sequence of LN16-A differed from that of the parent wild-type LN16(wtLN16) strain and had nine amino acid mutations. In chickens, a single immunization with LN16-A induced robust humoral and cellular immune responses, including the abundant production of neutralizing antibodies, CD4^(+) T lymphocytes, and the Th1(IFN-γ) and Th2(IL-4 and IL-6)cytokines. We also confirmed that LN16-A provided 100% protection against subtype B aMPV and significantly reduced viral shedding and turbinate inflammation. Our findings suggest that the LN16-A strain is a promising live attenuated vaccine candidate that can prevent infection with subtype B aMPV.展开更多
H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDV_(vec)H7N9)are effective in disease control because they are prote...H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDV_(vec)H7N9)are effective in disease control because they are protective and allow mass administration.Of note,these vaccines elicit undetectable H7N9-specific hemagglutination-inhibition(HI)but high IgG antibodies in chickens.However,the molecular basis and protective mechanism underlying this particular antibody immunity remain unclear.Herein,immunization with an NDV_(vec)H7N9 induced low anti-H7N9 HI and virus neutralization titers but high levels of hemagglutinin(HA)-binding IgG antibodies in chickens.Three residues(S150,G151 and S152)in HA of H7N9 virus were identified as the dominant epitopes recognized by the NDV_(vec)H7N9 immune serum.Passively transferred NDV_(vec)H7N9 immune serum conferred complete protection against H7N9 virus infection in chickens.The NDV_(vec)H7N9 immune serum can mediate a potent lysis of HA-expressing and H7N9 virus-infected cells and significantly suppress H7N9 virus infectivity.These activities of the serum were significantly impaired after heat-inactivation or treatment with complement inhibitor,suggesting the engagement of the complement system.Moreover,mutations in the 150-SGS-152 sites in HA resulted in significant reductions in cell lysis and virus neutralization mediated by the NDV_(vec)H7N9 immune serum,indicating the requirement of antibody-antigen binding for complement activity.Therefore,antibodies induced by the NDV_(vec)H7N9 can activate antibody-dependent complement-mediated lysis of H7N9 virus-infected cells and complement-mediated neutralization of H7N9 virus.Our findings unveiled a novel role of the complement in protection conferred by the NDV_(vec)H7N9,highlighting a potential benefit of engaging the complement system in H7N9 vaccine design.展开更多
This review aims to summarize the currently viable vaccine strategies including the approved vaccines and the those in trials for next-generation malaria vaccines.Data on malaria vaccine development was collected thro...This review aims to summarize the currently viable vaccine strategies including the approved vaccines and the those in trials for next-generation malaria vaccines.Data on malaria vaccine development was collected through a comprehensive review.The literature search was performed using databases including Google Scholar,PubMed,NIH,and Web of Science.Various novel approaches of vaccination are being developed,including those based on radiation-attenuated strategies,monoclonal antibodies,targeted immunogenic peptides,RNA and DNA vaccines,nanoparticle-based vaccines,protein-based vaccination protocols,and whole organism-based vaccination strategies.Trials on RTS,S have entered phase Ⅲtesting,and those based on blood-stage vaccines and vaccines to interrupt malarial transmission have advanced to higher stages of trials.Mathematical modeling,combined drug and vaccine strategies,mass drug administration,polyvalent vaccine formulations,and targeted vaccination campaigns is playing an important role in malarial prevention.Furthermore,assessing coverage,accessibility,acceptability,deployment,compilation,and adherence to specific vaccination strategies in endemic regions is essential for vaccination drives against malaria.展开更多
Immunotherapy is a promising approach for preventing postoperative tumor recurrence and metastasis. However, inflammatory neutrophils, recruited to the postoperative tumor site, have been shown to exacerbate tumor reg...Immunotherapy is a promising approach for preventing postoperative tumor recurrence and metastasis. However, inflammatory neutrophils, recruited to the postoperative tumor site, have been shown to exacerbate tumor regeneration and limit the efficacy of cancer vaccines. Consequently, addressing postoperative immunosuppression caused by neutrophils is crucial for improving treatment outcomes. This study presents a combined chemoimmunotherapeutic strategy that employs a biocompatible macroporous scaffold-based cancer vaccine (S-CV) and a sialic acid (SA)-modified, doxorubicin (DOX)-loaded liposomal platform (DOX@SAL). The S-CV contains whole tumor lysates as antigens and imiquimod (R837, Toll-like receptor 7 activator)-loaded PLGA nanoparticles as immune adjuvants for cancer, which enhance dendritic cell activation and cytotoxic T cell proliferation upon localized implantation. When administered intravenously, DOX@SAL specifically targets and delivers drugs to activated neutrophils in vivo, mitigating neutrophil infiltration and suppressing postoperative inflammatory responses. In vivo and vitro experiments have demonstrated that S-CV plus DOX@SAL, a combined chemo-immunotherapeutic strategy, has a remarkable potential to inhibit postoperative local tumor recurrence and distant tumor progression, with minimal systemic toxicity, providing a new concept for postoperative treatment of tumors.展开更多
The advent of RNA therapy,particularly through the development of mRNA cancer vaccines,has ushered in a new era in the field of oncology.This article provides a concise overview of the key principles,recent advancemen...The advent of RNA therapy,particularly through the development of mRNA cancer vaccines,has ushered in a new era in the field of oncology.This article provides a concise overview of the key principles,recent advancements,and potential implications of mRNA cancer vaccines as a groundbreaking modality in cancer treatment.mRNA cancer vaccines represent a revolutionary approach to combatting cancer by leveraging the body’s innate immune system.These vaccines are designed to deliver specific mRNA sequences encoding cancer-associated antigens,prompting the immune system to recognize and mount a targeted response against malignant cells.This personalized and adaptive nature of mRNA vaccines holds immense potential for addressing the heterogeneity of cancer and tailoring treatments to individual patients.Recent breakthroughs in the development of mRNA vaccines,exemplified by the success of COVID-19 vaccines,have accelerated their application in oncology.The mRNA platform’s versatility allows for the rapid adaptation of vaccine candidates to various cancer types,presenting an agile and promising avenue for therapeutic intervention.Clinical trials of mRNA cancer vaccines have demonstrated encouraging results in terms of safety,immunogenicity,and efficacy.Pioneering candidates,such as BioNTech’s BNT111 and Moderna’s mRNA-4157,have exhibited promising outcomes in targeting melanoma and solid tumors,respectively.These successes underscore the potential of mRNA vaccines to elicit robust and durable anti-cancer immune responses.While the field holds great promise,challenges such as manufacturing complexities and cost considerations need to be addressed for widespread adoption.The development of scalable and cost-effective manufacturing processes,along with ongoing clinical research,will be pivotal in realizing the full potential of mRNA cancer vaccines.Overall,mRNA cancer vaccines represent a cutting-edge therapeutic approach that holds the promise of transforming cancer treatment.As research progresses,addressing challenges and refining manufacturing processes will be crucial in advancing these vaccines from clinical trials to mainstream oncology practice,offering new hope for patients in the fight against cancer.展开更多
Nanoparticles are significant for veterinary vaccine development because they are safer and more effective than conventional formulations.One promising area of research involves self-assembled protein nanoparticles(SA...Nanoparticles are significant for veterinary vaccine development because they are safer and more effective than conventional formulations.One promising area of research involves self-assembled protein nanoparticles(SAPNs),which have shown potential for enhancing antigen-presenting cell uptake,B-cell activation,and lymph node trafficking.Numerous nanovaccines have been utilized in veterinary medicine,including natural self-assembled protein nanoparticles,rationally designed self-assembled protein nanoparticles,animal virus-derived nanoparticles,bacteriophagederived nanoparticles,and plant-derived nanoparticles,which will be discussed in this review.SAPN vaccines can produce robust cellular and humoral immune responses and have been shown to protect against various animal infectious diseases.This article attempts to summarize these diverse nanovaccine types and their recent research progress in the field of veterinary medicine.Furthermore,this paper highlights their disadvantages and methods for improving their immunogenicity.展开更多
Tumor vaccine therapy offers significant advantages over conventional treatments,including reduced toxic side effects.However,it currently functions primarily as an adjuvant treatment modality in clinical oncology due...Tumor vaccine therapy offers significant advantages over conventional treatments,including reduced toxic side effects.However,it currently functions primarily as an adjuvant treatment modality in clinical oncology due to limitations in tumor antigen selection and delivery methods.Tumor vaccines often fail to elicit a sufficiently robust immune response against progressive tumors,thereby limiting their clinical efficacy.In this study,we developed a nanoparticle-based tumor vaccine,OVA@HA-PEI,utilizing ovalbumin(OVA)as the presenting antigen and hyaluronic acid(HA)and polyethyleneimine(PEI)as adjuvants and carriers.This formulation significantly enhanced the proliferation of immune cells and cytokines,such as CD3,CD8,interferon-,and tumor necrosis factor-,in vivo,effectively activating an immune response against B16–F10 tumors.In vivofluorescenceflow cytometry(IVFC)has already become an effective method for monitoring circulating tumor cells(CTCs)due to its direct,noninvasive,and long-term detection capabilities.Our study utilized a laboratory-constructed IVFC system to monitor the immune processes induced by the OVA@HA-PEI tumor vaccine and an anti-programmed death-1(PD-1)antibody.The results demonstrated that the combined treatment of OVA@HA-PEI and anti-PD-1 antibody significantly improved the survival time of mice compared to anti-PD-1 antibody treatment alone.Additionally,this combination therapy substantially reduced the number of CTCs in vivo,increased the clearance rate of CTCs by the immune system,and slowed tumor progression.Thesefindings greatly enhance the clinical application prospects of IVFC and tumor vaccines.展开更多
BACKGROUND In endemic areas,vertical transmission of hepatitis B virus(HBV)remains a major source of the global reservoir of infected people.Eliminating mother-to-child transmission(MTCT)of HBV is at the heart of Worl...BACKGROUND In endemic areas,vertical transmission of hepatitis B virus(HBV)remains a major source of the global reservoir of infected people.Eliminating mother-to-child transmission(MTCT)of HBV is at the heart of World Health Organization’s goal of reducing the incidence of HBV in children to less than 0.1%by 2030.Universal screening for hepatitis B during pregnancy and neonatal vaccination are the main preventive measures.AIM To evaluate the efficacy of HBV vaccination combined with one dose of immunoglobulin in children born to hepatitis B surface antigen(HBsAg)-positive mothers in Djibouti city.METHODS We conducted a study in a prospective cohort of HBsAg-positive pregnant women and their infants.The study ran from January 2021 to May 2022,and infants were followed up to 7 mo of age.HBV serological markers and viral load in pregnant women were measured using aVidas microparticle enzyme-linked immunosorbent assay(Biomérieux,Paris,France)and the automated Amplix platform(Biosynex,Strasbourg,France).All infants received hepatitis B immunoglobulin and were vaccinated against HBV at birth.These infants were closely monitored to assess their seroprotective response and for failure of immunoprophylaxis.Simple logistic regression was also used to identify risk factors associated with immunoprophylaxis failure and poor vaccine response.All statistical analyses were performed with version 4.0.1 of the R software.RESULTS Of the 50 pregnant women recruited,the median age was 31 years,ranging from 18 years to 41 years.The MTCT rate in this cohort was 4%(2/50)in HBsAg-positive women and 67%(2/3)in hepatitis B e antigen-positive women with a viral load>200000 IU/mL.Of the 48 infants who did not fail immunoprophylaxis,8(16%)became poor responders(anti-HB<100 mIU/mL)after HBV vaccination and hepatitis B immunoglobulin,while 40(84%)infants achieved a good level of seroprotection(anti-HB>100 mIU/mL).Factors associated with this failure of immunoprophylaxis were maternal HBV DNA levels(>200000 IU/mL)and hepatitis B e antigen-positive status(odds ratio=158,95%confidence interval:5.05-4958,P<0.01).Birth weight<2500 g was associated with a poor immune response to vaccination(odds ratio=34,95%confidence interval:3.01-383.86,P<0.01).CONCLUSION Despite a failure rate of immunoprophylaxis higher than the World Health Organization target,this study showed that the combination of immunoglobulin and HBV vaccine was effective in preventing MTCT of HBV.Therefore,further studies are needed to better understand the challenges associated with immunoprophylaxis failure in infants in Djibouti city.展开更多
Introduction: As new vaccines become available, countries must assess the relevance to introduce them into their vaccination schedules. Malawi has recently introduced several new vaccines and plans to introduce more. ...Introduction: As new vaccines become available, countries must assess the relevance to introduce them into their vaccination schedules. Malawi has recently introduced several new vaccines and plans to introduce more. This study was conducted to identify key factors that need to be considered when deciding to introduce a new vaccine and current challenges faced by low and middle income countries using Malawi as an example. Methodology: The study employed a desk review approach, examining published literature from various sources such as PubMed, Medline, and Google Scholar. Policy documents from organizations like the World Health Organization, GAVI the Alliance, and the Ministry of Health for Malawi were also included. A total of 99 articles and documents on new vaccine introduction, challenges of immunization, policy documents in immunization and health systems strengthening were included. The review focused on addressing five key areas critical to new vaccine introduction namely: the need for a vaccine, availability of the vaccine, safety and effectiveness of the vaccine, demand for the vaccine, and the prudent use of public or private funds. Results: Malawi considered the burden of cervical cancer and the significance of malaria in the country when introducing the HPV and malaria vaccines. The country opted for vaccines that can be handled by the cold chain capacity and available human resources. Despite that malaria vaccine and Typhoid Conjugate Vaccine trials were done in country, there are limited vaccine safety and efficacy trials conducted in Malawi, leading to a reliance on WHO-prequalified vaccines. Demand for newly introduced vaccines varied, with high demand for Oral Cholera Vaccine during a cholera outbreak, while demand for COVID-19 vaccines decreased over time. Although cost-effectiveness studies were limited in the country, 2 studies indicated that Typhoid Conjugate Vaccine and malaria vaccine would be cost effective. All these have been implemented despite having challenges like lack of accurate surveillance data, inadequate cold chain capacity, limited safety and efficacy vaccine clinical trials, political influence, and limited funding. Conclusion: Despite several challenges Malawi set a good example of the careful considerations required before introducing a new vaccine. The process involves data review, priority setting, precise planning, and consultation with stakeholders. Low-income countries should invest in vaccine safety, efficacy, and cost-effectiveness trials.展开更多
The purpose of this research review was to examine current scientific literature on COVID-19 vaccine-induced side effects in older adults. We reviewed studies focusing on side effects categorized into cardiologic, imm...The purpose of this research review was to examine current scientific literature on COVID-19 vaccine-induced side effects in older adults. We reviewed studies focusing on side effects categorized into cardiologic, immunologic, neurologic, and ocular groups. Cardiologic side effects included myocarditis, pericarditis, and myocardial infarction. Immunologic conditions examined were anaphylaxis and vaccine-induced immune thrombotic thrombocytopenia. Neurologic side effects included Guillain-Barré syndrome and Bell’s Palsy. Ocular side effects covered ocular swelling, submacular hemorrhage, and corneal graft rejection after keratoplasty and Descemet membrane endothelial keratoplasty. Additionally, less common side effects in older adults were reviewed but found to be statistically rare. Overall, COVID-19 vaccine-induced side effects in elderly populations were rare. We concluded that the vaccine’s efficacy in preventing excess deaths due to COVID-19 is significant, and the risk of these rare side effects does not justify foregoing vaccination in at-risk individuals. Patients at higher risk for these side effects should be informed, and additional considerations should be made by their treating physician. This review aims to increase awareness of rare vaccine-induced side effects to encourage further studies, enhancing understanding of their etiology and prevalence in at-risk older adult populations.展开更多
Pasteurellosis is the most prevalent, extremely contagious bacterial disease among domestic rabbits and is considered the leading cause of deaths in rabbits, resulting in enormous economic losses to the rabbit industr...Pasteurellosis is the most prevalent, extremely contagious bacterial disease among domestic rabbits and is considered the leading cause of deaths in rabbits, resulting in enormous economic losses to the rabbit industry. Screening for bacterial agents causing mortalities in rabbits revealed the presence of Enterobacteriacae species in approximately 42% of studied cases, with E. coli the most commonly isolated organism. The present study was designed to evaluate the immune response of rabbits vaccinated with a locally prepared, combined inactivated vaccine of Pasteurella multocida and E. coli, adjuvanated with Montanide ISA70. A total of 370 rabbits, aged 2 - 3 weeks, were divided into four groups: (G1) vaccinated with a polyvalent P. multocida vaccine, (G2) vaccinated with a polyvalent E. coli vaccine, (G3) vaccinated with a combined inactivated Montanide ISA70 vaccine of P. multocida and E. coli, and (G4) kept as a non-vaccinated control group. All rabbits received two doses of 0.5 ml of the prepared vaccines, administered one month apart, and were then challenged with virulent strains of P. multocida and E. coli three weeks after the second vaccination. The prepared vaccines were evaluated by determining humoral immunity using indirect haemagglutination (IHA) test and ELISA. The potency of the vaccines was assessed through challenge and determination of LD50. Experimental findings on the prepared polyvalent combined inactivated P. multocida and E. coli vaccine indicated that it is a potent vaccine, producing the highest antibody titers and a 90% protection rate against challenges with virulent strains of P. multocida type A, D2, and E. coli types O157, O151 and O125. Thus, this vaccine is promising in addressing both P. multocida and E. coli problems in rabbits, farms, providing significant protection, and we recommend its commercial production to help rabbit producers control these two major bacterial infections.展开更多
COVID-19, a contagious respiratory disease, presents immediate and unforeseen challenges to people worldwide. Moreover, its transmission rapidly extends globally due to its viral transmissibility, emergence of novel s...COVID-19, a contagious respiratory disease, presents immediate and unforeseen challenges to people worldwide. Moreover, its transmission rapidly extends globally due to its viral transmissibility, emergence of novel strains (variants), absence of immunity, and human unawareness. This framework introduces a revised epidemic model, drawing upon mathematical principles. This model incorporates a modified vaccination and lockdown approach to comprehensively depict an epidemics transmission, containment, and decision-making processes within a community. This study aims to provide policymakers with precise information on real-world situations to assist them in making informed decisions about the implementation of lockdown strategies, maintenance variables, and vaccine availability. The suggested model has conducted stability analysis, strength number analysis, and first and second-order derivative analysis of the Lyapunov function and has established the existence and uniqueness of solutions of the proposed models. We examine the combined effects of an effective vaccination campaign and non-pharmaceutical measures such as lockdowns and states of emergency. We rely on the results of this research to assist policymakers in various countries in eradicating the illness by developing more innovative measures to control the outbreak.展开更多
Rotaviruses, noroviruses, and astroviruses are responsible for gastroenteritis in children under 5 years old. The objective of our study was to estimate the evolution of prevalence of rotavirus, norovirus and astrovir...Rotaviruses, noroviruses, and astroviruses are responsible for gastroenteritis in children under 5 years old. The objective of our study was to estimate the evolution of prevalence of rotavirus, norovirus and astrovirus infections in children aged 0 to 5 years with gastroenteritis, after the introduction of rotavirus vaccines in Burkina Faso. This cross-sectional study was conducted between January and December 2023, collecting 100 stool samples from children with gastroenteritis at Saint Camille Hospital in Ouagadougou and the Charles De Gaulle University Paediatric Hospital. Noroviruses and astroviruses were detected using multiplex real-time PCR with a Sacace biotechnology detection kit. Data analysis was performed with Stata statistical software, version 16.0. The prevalence of norovirus infections was 14% and astrovirus infections were 9%. Rotavirus infections were found at prevalence of 15%. The age group most affected by norovirus and astrovirus infections was 0 - 12 months, with respective prevalence rates of 73.34% and 55.56%. The most frequently observed clinical signs in children infected with astrovirus were fever (77.78%), diarrhea (55.56%), and vomiting (44.44%). The introduction of rotavirus vaccines has reduced rotavirus-related infections. However, this has not significantly impacted the prevalence of norovirus and astrovirus infections in Burkina Faso.展开更多
Introduction: The coronavirus disease 2019 (COVID-19) is an infectious disease of the respiratory tract caused by SARS-CoV-2. Since its emergence, there have been increased rates of transmission and spread, morbidity ...Introduction: The coronavirus disease 2019 (COVID-19) is an infectious disease of the respiratory tract caused by SARS-CoV-2. Since its emergence, there have been increased rates of transmission and spread, morbidity and mortality which led to the development of COVID-19 vaccines to address the pandemic. This study assessed acceptance, knowledge, attitude, and perceived risks regarding COVID-19 vaccines among pregnant women attending antenatal care at two First-Level Hospitals in Lusaka, Zambia. Materials and Methods: This was a cross-sectional study that was conducted among 241 pregnant women using a questionnaire from August 2023 to October 2023 in two First-Level Hospitals in Lusaka district, Zambia. The collected data were analyzed using IBM Statistical Package for Social Sciences (SPSS) version 22.0. Statistical analysis was performed using a Chi-square test. The statistical significance was set at a 95% confidence level. Results: Of the 241 participants, 107 (42.7%) were aged between 24 and 34 years. Overall, 64.3% accepted the COVID-19 vaccines, of which 122 (50.6%) were already vaccinated. Further, 203 (84.6%) of the pregnant women had good knowledge, and 199 (82.6%) had positive attitudes towards COVID-19 vaccines. However, 58.5% thought COVID-19 vaccines were not safe and could cause infertility. Alongside this, 70.1% thought that COVID-19 vaccines were harmful during pregnancy. Having good knowledge of COVID-19 vaccines was associated with age (p = 0.049), education status (p = 0.001), and employment status (p = 0.001). Having a positive attitude towards COVID-19 vaccines was associated with education status (p = 0.001) and employment status (p = 0.001). Conclusion: This study found that most pregnant women had good knowledge, and positive attitudes, and the majority accepted the COVID-19 vaccine. Encouragingly, most of the pregnant women who accepted the COVID-19 vaccines were already vaccinated. Most pregnant women thought that COVID-19 vaccines had side effects, were not safe, and could be harmful during pregnancy. Consequently, this could have contributed to the hesitancy to receive a vaccine among some participants. The findings of this study demonstrate the need to provide pregnant women with continuous educational programs on the benefits of vaccinations for themselves and their children.展开更多
Dengue fever,caused by the dengue virus(DENV),poses a significant public health challenge globally,with Nigeria experiencing sporadic outbreaks.A clear understanding of the dengue burden has not been achieved in Niger...Dengue fever,caused by the dengue virus(DENV),poses a significant public health challenge globally,with Nigeria experiencing sporadic outbreaks.A clear understanding of the dengue burden has not been achieved in Nigeria,just as in other African countries.Understanding the epidemiology and burden of dengue fever is essential for effective prevention and control strategies.This paper examines the recent dengue outbreaks in northern Nigeria,particularly in Sokoto state,and evaluates the recommended Takeda dengue vaccine(TDV)along with future prevention strategies.Despite limited surveillance and underreporting,dengue fever is endemic in Nigeria(with over 5 million cases and 5000 dengue-related deaths in 2023),with recent outbreaks indicating a growing concern.The TDV,a live attenuated tetravalent vaccine,has shown promise in preventing dengue fever,but challenges such as vaccine acceptance and access-ibility need to be addressed.Global urbanization contributes to the disease's spread,which is influenced by factors such as population density,cultural beliefs,water storage practices,hygiene,and water supply accessibility.Future prevention strategies must focus on government intervention,community practices,and innovative vector control measures to mitigate the spread of DENV in Nigeria.This study will serve as a valuable reference for policy-makers,researchers,and clinicians in the management and control of DENV in Nigeria and Africa as a whole.展开更多
文摘Objective:To investigate the importance of immunization in preventing measles infection and to determine the most useful laboratory tests for confirmation of measles.Methods:This study included pediatric cases evaluated with a presumed diagnosis of measles between December 2022 and June 2023,at Marmara University Pendik Training and Research Hospital.The effects of vaccination status and underlying disease on the clinical course,treatments,and complications were evaluated.Results:In total,117 patients were enrolled in the study with a median age of 80 months(IQR:32.5-125.0).Twelve patients with contact history were asymptomatic and had an underlying disorder,and intravenous immunoglobulin was given to them for post-exposure prophylaxis.Fifty-one patients had confirmed measles diagnosis.Ribavirin treatment was given to three patients(a newborn,a girl with rhabdomyosarcoma,and a healthy boy)with respiratory distress.Seventy-eight percent of confirmed measles cases were unvaccinated,and all hospitalized cases were unvaccinated or under-vaccinated.Four full-vaccinated children had confirmed measles infection.Measles PCR from nasopharyngeal swabs was negative in all of them,and their diagnosis was established with anti-measles IgM positivity.Conclusions:The measles vaccine is the most effective way to protect from measles and measles-related complications.Although measles can also occur in fully vaccinated patients,the disease is milder than in unvaccinated patients.Using ELISA and RT-PCR tests together may be beneficial in patients with high clinical suspicion for early diagnosis.
基金the National Natural Science Foundation of China(82103662).
文摘Background:Solid organ transplant(SOT)activities,such as liver transplant,have been greatly influenced by the pandemic of coronavirus disease 2019(COVID-19),a disease caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).Immunosuppressed individuals of liver transplant recipients(LTRs)tend to have a high risk of COVID-19 infection and related complications.Therefore,COVID-19 vaccination has been recommended to be administered as early as possible in LTRs.Data sources:The keywords“liver transplant”,“SARS-CoV-2”,and“vaccine”were used to retrieve articles published in PubMed.Results:The antibody response following the 1st and 2nd doses of vaccination was disappointingly low,and the immune responses among LTRs remarkably improved after the 3rd or 4th dose of vaccination.Although the 3rd or 4th dose of COVID-19 vaccine increased the antibody titer,a proportion of patients remained unresponsive.Furthermore,recent studies showed that SARS-CoV-2 vaccine could trigger adverse events in LTRs,including allograft rejection and liver injury.Conclusions:This review provides the recently reported data on the antibody response of LTRs following various doses of vaccine,risk factors for poor serological response and adverse events after vaccination.
基金supported by grants from the Natural Science Foundation of Huai'an Science and Technology Bureau(Grant No.HAB202312)the Science and Technology Development Fund of the Affiliated Hospital of Xuzhou Medical University(Grant No.XYFY2021018).
文摘Tumor vaccines are a promising avenue in cancer immunotherapy.Despite the progress in targeting specific immune epitopes,tumor cells lacking these epitopes can evade the treatment.Here,we aimed to construct an efficient in situ tumor vaccine called Vac-SM,utilizing shikonin(SKN)to induce immunogenic cell death(ICD)and Mycobacterium smegmatis as an immune adjuvant to enhance in situ tumor vaccine efficacy.SKN showed a dose-dependent and time-dependent cytotoxic effect on the tumor cell line and induced ICD in tumor cells as evidenced by the CCK-8 assay and the detection of the expression of relevant indicators,respectively.Compared with the control group,the in situ Vac-SM injection in mouse subcutaneous metastatic tumors significantly inhibited tumor growth and distant tumor metastasis,while also improving survival rates.Mycobacterium smegmatis effectively induced maturation and activation of bone marrow-derived dendritic cells(DCs),and in vivo tumor-draining lymph nodes showed an increased maturation of DCs and a higher proportion of effector memory T-cell subsets with the Vac-SM treatment,based on flow cytometry analysis results.Collectively,the Vac-SM vaccine effectively induces ICD,improves antigen presentation by DCs,activates a specific systemic antitumor T-cell immune response,exhibits a favorable safety profile,and holds the promise for clinical translation for local tumor immunotherapy.
基金This work is supported by the United Arab Emirates University UPAR(Grant No.G3458).
文摘Zika virus(ZIKV)is the causative agent of a viral infection that causes neurological complications in newborns and adults worldwide.Its wide transmission route and alarming spread rates are of great concern to the scientific community.Numerous trials have been conducted to develop treatment options for ZIKV infection.This review highlights the latest developments in the fields of vaccinology and pharmaceuticals developments for ZIKV infection.A systematic and comprehensive approach was used to gather relevant and up-to-date data so that inferences could be made about the gaps in therapeutic development.The results indicate that several therapeutic interventions are being tested against ZIKV infection,such as DNA vaccines,subunit vaccines,live-attenuated vaccines,virus-vector-based vaccines,inactivated vaccines,virus-like particles,and mRNA-based vaccines.In addition,approved anti-ZIKV drugs that can reduce the global burden are discussed.Although many vaccine candidates for ZIKV are at different stages of development,none of them have received Food and Drug Authority approval for use up to now.The issue of side effects associated with these drugs in vulnerable newborns and pregnant women is a major obstacle in the therapeutic pathway.
基金supported by grants from the National Clinical Research Center Cancer Fundthe Haihe Laboratory of Synthetic Biology(22HHSWSS00004)。
文摘Immunotherapy represents a promising strategy for cancer treatment that utilizes immune cells or drugs to activate the patient's own immune system and eliminate cancer cells.One of the most exciting advances within this field is the targeting of neoantigens,which are peptides derived from non-synonymous somatic mutations that are found exclusively within cancer cells and absent in normal cells.Although neoantigen-based therapeutic vaccines have not received approval for standard cancer treatment,early clinical trials have yielded encouraging outcomes as standalone monotherapy or when combined with checkpoint inhibitors.Progress made in high-throughput sequencing and bioinformatics have greatly facilitated the precise and efficient identification of neoantigens.Consequently,personalized neoantigen-based vaccines tailored to each patient have been developed that are capable of eliciting a robust and long-lasting immune response which effectively eliminates tumors and prevents recurrences.This review provides a concise overview consolidating the latest clinical advances in neoantigen-based therapeutic vaccines,and also discusses challenges and future perspectives for this innovative approach,particularly emphasizing the potential of neoantigen-based therapeutic vaccines to enhance clinical efficacy against advanced solid tumors.
基金supported by the National Key Research and Development Program of China (2022YFD1800604)the China Agricultural Research System (CARS-41)the Heilongjiang Touyan Innovation Team Program of China
文摘Avian metapneumovirus(aMPV) is a highly contagious pathogen that causes acute upper respiratory tract diseases in chickens and turkeys, resulting in serious economic losses. Subtype B aMPV has recently become the dominant epidemic strain in China. We developed an attenuated aMPV subtype B strain by serial passaging in Vero cells and evaluated its safety and efficacy as a vaccine candidate. The safety test showed that after the 30th passage, the LN16-A strain was fully attenuated, as clinical signs of infection and histological lesions were absent after inoculation.The LN16-A strain did not revert to a virulent strain after five serial passages in chickens. The genomic sequence of LN16-A differed from that of the parent wild-type LN16(wtLN16) strain and had nine amino acid mutations. In chickens, a single immunization with LN16-A induced robust humoral and cellular immune responses, including the abundant production of neutralizing antibodies, CD4^(+) T lymphocytes, and the Th1(IFN-γ) and Th2(IL-4 and IL-6)cytokines. We also confirmed that LN16-A provided 100% protection against subtype B aMPV and significantly reduced viral shedding and turbinate inflammation. Our findings suggest that the LN16-A strain is a promising live attenuated vaccine candidate that can prevent infection with subtype B aMPV.
基金supported by the earmarked fund for China Agriculture Research System(CARS-40)the Key Research and Development Project of Yangzhou(Modern Agriculture),China(YZ2022052)the‘‘High-end Talent Support Program’’of Yangzhou University,China。
文摘H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDV_(vec)H7N9)are effective in disease control because they are protective and allow mass administration.Of note,these vaccines elicit undetectable H7N9-specific hemagglutination-inhibition(HI)but high IgG antibodies in chickens.However,the molecular basis and protective mechanism underlying this particular antibody immunity remain unclear.Herein,immunization with an NDV_(vec)H7N9 induced low anti-H7N9 HI and virus neutralization titers but high levels of hemagglutinin(HA)-binding IgG antibodies in chickens.Three residues(S150,G151 and S152)in HA of H7N9 virus were identified as the dominant epitopes recognized by the NDV_(vec)H7N9 immune serum.Passively transferred NDV_(vec)H7N9 immune serum conferred complete protection against H7N9 virus infection in chickens.The NDV_(vec)H7N9 immune serum can mediate a potent lysis of HA-expressing and H7N9 virus-infected cells and significantly suppress H7N9 virus infectivity.These activities of the serum were significantly impaired after heat-inactivation or treatment with complement inhibitor,suggesting the engagement of the complement system.Moreover,mutations in the 150-SGS-152 sites in HA resulted in significant reductions in cell lysis and virus neutralization mediated by the NDV_(vec)H7N9 immune serum,indicating the requirement of antibody-antigen binding for complement activity.Therefore,antibodies induced by the NDV_(vec)H7N9 can activate antibody-dependent complement-mediated lysis of H7N9 virus-infected cells and complement-mediated neutralization of H7N9 virus.Our findings unveiled a novel role of the complement in protection conferred by the NDV_(vec)H7N9,highlighting a potential benefit of engaging the complement system in H7N9 vaccine design.
文摘This review aims to summarize the currently viable vaccine strategies including the approved vaccines and the those in trials for next-generation malaria vaccines.Data on malaria vaccine development was collected through a comprehensive review.The literature search was performed using databases including Google Scholar,PubMed,NIH,and Web of Science.Various novel approaches of vaccination are being developed,including those based on radiation-attenuated strategies,monoclonal antibodies,targeted immunogenic peptides,RNA and DNA vaccines,nanoparticle-based vaccines,protein-based vaccination protocols,and whole organism-based vaccination strategies.Trials on RTS,S have entered phase Ⅲtesting,and those based on blood-stage vaccines and vaccines to interrupt malarial transmission have advanced to higher stages of trials.Mathematical modeling,combined drug and vaccine strategies,mass drug administration,polyvalent vaccine formulations,and targeted vaccination campaigns is playing an important role in malarial prevention.Furthermore,assessing coverage,accessibility,acceptability,deployment,compilation,and adherence to specific vaccination strategies in endemic regions is essential for vaccination drives against malaria.
基金funding from the Liaoning Province Doctoral Start-up(grant number 2023-BS-086).
文摘Immunotherapy is a promising approach for preventing postoperative tumor recurrence and metastasis. However, inflammatory neutrophils, recruited to the postoperative tumor site, have been shown to exacerbate tumor regeneration and limit the efficacy of cancer vaccines. Consequently, addressing postoperative immunosuppression caused by neutrophils is crucial for improving treatment outcomes. This study presents a combined chemoimmunotherapeutic strategy that employs a biocompatible macroporous scaffold-based cancer vaccine (S-CV) and a sialic acid (SA)-modified, doxorubicin (DOX)-loaded liposomal platform (DOX@SAL). The S-CV contains whole tumor lysates as antigens and imiquimod (R837, Toll-like receptor 7 activator)-loaded PLGA nanoparticles as immune adjuvants for cancer, which enhance dendritic cell activation and cytotoxic T cell proliferation upon localized implantation. When administered intravenously, DOX@SAL specifically targets and delivers drugs to activated neutrophils in vivo, mitigating neutrophil infiltration and suppressing postoperative inflammatory responses. In vivo and vitro experiments have demonstrated that S-CV plus DOX@SAL, a combined chemo-immunotherapeutic strategy, has a remarkable potential to inhibit postoperative local tumor recurrence and distant tumor progression, with minimal systemic toxicity, providing a new concept for postoperative treatment of tumors.
文摘The advent of RNA therapy,particularly through the development of mRNA cancer vaccines,has ushered in a new era in the field of oncology.This article provides a concise overview of the key principles,recent advancements,and potential implications of mRNA cancer vaccines as a groundbreaking modality in cancer treatment.mRNA cancer vaccines represent a revolutionary approach to combatting cancer by leveraging the body’s innate immune system.These vaccines are designed to deliver specific mRNA sequences encoding cancer-associated antigens,prompting the immune system to recognize and mount a targeted response against malignant cells.This personalized and adaptive nature of mRNA vaccines holds immense potential for addressing the heterogeneity of cancer and tailoring treatments to individual patients.Recent breakthroughs in the development of mRNA vaccines,exemplified by the success of COVID-19 vaccines,have accelerated their application in oncology.The mRNA platform’s versatility allows for the rapid adaptation of vaccine candidates to various cancer types,presenting an agile and promising avenue for therapeutic intervention.Clinical trials of mRNA cancer vaccines have demonstrated encouraging results in terms of safety,immunogenicity,and efficacy.Pioneering candidates,such as BioNTech’s BNT111 and Moderna’s mRNA-4157,have exhibited promising outcomes in targeting melanoma and solid tumors,respectively.These successes underscore the potential of mRNA vaccines to elicit robust and durable anti-cancer immune responses.While the field holds great promise,challenges such as manufacturing complexities and cost considerations need to be addressed for widespread adoption.The development of scalable and cost-effective manufacturing processes,along with ongoing clinical research,will be pivotal in realizing the full potential of mRNA cancer vaccines.Overall,mRNA cancer vaccines represent a cutting-edge therapeutic approach that holds the promise of transforming cancer treatment.As research progresses,addressing challenges and refining manufacturing processes will be crucial in advancing these vaccines from clinical trials to mainstream oncology practice,offering new hope for patients in the fight against cancer.
文摘Nanoparticles are significant for veterinary vaccine development because they are safer and more effective than conventional formulations.One promising area of research involves self-assembled protein nanoparticles(SAPNs),which have shown potential for enhancing antigen-presenting cell uptake,B-cell activation,and lymph node trafficking.Numerous nanovaccines have been utilized in veterinary medicine,including natural self-assembled protein nanoparticles,rationally designed self-assembled protein nanoparticles,animal virus-derived nanoparticles,bacteriophagederived nanoparticles,and plant-derived nanoparticles,which will be discussed in this review.SAPN vaccines can produce robust cellular and humoral immune responses and have been shown to protect against various animal infectious diseases.This article attempts to summarize these diverse nanovaccine types and their recent research progress in the field of veterinary medicine.Furthermore,this paper highlights their disadvantages and methods for improving their immunogenicity.
基金supported by the National Key Research and Development Program of China,Grant Number:2021YFF0502900,2019YFC1604604National Natural Science Foundation of China,Grant Number:62075013,62027824.
文摘Tumor vaccine therapy offers significant advantages over conventional treatments,including reduced toxic side effects.However,it currently functions primarily as an adjuvant treatment modality in clinical oncology due to limitations in tumor antigen selection and delivery methods.Tumor vaccines often fail to elicit a sufficiently robust immune response against progressive tumors,thereby limiting their clinical efficacy.In this study,we developed a nanoparticle-based tumor vaccine,OVA@HA-PEI,utilizing ovalbumin(OVA)as the presenting antigen and hyaluronic acid(HA)and polyethyleneimine(PEI)as adjuvants and carriers.This formulation significantly enhanced the proliferation of immune cells and cytokines,such as CD3,CD8,interferon-,and tumor necrosis factor-,in vivo,effectively activating an immune response against B16–F10 tumors.In vivofluorescenceflow cytometry(IVFC)has already become an effective method for monitoring circulating tumor cells(CTCs)due to its direct,noninvasive,and long-term detection capabilities.Our study utilized a laboratory-constructed IVFC system to monitor the immune processes induced by the OVA@HA-PEI tumor vaccine and an anti-programmed death-1(PD-1)antibody.The results demonstrated that the combined treatment of OVA@HA-PEI and anti-PD-1 antibody significantly improved the survival time of mice compared to anti-PD-1 antibody treatment alone.Additionally,this combination therapy substantially reduced the number of CTCs in vivo,increased the clearance rate of CTCs by the immune system,and slowed tumor progression.Thesefindings greatly enhance the clinical application prospects of IVFC and tumor vaccines.
基金Supported by the Attestation de Financement de These de Doctorat,Dakar le 28/10/2019.
文摘BACKGROUND In endemic areas,vertical transmission of hepatitis B virus(HBV)remains a major source of the global reservoir of infected people.Eliminating mother-to-child transmission(MTCT)of HBV is at the heart of World Health Organization’s goal of reducing the incidence of HBV in children to less than 0.1%by 2030.Universal screening for hepatitis B during pregnancy and neonatal vaccination are the main preventive measures.AIM To evaluate the efficacy of HBV vaccination combined with one dose of immunoglobulin in children born to hepatitis B surface antigen(HBsAg)-positive mothers in Djibouti city.METHODS We conducted a study in a prospective cohort of HBsAg-positive pregnant women and their infants.The study ran from January 2021 to May 2022,and infants were followed up to 7 mo of age.HBV serological markers and viral load in pregnant women were measured using aVidas microparticle enzyme-linked immunosorbent assay(Biomérieux,Paris,France)and the automated Amplix platform(Biosynex,Strasbourg,France).All infants received hepatitis B immunoglobulin and were vaccinated against HBV at birth.These infants were closely monitored to assess their seroprotective response and for failure of immunoprophylaxis.Simple logistic regression was also used to identify risk factors associated with immunoprophylaxis failure and poor vaccine response.All statistical analyses were performed with version 4.0.1 of the R software.RESULTS Of the 50 pregnant women recruited,the median age was 31 years,ranging from 18 years to 41 years.The MTCT rate in this cohort was 4%(2/50)in HBsAg-positive women and 67%(2/3)in hepatitis B e antigen-positive women with a viral load>200000 IU/mL.Of the 48 infants who did not fail immunoprophylaxis,8(16%)became poor responders(anti-HB<100 mIU/mL)after HBV vaccination and hepatitis B immunoglobulin,while 40(84%)infants achieved a good level of seroprotection(anti-HB>100 mIU/mL).Factors associated with this failure of immunoprophylaxis were maternal HBV DNA levels(>200000 IU/mL)and hepatitis B e antigen-positive status(odds ratio=158,95%confidence interval:5.05-4958,P<0.01).Birth weight<2500 g was associated with a poor immune response to vaccination(odds ratio=34,95%confidence interval:3.01-383.86,P<0.01).CONCLUSION Despite a failure rate of immunoprophylaxis higher than the World Health Organization target,this study showed that the combination of immunoglobulin and HBV vaccine was effective in preventing MTCT of HBV.Therefore,further studies are needed to better understand the challenges associated with immunoprophylaxis failure in infants in Djibouti city.
文摘Introduction: As new vaccines become available, countries must assess the relevance to introduce them into their vaccination schedules. Malawi has recently introduced several new vaccines and plans to introduce more. This study was conducted to identify key factors that need to be considered when deciding to introduce a new vaccine and current challenges faced by low and middle income countries using Malawi as an example. Methodology: The study employed a desk review approach, examining published literature from various sources such as PubMed, Medline, and Google Scholar. Policy documents from organizations like the World Health Organization, GAVI the Alliance, and the Ministry of Health for Malawi were also included. A total of 99 articles and documents on new vaccine introduction, challenges of immunization, policy documents in immunization and health systems strengthening were included. The review focused on addressing five key areas critical to new vaccine introduction namely: the need for a vaccine, availability of the vaccine, safety and effectiveness of the vaccine, demand for the vaccine, and the prudent use of public or private funds. Results: Malawi considered the burden of cervical cancer and the significance of malaria in the country when introducing the HPV and malaria vaccines. The country opted for vaccines that can be handled by the cold chain capacity and available human resources. Despite that malaria vaccine and Typhoid Conjugate Vaccine trials were done in country, there are limited vaccine safety and efficacy trials conducted in Malawi, leading to a reliance on WHO-prequalified vaccines. Demand for newly introduced vaccines varied, with high demand for Oral Cholera Vaccine during a cholera outbreak, while demand for COVID-19 vaccines decreased over time. Although cost-effectiveness studies were limited in the country, 2 studies indicated that Typhoid Conjugate Vaccine and malaria vaccine would be cost effective. All these have been implemented despite having challenges like lack of accurate surveillance data, inadequate cold chain capacity, limited safety and efficacy vaccine clinical trials, political influence, and limited funding. Conclusion: Despite several challenges Malawi set a good example of the careful considerations required before introducing a new vaccine. The process involves data review, priority setting, precise planning, and consultation with stakeholders. Low-income countries should invest in vaccine safety, efficacy, and cost-effectiveness trials.
文摘The purpose of this research review was to examine current scientific literature on COVID-19 vaccine-induced side effects in older adults. We reviewed studies focusing on side effects categorized into cardiologic, immunologic, neurologic, and ocular groups. Cardiologic side effects included myocarditis, pericarditis, and myocardial infarction. Immunologic conditions examined were anaphylaxis and vaccine-induced immune thrombotic thrombocytopenia. Neurologic side effects included Guillain-Barré syndrome and Bell’s Palsy. Ocular side effects covered ocular swelling, submacular hemorrhage, and corneal graft rejection after keratoplasty and Descemet membrane endothelial keratoplasty. Additionally, less common side effects in older adults were reviewed but found to be statistically rare. Overall, COVID-19 vaccine-induced side effects in elderly populations were rare. We concluded that the vaccine’s efficacy in preventing excess deaths due to COVID-19 is significant, and the risk of these rare side effects does not justify foregoing vaccination in at-risk individuals. Patients at higher risk for these side effects should be informed, and additional considerations should be made by their treating physician. This review aims to increase awareness of rare vaccine-induced side effects to encourage further studies, enhancing understanding of their etiology and prevalence in at-risk older adult populations.
文摘Pasteurellosis is the most prevalent, extremely contagious bacterial disease among domestic rabbits and is considered the leading cause of deaths in rabbits, resulting in enormous economic losses to the rabbit industry. Screening for bacterial agents causing mortalities in rabbits revealed the presence of Enterobacteriacae species in approximately 42% of studied cases, with E. coli the most commonly isolated organism. The present study was designed to evaluate the immune response of rabbits vaccinated with a locally prepared, combined inactivated vaccine of Pasteurella multocida and E. coli, adjuvanated with Montanide ISA70. A total of 370 rabbits, aged 2 - 3 weeks, were divided into four groups: (G1) vaccinated with a polyvalent P. multocida vaccine, (G2) vaccinated with a polyvalent E. coli vaccine, (G3) vaccinated with a combined inactivated Montanide ISA70 vaccine of P. multocida and E. coli, and (G4) kept as a non-vaccinated control group. All rabbits received two doses of 0.5 ml of the prepared vaccines, administered one month apart, and were then challenged with virulent strains of P. multocida and E. coli three weeks after the second vaccination. The prepared vaccines were evaluated by determining humoral immunity using indirect haemagglutination (IHA) test and ELISA. The potency of the vaccines was assessed through challenge and determination of LD50. Experimental findings on the prepared polyvalent combined inactivated P. multocida and E. coli vaccine indicated that it is a potent vaccine, producing the highest antibody titers and a 90% protection rate against challenges with virulent strains of P. multocida type A, D2, and E. coli types O157, O151 and O125. Thus, this vaccine is promising in addressing both P. multocida and E. coli problems in rabbits, farms, providing significant protection, and we recommend its commercial production to help rabbit producers control these two major bacterial infections.
文摘COVID-19, a contagious respiratory disease, presents immediate and unforeseen challenges to people worldwide. Moreover, its transmission rapidly extends globally due to its viral transmissibility, emergence of novel strains (variants), absence of immunity, and human unawareness. This framework introduces a revised epidemic model, drawing upon mathematical principles. This model incorporates a modified vaccination and lockdown approach to comprehensively depict an epidemics transmission, containment, and decision-making processes within a community. This study aims to provide policymakers with precise information on real-world situations to assist them in making informed decisions about the implementation of lockdown strategies, maintenance variables, and vaccine availability. The suggested model has conducted stability analysis, strength number analysis, and first and second-order derivative analysis of the Lyapunov function and has established the existence and uniqueness of solutions of the proposed models. We examine the combined effects of an effective vaccination campaign and non-pharmaceutical measures such as lockdowns and states of emergency. We rely on the results of this research to assist policymakers in various countries in eradicating the illness by developing more innovative measures to control the outbreak.
文摘Rotaviruses, noroviruses, and astroviruses are responsible for gastroenteritis in children under 5 years old. The objective of our study was to estimate the evolution of prevalence of rotavirus, norovirus and astrovirus infections in children aged 0 to 5 years with gastroenteritis, after the introduction of rotavirus vaccines in Burkina Faso. This cross-sectional study was conducted between January and December 2023, collecting 100 stool samples from children with gastroenteritis at Saint Camille Hospital in Ouagadougou and the Charles De Gaulle University Paediatric Hospital. Noroviruses and astroviruses were detected using multiplex real-time PCR with a Sacace biotechnology detection kit. Data analysis was performed with Stata statistical software, version 16.0. The prevalence of norovirus infections was 14% and astrovirus infections were 9%. Rotavirus infections were found at prevalence of 15%. The age group most affected by norovirus and astrovirus infections was 0 - 12 months, with respective prevalence rates of 73.34% and 55.56%. The most frequently observed clinical signs in children infected with astrovirus were fever (77.78%), diarrhea (55.56%), and vomiting (44.44%). The introduction of rotavirus vaccines has reduced rotavirus-related infections. However, this has not significantly impacted the prevalence of norovirus and astrovirus infections in Burkina Faso.
文摘Introduction: The coronavirus disease 2019 (COVID-19) is an infectious disease of the respiratory tract caused by SARS-CoV-2. Since its emergence, there have been increased rates of transmission and spread, morbidity and mortality which led to the development of COVID-19 vaccines to address the pandemic. This study assessed acceptance, knowledge, attitude, and perceived risks regarding COVID-19 vaccines among pregnant women attending antenatal care at two First-Level Hospitals in Lusaka, Zambia. Materials and Methods: This was a cross-sectional study that was conducted among 241 pregnant women using a questionnaire from August 2023 to October 2023 in two First-Level Hospitals in Lusaka district, Zambia. The collected data were analyzed using IBM Statistical Package for Social Sciences (SPSS) version 22.0. Statistical analysis was performed using a Chi-square test. The statistical significance was set at a 95% confidence level. Results: Of the 241 participants, 107 (42.7%) were aged between 24 and 34 years. Overall, 64.3% accepted the COVID-19 vaccines, of which 122 (50.6%) were already vaccinated. Further, 203 (84.6%) of the pregnant women had good knowledge, and 199 (82.6%) had positive attitudes towards COVID-19 vaccines. However, 58.5% thought COVID-19 vaccines were not safe and could cause infertility. Alongside this, 70.1% thought that COVID-19 vaccines were harmful during pregnancy. Having good knowledge of COVID-19 vaccines was associated with age (p = 0.049), education status (p = 0.001), and employment status (p = 0.001). Having a positive attitude towards COVID-19 vaccines was associated with education status (p = 0.001) and employment status (p = 0.001). Conclusion: This study found that most pregnant women had good knowledge, and positive attitudes, and the majority accepted the COVID-19 vaccine. Encouragingly, most of the pregnant women who accepted the COVID-19 vaccines were already vaccinated. Most pregnant women thought that COVID-19 vaccines had side effects, were not safe, and could be harmful during pregnancy. Consequently, this could have contributed to the hesitancy to receive a vaccine among some participants. The findings of this study demonstrate the need to provide pregnant women with continuous educational programs on the benefits of vaccinations for themselves and their children.
文摘Dengue fever,caused by the dengue virus(DENV),poses a significant public health challenge globally,with Nigeria experiencing sporadic outbreaks.A clear understanding of the dengue burden has not been achieved in Nigeria,just as in other African countries.Understanding the epidemiology and burden of dengue fever is essential for effective prevention and control strategies.This paper examines the recent dengue outbreaks in northern Nigeria,particularly in Sokoto state,and evaluates the recommended Takeda dengue vaccine(TDV)along with future prevention strategies.Despite limited surveillance and underreporting,dengue fever is endemic in Nigeria(with over 5 million cases and 5000 dengue-related deaths in 2023),with recent outbreaks indicating a growing concern.The TDV,a live attenuated tetravalent vaccine,has shown promise in preventing dengue fever,but challenges such as vaccine acceptance and access-ibility need to be addressed.Global urbanization contributes to the disease's spread,which is influenced by factors such as population density,cultural beliefs,water storage practices,hygiene,and water supply accessibility.Future prevention strategies must focus on government intervention,community practices,and innovative vector control measures to mitigate the spread of DENV in Nigeria.This study will serve as a valuable reference for policy-makers,researchers,and clinicians in the management and control of DENV in Nigeria and Africa as a whole.