The radionuclide ^(210) Pb is suitable for century-scale dating and has been used to calculate the sedimentation rate in a variety of environments. However, two common ways to apply 210 Pb dating techniques may give...The radionuclide ^(210) Pb is suitable for century-scale dating and has been used to calculate the sedimentation rate in a variety of environments. However, two common ways to apply 210 Pb dating techniques may give misleading results. One is "prolonging of age", i.e., using the calculated sedimentation rate to date back to 200 or 300 years.This practice must be treated with caution because the 210 Pb dating techniques do not guarantee direct dating for ages much older than 100 years. Another is "loss of age", i.e., the calculated time span between the topmost layer and the 210 Pb background layer in cores is less than 100 years when an apparent sedimentation rate is used in the calculation. Here, we propose that based on the principle of 210 Pb dating, the upper limit of age suitable for direct210 Pb dating is between 110 and 155 years. The "prolonging" application is acceptable only if the sedimentary environment in the past several hundred years was stable and the sedimentation rate was generally constant, and verification with independent evidence(such as historical records or biomarker methodology) is needed.Furthermore, after analyzing many published and collected data, we found four possible reasons for the "loss of age". First, the compaction effect of sediment should be corrected in laboratory analysis or else the calculated age will be underestimated. Second, the accuracy and uncertainty of 210 Pb activity measurement affect the judgment of the background. To be cautious, researchers are apt to choose a background activity with a younger age. Third,use of a slightly smaller value of supported 210 Pb activity in a calculation will lead to considerable underestimation of the time span. Finally, later-stage erosion and migration are common for sedimentation, which lead to loss of sedimentary records and are often reflected as a "loss of age" in cores. We believe that proper use of 210 Pb dating data may provide helpful information on our understanding of sediment records and recent environmental changes.展开更多
大气^(210)Po、^(210)Bi和^(210)Pb的沉降通量是海洋中核素示踪颗粒物动力学过程(颗粒有机碳输出、颗粒物输运)的基础参数,为揭示我国近海地区^(210)Po、^(210)Bi和^(210)Pb活度浓度的时空变化规律并估算其沉降入海通量,本文于2016年9...大气^(210)Po、^(210)Bi和^(210)Pb的沉降通量是海洋中核素示踪颗粒物动力学过程(颗粒有机碳输出、颗粒物输运)的基础参数,为揭示我国近海地区^(210)Po、^(210)Bi和^(210)Pb活度浓度的时空变化规律并估算其沉降入海通量,本文于2016年9月至翌年2月和2021年9-11月分别对上海及厦门地区近地表大气气溶胶中^(210)Po、^(210)Pb和^(210)Bi的活度浓度进行了连续观测;基于^(210)Po-^(210)Pb活度比(^(210)Po/^(210)Pb)和^(210)Bi-^(210)Pb活度比(^(210)Bi/^(210)Pb)两种示踪法计算了气溶胶颗粒物的滞留时间,并利用一维简单气溶胶沉降速率模型估算了3种核素以大气沉降方式输入东海的通量。结果显示,2016年上海秋、冬两季^(210)Po、^(210)Bi、^(210)Pb 3种核素活度浓度的变化范围分别为0.11~1.27 m Bq/m^(3)、0.45~1.83 m Bq/m^(3)和1.12~6.10 m Bq/m^(3);2021年秋季厦门^(210)Po、^(210)Bi、^(210)Pb 3种核素活度浓度的变化范围分别为0.05~0.85 m Bq/m^(3)、0.83~2.52 m Bq/m^(3)和0.17~1.32 m Bq/m^(3),上海近地表气溶胶中3种核素的活度浓度秋季平均值比厦门地区高。利用^(210)Po/^(210)Pb和^(210)Bi/^(210)Pb计算得到上海和厦门近地面大气的气溶胶滞留时间存在显著差异,基于^(210)Po/^(210)Pb计算上海气溶胶滞留时间均值为(94±54)d,基于^(210)Bi/^(210)Pb计算上海气溶胶滞留时间均值为(6.4±4.8)d,造成这种差异的原因很可能是两种示踪法本身具有的系统性差异。本文基于一维简易气溶胶沉降速率模型估算了上海地区的^(210)Pb、^(210)Bi和^(210)Po的大气沉降入东海的通量,其在秋季期间的变化范围分别为0.1~26.35 Bq/(m^(2)·d)、0.04~7.91 Bq/(m^(2)·d)和0.01~5.49 Bq/(m^(2)·d)。基于模型估算的^(210)Po、^(210)Bi和^(210)Pb沉降通量与研究区域的实际观测值接近一致,表明利用一维简易气溶胶沉降速率模型间接估算法在替代观测站直测核素的沉降入海通量方面具有一定可行性。展开更多
Deposition of organic carbon forms the final net effect of the ocean carbon sink at a certain time scale. Organic carbon deposition on the Arctic shelves plays a particularly important role in the global carbon cycle ...Deposition of organic carbon forms the final net effect of the ocean carbon sink at a certain time scale. Organic carbon deposition on the Arctic shelves plays a particularly important role in the global carbon cycle because of the broad shelf area and rich nutrient concentration. To determine the organic carbon deposition flux at the northern margin of the Chukchi Sea shelf, the 210pb dating method was used to analyze the age and deposition rate of sediment samples from station R17 of the third Chinese National Arctic Research Expedition. The results showed that the deposition rate was 0.6 mm'aI, the apparent deposition mass flux was 0.72 kg.m2a1, and the organic carbon deposition flux was 517 mmol C.m2.al. It was estimated that at least 16% of the export organic carbon flux out of the euphoric zone was transferred and chronically buried into the sediment, a value which was much higher than the average ratio (-10%) for low- to mid-latitude regions, indicating a highly effective carbon sink at the northern mar- gin of the Chukchi Sea shelf. With the decrease of sea ice coverage caused by warming in the Arctic Ocean, it could be inferred that the Arctic shelves will play an increasingly important role in the global carbon cycle.展开更多
基金The National Natural Science Foundation of China under contract Nos 41376068 and 41776068
文摘The radionuclide ^(210) Pb is suitable for century-scale dating and has been used to calculate the sedimentation rate in a variety of environments. However, two common ways to apply 210 Pb dating techniques may give misleading results. One is "prolonging of age", i.e., using the calculated sedimentation rate to date back to 200 or 300 years.This practice must be treated with caution because the 210 Pb dating techniques do not guarantee direct dating for ages much older than 100 years. Another is "loss of age", i.e., the calculated time span between the topmost layer and the 210 Pb background layer in cores is less than 100 years when an apparent sedimentation rate is used in the calculation. Here, we propose that based on the principle of 210 Pb dating, the upper limit of age suitable for direct210 Pb dating is between 110 and 155 years. The "prolonging" application is acceptable only if the sedimentary environment in the past several hundred years was stable and the sedimentation rate was generally constant, and verification with independent evidence(such as historical records or biomarker methodology) is needed.Furthermore, after analyzing many published and collected data, we found four possible reasons for the "loss of age". First, the compaction effect of sediment should be corrected in laboratory analysis or else the calculated age will be underestimated. Second, the accuracy and uncertainty of 210 Pb activity measurement affect the judgment of the background. To be cautious, researchers are apt to choose a background activity with a younger age. Third,use of a slightly smaller value of supported 210 Pb activity in a calculation will lead to considerable underestimation of the time span. Finally, later-stage erosion and migration are common for sedimentation, which lead to loss of sedimentary records and are often reflected as a "loss of age" in cores. We believe that proper use of 210 Pb dating data may provide helpful information on our understanding of sediment records and recent environmental changes.
文摘大气^(210)Po、^(210)Bi和^(210)Pb的沉降通量是海洋中核素示踪颗粒物动力学过程(颗粒有机碳输出、颗粒物输运)的基础参数,为揭示我国近海地区^(210)Po、^(210)Bi和^(210)Pb活度浓度的时空变化规律并估算其沉降入海通量,本文于2016年9月至翌年2月和2021年9-11月分别对上海及厦门地区近地表大气气溶胶中^(210)Po、^(210)Pb和^(210)Bi的活度浓度进行了连续观测;基于^(210)Po-^(210)Pb活度比(^(210)Po/^(210)Pb)和^(210)Bi-^(210)Pb活度比(^(210)Bi/^(210)Pb)两种示踪法计算了气溶胶颗粒物的滞留时间,并利用一维简单气溶胶沉降速率模型估算了3种核素以大气沉降方式输入东海的通量。结果显示,2016年上海秋、冬两季^(210)Po、^(210)Bi、^(210)Pb 3种核素活度浓度的变化范围分别为0.11~1.27 m Bq/m^(3)、0.45~1.83 m Bq/m^(3)和1.12~6.10 m Bq/m^(3);2021年秋季厦门^(210)Po、^(210)Bi、^(210)Pb 3种核素活度浓度的变化范围分别为0.05~0.85 m Bq/m^(3)、0.83~2.52 m Bq/m^(3)和0.17~1.32 m Bq/m^(3),上海近地表气溶胶中3种核素的活度浓度秋季平均值比厦门地区高。利用^(210)Po/^(210)Pb和^(210)Bi/^(210)Pb计算得到上海和厦门近地面大气的气溶胶滞留时间存在显著差异,基于^(210)Po/^(210)Pb计算上海气溶胶滞留时间均值为(94±54)d,基于^(210)Bi/^(210)Pb计算上海气溶胶滞留时间均值为(6.4±4.8)d,造成这种差异的原因很可能是两种示踪法本身具有的系统性差异。本文基于一维简易气溶胶沉降速率模型估算了上海地区的^(210)Pb、^(210)Bi和^(210)Po的大气沉降入东海的通量,其在秋季期间的变化范围分别为0.1~26.35 Bq/(m^(2)·d)、0.04~7.91 Bq/(m^(2)·d)和0.01~5.49 Bq/(m^(2)·d)。基于模型估算的^(210)Po、^(210)Bi和^(210)Pb沉降通量与研究区域的实际观测值接近一致,表明利用一维简易气溶胶沉降速率模型间接估算法在替代观测站直测核素的沉降入海通量方面具有一定可行性。
基金supported by the Scientific Research Foundation of the Third Institute of Oceanography, SOA (Grant nos. 2011024 and 2011025)the Marine Science Youth Fund of SOA (Grant no. 2012107)
文摘Deposition of organic carbon forms the final net effect of the ocean carbon sink at a certain time scale. Organic carbon deposition on the Arctic shelves plays a particularly important role in the global carbon cycle because of the broad shelf area and rich nutrient concentration. To determine the organic carbon deposition flux at the northern margin of the Chukchi Sea shelf, the 210pb dating method was used to analyze the age and deposition rate of sediment samples from station R17 of the third Chinese National Arctic Research Expedition. The results showed that the deposition rate was 0.6 mm'aI, the apparent deposition mass flux was 0.72 kg.m2a1, and the organic carbon deposition flux was 517 mmol C.m2.al. It was estimated that at least 16% of the export organic carbon flux out of the euphoric zone was transferred and chronically buried into the sediment, a value which was much higher than the average ratio (-10%) for low- to mid-latitude regions, indicating a highly effective carbon sink at the northern mar- gin of the Chukchi Sea shelf. With the decrease of sea ice coverage caused by warming in the Arctic Ocean, it could be inferred that the Arctic shelves will play an increasingly important role in the global carbon cycle.