Purple soils are widely distributed in the Sichuan Hilly Basin and are highly susceptible to erosion, especially on the cultivated slopes. Quantitative assessment of the erosion rates is, however, difficult due to sma...Purple soils are widely distributed in the Sichuan Hilly Basin and are highly susceptible to erosion, especially on the cultivated slopes. Quantitative assessment of the erosion rates is, however, difficult due to small size of the plots of the manually-tilled land, the complex land use, and steep hillslopes. ^137Cs and ^210Pbex (excess ^210Pb) tracing techniques were used to investigate the spatial pattern of soil erosion rates associated with slope-land under hoe tillage in Neijiang of the Sichuan Hilly Basin. The ^137Cs and ^210Pbex inventories at the top of the cultivated slope were extremely low, and the highest inventories were found at the bottom of the cultivated slope. By combining the erosion rates estimates provided by both ^137Cs and 21~Pbex measurements, the weighted mean net soil loss from the study slope was estimated to be 3 100 t km^-2 year^-1, which was significantly less than 6 930 t km^-2 year^-1 reported for runoff plots on a 10° cultivated slope at the Suining Station of Soil Erosion. The spatial pattern of soil erosion rates on the steep agricultural land showed that hoe tillage played an important role in soil redistribution along the slope. Also, traditional farming practices had a significant role in reducing soil loss, leading to a lower net erosion rate for the field.展开更多
This contribution analyzes the similarities and differences between the measured activities of 137Cs and excess 210Pb(210Pbex) in the cultivated brown and cinnamon soils of the Yimeng Mountain area, discusses the infl...This contribution analyzes the similarities and differences between the measured activities of 137Cs and excess 210Pb(210Pbex) in the cultivated brown and cinnamon soils of the Yimeng Mountain area, discusses the influence of soil texture on the measurement of 210Pbex, and presents differences between the two types of soils. Fields A and B were selected to represent the fields that contain cultivated brown and cinnamon soils, respectively. From either study field, one site of sectioned core and six bulk cores were collected to measure 137Cs levels, 210Pbex levels, and the particle-size composition of soil samples. Three undisturbed soil samples were collected to measure capillary and aeration porosities. The 137Cs inventories for the two study fields are very similar. The 137Cs is a man-made radionuclide, which means that its measured levels for soils are unaffected by soil texture. In contrast, levels of the naturally occurring 210Pbex of soils from Field A were lower than those of Field B by about 50%. In contrast to aquatic sediments, levels of 210Pbex in terrestrial surface soils are affected by the emanation of 222Rn from the soils. It can be assumed that the coarser the soils, the greater the emanation of 222Rn; in addition, the lower the measured 210Pbex, the greater the underestimate of this value. The cultivated brown soils in Field A are coarser than the cultivated cinnamon soils in Field B. As a result, 222Rn in Field A will diffuse more easily into the atmosphere than that in Field B. As a consequence, the measured 210Pbex in soils from Field A is much lower than the actual value, whereas the value measured for Field B is much closer to the actual value.展开更多
The existing^(210)Pb_(ex)mass balance models for the assessment of cultivated soil erosion are based on an assumption that^(210)Pb_(ex)is quite evenly mixed within the plough layer.However,the amount of^(210)Pb_(ex)di...The existing^(210)Pb_(ex)mass balance models for the assessment of cultivated soil erosion are based on an assumption that^(210)Pb_(ex)is quite evenly mixed within the plough layer.However,the amount of^(210)Pb_(ex)distributed in the soils below the plough depth,like a downward tail in the lower part of the^(210)Pb_(ex)profile,has been largely ignored.In fact,after the initial cultivation of undisturbed soils,^(210)Pb_(ex)will diffuse downward from plough layer to the plough pan layer due to the concentration gradient.Assuming^(210)Pb_(ex)inventory is constant,the depth distribution in the two layers of the cultivated soils will achieve a steady state after continuous cultivation for 10.37 years,when^(210)Pb_(ex)is evenly distributed in the soils of the plough layer with an exponential concentration decline with depth in the soils of the plough pan layer,and the^(210)Pb_(ex)concentration at any depth will be invariable with time.The work reported in this paper attempts to explain the formation of the^(210)Pb_(ex)tail in the soil profile below the plough depth by theoretical derivation of the^(210)Pb_(ex)depth distribution process in the two layers of the cultivated soils,propose a^(210)Pb_(ex)mass balance model considering^(210)Pb_(ex)diffusion based on the existing model,and discuss the influence of the^(210)Pb_(ex)tail to the existing model.展开更多
文摘环境放射性核素7B e、137C s和210Pb为测量土壤侵蚀和沉积速率提供了一种重要的方法。在某些情况下,由于受各种因素的影响,单一核素进行示踪研究很难精确测量,而核素比率的方法作为有益的补充,能够精确测量土壤侵蚀量的多少。这篇文章介绍W a llbrink和M urray在S t.H e lens森林区用210Pbex/137C s方法测量土壤侵蚀的情况,了解国外的研究动态,对此也提出在应用核素比率法中应注意的问题和展望。
基金Project supported by the Ministry of Science and Technology of China (No. 2003CB415201)National Natural Science Foundation of China (No. 40671120)+1 种基金the International Atomic Energy Agency (Nos. 12322/RO and UK-12094)the Young Scientist Foundation of Sichuan Province (No.06ZQ026-030)
文摘Purple soils are widely distributed in the Sichuan Hilly Basin and are highly susceptible to erosion, especially on the cultivated slopes. Quantitative assessment of the erosion rates is, however, difficult due to small size of the plots of the manually-tilled land, the complex land use, and steep hillslopes. ^137Cs and ^210Pbex (excess ^210Pb) tracing techniques were used to investigate the spatial pattern of soil erosion rates associated with slope-land under hoe tillage in Neijiang of the Sichuan Hilly Basin. The ^137Cs and ^210Pbex inventories at the top of the cultivated slope were extremely low, and the highest inventories were found at the bottom of the cultivated slope. By combining the erosion rates estimates provided by both ^137Cs and 21~Pbex measurements, the weighted mean net soil loss from the study slope was estimated to be 3 100 t km^-2 year^-1, which was significantly less than 6 930 t km^-2 year^-1 reported for runoff plots on a 10° cultivated slope at the Suining Station of Soil Erosion. The spatial pattern of soil erosion rates on the steep agricultural land showed that hoe tillage played an important role in soil redistribution along the slope. Also, traditional farming practices had a significant role in reducing soil loss, leading to a lower net erosion rate for the field.
基金financially supported by the National Natural Science Foundation of China(Nos.41102224,41101259 and 41101206)
文摘This contribution analyzes the similarities and differences between the measured activities of 137Cs and excess 210Pb(210Pbex) in the cultivated brown and cinnamon soils of the Yimeng Mountain area, discusses the influence of soil texture on the measurement of 210Pbex, and presents differences between the two types of soils. Fields A and B were selected to represent the fields that contain cultivated brown and cinnamon soils, respectively. From either study field, one site of sectioned core and six bulk cores were collected to measure 137Cs levels, 210Pbex levels, and the particle-size composition of soil samples. Three undisturbed soil samples were collected to measure capillary and aeration porosities. The 137Cs inventories for the two study fields are very similar. The 137Cs is a man-made radionuclide, which means that its measured levels for soils are unaffected by soil texture. In contrast, levels of the naturally occurring 210Pbex of soils from Field A were lower than those of Field B by about 50%. In contrast to aquatic sediments, levels of 210Pbex in terrestrial surface soils are affected by the emanation of 222Rn from the soils. It can be assumed that the coarser the soils, the greater the emanation of 222Rn; in addition, the lower the measured 210Pbex, the greater the underestimate of this value. The cultivated brown soils in Field A are coarser than the cultivated cinnamon soils in Field B. As a result, 222Rn in Field A will diffuse more easily into the atmosphere than that in Field B. As a consequence, the measured 210Pbex in soils from Field A is much lower than the actual value, whereas the value measured for Field B is much closer to the actual value.
基金Supported by National Natural Science Foundation of China(Nos.41102224 and 41101259)
文摘The existing^(210)Pb_(ex)mass balance models for the assessment of cultivated soil erosion are based on an assumption that^(210)Pb_(ex)is quite evenly mixed within the plough layer.However,the amount of^(210)Pb_(ex)distributed in the soils below the plough depth,like a downward tail in the lower part of the^(210)Pb_(ex)profile,has been largely ignored.In fact,after the initial cultivation of undisturbed soils,^(210)Pb_(ex)will diffuse downward from plough layer to the plough pan layer due to the concentration gradient.Assuming^(210)Pb_(ex)inventory is constant,the depth distribution in the two layers of the cultivated soils will achieve a steady state after continuous cultivation for 10.37 years,when^(210)Pb_(ex)is evenly distributed in the soils of the plough layer with an exponential concentration decline with depth in the soils of the plough pan layer,and the^(210)Pb_(ex)concentration at any depth will be invariable with time.The work reported in this paper attempts to explain the formation of the^(210)Pb_(ex)tail in the soil profile below the plough depth by theoretical derivation of the^(210)Pb_(ex)depth distribution process in the two layers of the cultivated soils,propose a^(210)Pb_(ex)mass balance model considering^(210)Pb_(ex)diffusion based on the existing model,and discuss the influence of the^(210)Pb_(ex)tail to the existing model.