设P表示可膨胀、σ-可膨胀、离散可膨胀、σ-离散可膨胀这四种性质之一.本文主要证明:(1)设X=lim{Xα,παβ,∧}并且每个投射πα是开满映射,如果X是|∧|-仿紧(遗传|∧|-仿紧)的,并且每个Xα都具有性质P(遗传性质P),则X具有性质P(遗传...设P表示可膨胀、σ-可膨胀、离散可膨胀、σ-离散可膨胀这四种性质之一.本文主要证明:(1)设X=lim{Xα,παβ,∧}并且每个投射πα是开满映射,如果X是|∧|-仿紧(遗传|∧|-仿紧)的,并且每个Xα都具有性质P(遗传性质P),则X具有性质P(遗传性质P);(2)如果X=multiply from σ∈∑ Xσ是|∑|-仿紧(遗传|∑|-仿紧)空间,则具有性质P(遗传性质p)当且仅当(?)F∈[∑]<ω,multiply from σ∈∑ Xσ具有性质P(遗传性质P).展开更多
This paper proves the following results: Le t X= lim ←{X σ,π σ ρ,Λ},|Λ|=λ, and every p rojection π σ: X→X σ be an open and onto mapping. (A) If X is λ-paracompact and every X σ is normal and δθ-ref...This paper proves the following results: Le t X= lim ←{X σ,π σ ρ,Λ},|Λ|=λ, and every p rojection π σ: X→X σ be an open and onto mapping. (A) If X is λ-paracompact and every X σ is normal and δθ-refinable, then X is normal and δθ-refinable; (B) If X is hereditarily λ-pa racompact and every X σ is hereditarily normal and hereditarily δθ- refinable, then X is hereditarily normal and hereditarily δθ-refiable .展开更多
文摘设P表示可膨胀、σ-可膨胀、离散可膨胀、σ-离散可膨胀这四种性质之一.本文主要证明:(1)设X=lim{Xα,παβ,∧}并且每个投射πα是开满映射,如果X是|∧|-仿紧(遗传|∧|-仿紧)的,并且每个Xα都具有性质P(遗传性质P),则X具有性质P(遗传性质P);(2)如果X=multiply from σ∈∑ Xσ是|∑|-仿紧(遗传|∑|-仿紧)空间,则具有性质P(遗传性质p)当且仅当(?)F∈[∑]<ω,multiply from σ∈∑ Xσ具有性质P(遗传性质P).
文摘This paper proves the following results: Le t X= lim ←{X σ,π σ ρ,Λ},|Λ|=λ, and every p rojection π σ: X→X σ be an open and onto mapping. (A) If X is λ-paracompact and every X σ is normal and δθ-refinable, then X is normal and δθ-refinable; (B) If X is hereditarily λ-pa racompact and every X σ is hereditarily normal and hereditarily δθ- refinable, then X is hereditarily normal and hereditarily δθ-refiable .