期刊文献+
共找到275,266篇文章
< 1 2 250 >
每页显示 20 50 100
Improved YOLOv8n Model for Detecting Helmets and License Plates on Electric Bicycles 被引量:1
1
作者 Qunyue Mu Qiancheng Yu +2 位作者 Chengchen Zhou Lei Liu Xulong Yu 《Computers, Materials & Continua》 SCIE EI 2024年第7期449-466,共18页
Wearing helmetswhile riding electric bicycles can significantly reduce head injuries resulting fromtraffic accidents.To effectively monitor compliance,the utilization of target detection algorithms through traffic cam... Wearing helmetswhile riding electric bicycles can significantly reduce head injuries resulting fromtraffic accidents.To effectively monitor compliance,the utilization of target detection algorithms through traffic cameras plays a vital role in identifying helmet usage by electric bicycle riders and recognizing license plates on electric bicycles.However,manual enforcement by traffic police is time-consuming and labor-intensive.Traditional methods face challenges in accurately identifying small targets such as helmets and license plates using deep learning techniques.This paper proposes an enhanced model for detecting helmets and license plates on electric bicycles,addressing these challenges.The proposedmodel improves uponYOLOv8n by deepening the network structure,incorporating weighted connections,and introducing lightweight convolutional modules.These modifications aim to enhance the precision of small target recognition while reducing the model’s parameters,making it suitable for deployment on low-performance devices in real traffic scenarios.Experimental results demonstrate that the model achieves an mAP@0.5 of 91.8%,showing an 11.5%improvement over the baselinemodel,with a 16.2%reduction in parameters.Additionally,themodel achieves a frames per second(FPS)rate of 58,meeting the accuracy and speed requirements for detection in actual traffic scenarios. 展开更多
关键词 YOLOv8 object detection electric bicycle helmet detection electric bicycle license plate detection
下载PDF
Securing Cloud-Encrypted Data:Detecting Ransomware-as-a-Service(RaaS)Attacks through Deep Learning Ensemble
2
作者 Amardeep Singh Hamad Ali Abosaq +5 位作者 Saad Arif Zohaib Mushtaq Muhammad Irfan Ghulam Abbas Arshad Ali Alanoud Al Mazroa 《Computers, Materials & Continua》 SCIE EI 2024年第4期857-873,共17页
Data security assurance is crucial due to the increasing prevalence of cloud computing and its widespread use across different industries,especially in light of the growing number of cybersecurity threats.A major and ... Data security assurance is crucial due to the increasing prevalence of cloud computing and its widespread use across different industries,especially in light of the growing number of cybersecurity threats.A major and everpresent threat is Ransomware-as-a-Service(RaaS)assaults,which enable even individuals with minimal technical knowledge to conduct ransomware operations.This study provides a new approach for RaaS attack detection which uses an ensemble of deep learning models.For this purpose,the network intrusion detection dataset“UNSWNB15”from the Intelligent Security Group of the University of New South Wales,Australia is analyzed.In the initial phase,the rectified linear unit-,scaled exponential linear unit-,and exponential linear unit-based three separate Multi-Layer Perceptron(MLP)models are developed.Later,using the combined predictive power of these three MLPs,the RansoDetect Fusion ensemble model is introduced in the suggested methodology.The proposed ensemble technique outperforms previous studieswith impressive performance metrics results,including 98.79%accuracy and recall,98.85%precision,and 98.80%F1-score.The empirical results of this study validate the ensemble model’s ability to improve cybersecurity defenses by showing that it outperforms individual MLPmodels.In expanding the field of cybersecurity strategy,this research highlights the significance of combined deep learning models in strengthening intrusion detection systems against sophisticated cyber threats. 展开更多
关键词 Cloud encryption RAAS ENSEMBLE threat detection deep learning CYBERSECURITY
下载PDF
Standard-definition White-light,High-definition White-light versus Narrow-band Imaging Endoscopy for Detecting Colorectal Adenomas:A Multicenter Randomized Controlled Trial
3
作者 Chang-wei DUAN Hui-hong ZHAI +10 位作者 Hui XIE Xian-zong MA Dong-liang YU Lang YANG Xin WANG Yu-fen TANG Jie ZHANG Hui SU Jian-qiu SHENG Jun-feng XU Peng JIN 《Current Medical Science》 SCIE CAS 2024年第3期554-560,共7页
Objective This study aimed to compare the performance of standard-definition white-light endoscopy(SD-WL),high-definition white-light endoscopy(HD-WL),and high-definition narrow-band imaging(HD-NBI)in detecting colore... Objective This study aimed to compare the performance of standard-definition white-light endoscopy(SD-WL),high-definition white-light endoscopy(HD-WL),and high-definition narrow-band imaging(HD-NBI)in detecting colorectal lesions in the Chinese population.Methods This was a multicenter,single-blind,randomized,controlled trial with a non-inferiority design.Patients undergoing endoscopy for physical examination,screening,and surveillance were enrolled from July 2017 to December 2020.The primary outcome measure was the adenoma detection rate(ADR),defined as the proportion of patients with at least one adenoma detected.The associated factors for detecting adenomas were assessed using univariate and multivariate logistic regression.Results Out of 653 eligible patients enrolled,data from 596 patients were analyzed.The ADRs were 34.5%in the SD-WL group,33.5%in the HD-WL group,and 37.5%in the HD-NBI group(P=0.72).The advanced neoplasm detection rates(ANDRs)in the three arms were 17.1%,15.5%,and 10.4%(P=0.17).No significant differences were found between the SD group and HD group regarding ADR or ANDR(ADR:34.5%vs.35.6%,P=0.79;ANDR:17.1%vs.13.0%,P=0.16,respectively).Similar results were observed between the HD-WL group and HD-NBI group(ADR:33.5%vs.37.7%,P=0.45;ANDR:15.5%vs.10.4%,P=0.18,respectively).In the univariate and multivariate logistic regression analyses,neither HD-WL nor HD-NBI led to a significant difference in overall adenoma detection compared to SD-WL(HD-WL:OR 0.91,P=0.69;HD-NBI:OR 1.15,P=0.80).Conclusion HD-NBI and HD-WL are comparable to SD-WL for overall adenoma detection among Chinese outpatients.It can be concluded that HD-NBI or HD-WL is not superior to SD-WL,but more effective instruction may be needed to guide the selection of different endoscopic methods in the future.Our study’s conclusions may aid in the efficient allocation and utilization of limited colonoscopy resources,especially advanced imaging technologies. 展开更多
关键词 standard-definition white-light endoscopy high-definition white-light endoscopy narrow-band imaging colonoscopy colorectal cancer screening adenoma detection rate
下载PDF
A proposal for detecting weak electromagnetic waves around 2.6μm wavelength with Sr optical clock
4
作者 韩弱水 王伟 汪涛 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期452-457,共6页
Infrared signal detection is widely used in many fields.Due to the detection principle,however,the accuracy and range of detection are limited.Thanks to the ultra stability of the^(87)Sr optical lattice clock,external... Infrared signal detection is widely used in many fields.Due to the detection principle,however,the accuracy and range of detection are limited.Thanks to the ultra stability of the^(87)Sr optical lattice clock,external infrared electromagnetic wave disturbances can be responded to.Utilizing the ac Stark shift of the clock transition,we propose a new method to detect infrared signals.According to our calculations,the theoretical detection accuracy in the vicinity of its resonance band of 2.6μm can reach the order of 10-14W,while the minimum detectable signal of common detectors is on the order of 10^(-10)W. 展开更多
关键词 infrared signal detection ^(87)Sr optical lattice clock ac Stark shift ultra stability
下载PDF
Improved Mechanism for Detecting Examinations Impersonations in Public Higher Learning Institutions: Case of the Mwalimu Nyerere Memorial Academy (MNMA)
5
作者 Jasson Lwangisa Domition Rogers Philip Bhalalusesa Selemani Ismail 《Journal of Computer and Communications》 2024年第9期160-187,共28页
Currently, most public higher learning institutions in Tanzania rely on traditional in-class examinations, requiring students to register and present identification documents for examinations eligibility verification.... Currently, most public higher learning institutions in Tanzania rely on traditional in-class examinations, requiring students to register and present identification documents for examinations eligibility verification. This system, however, is prone to impersonations due to security vulnerabilities in current students’ verification system. These vulnerabilities include weak authentication, lack of encryption, and inadequate anti-counterfeiting measures. Additionally, advanced printing technologies and online marketplaces which claim to produce convincing fake identification documents make it easy to create convincing fake identity documents. The Improved Mechanism for Detecting Impersonations (IMDIs) system detects impersonations in in-class exams by integrating QR codes and dynamic question generation based on student profiles. It consists of a mobile verification app, built with Flutter and communicating via RESTful APIs, and a web system, developed with Laravel using HTML, CSS, and JavaScript. The two components communicate through APIs, with MySQL managing the database. The mobile app and web server interact to ensure efficient verification and security during examinations. The implemented IMDIs system was validated by a mobile application which is integrated with a QR codes scanner for capturing codes embedded in student Identity Cards and linking them to a dynamic question generation model. The QG model uses natural language processing (NLP) algorithm and Question Generation (QG) techniques to create dynamic profile questions. Results show that the IMDIs system could generate four challenging profile-based questions within two seconds, allowing the verification of 200 students in 33 minutes by one operator. The IMDIs system also tracks exam-eligible students, aiding in exam attendance and integrates with a Short Message Service (SMS) to report impersonation incidents to a dedicated security officer in real-time. The IMDIs system was tested and found to be 98% secure, 100% convenient, with a 0% false rejection rate and a 2% false acceptance rate, demonstrating its security, reliability, and high performance. 展开更多
关键词 Natural Language Processing (NLP) Model Impersonations detection Dynamic Challenging Questions Traditional-in-Class Examination and Impersonation detection
下载PDF
Development of TaqMan-based Real-time PCR Assay for Detecting Transmissible Gastroenteritis Virus and Its Application in Vaccine Evaluation 被引量:2
6
作者 俞正玉 徐向伟 +8 位作者 孙冰 何孔旺 郭容利 杜露平 温立斌 张雪寒 茅爱华 倪艳秀 李彬 《Agricultural Science & Technology》 CAS 2014年第9期1487-1490,共4页
[Objective] This study aimed to establish a TaqMan-based real-time PCR assay for detecting transmissible gastroenteritis virus (TGEV). [Method] Primers and a probe were designed according to the conserved sequence o... [Objective] This study aimed to establish a TaqMan-based real-time PCR assay for detecting transmissible gastroenteritis virus (TGEV). [Method] Primers and a probe were designed according to the conserved sequence of N gene in TGEV genome. After gradient dilution, the recombinant plasmid harboring the N gene was used as a standard for real-time PCR assay to establish the standard curve. [Re- sult] The results showed that the established real-time PCR assay exhibited a good linear relationship within the range of 102-10^10 copies/ul; the correlation coefficient was above 0.99 and the amplification efficiency ranged from 90% to 110%. The de- tection limit of real-time PCR assay for TGEV was 10 copies/μl, suggesting a high sensitivity; there was no cross reaction with other porcine viruses, indicating a good specificity; coefficients of variation within and among batches were lower than 3%, suggesting a good repeatability. The established real-time PCR method could be ap- plied in quantitative analysis and evaluation of the immune efficacy of TGEV vac- cines and detection of TGEV in clinical samples. [Conclusion] The TaqMan-based real-time PCR assay established in this study is highly sensitive and specific, which can provide technical means for the epidemiological survey of TGEV, development of TGEV vaccines and investigation of the pathogenesis of TGE. 展开更多
关键词 Transmissible gastroenteritis virus (TGEv TaqMan-based real-time PCR: detection
下载PDF
DC LOOP-CURRENT DETECTING AND RESTRAINING METHODS FOR PARALLEL INVERTER SYSTEM
7
作者 陈良亮 肖岚 严仰光 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2004年第1期1-6,共6页
DC component is contained in inverter output voltage due to many reasons such as the zero-point deviation of operational amplifiers and the differences between power switching transistors′ characteristics. For the pa... DC component is contained in inverter output voltage due to many reasons such as the zero-point deviation of operational amplifiers and the differences between power switching transistors′ characteristics. For the parallel inverter system without output isolation transformers, the difference of DC components of the output voltage can cause large DC loop-current among modular inverters. Aiming at this problem, this paper studies several DC loop-current detecting and restraining methods. By digital adjustment with high precision on the DC components of reference sine wave, the DC components of inverter′s output voltage can be adjusted to restrain DC loop-current. Experimental results prove that the DC loop-current detecting and restraining methods have a good performance. 展开更多
关键词 DC loop-current detect digital adjustment parallel inverter
下载PDF
Improvement of High-Speed Detection Algorithm for Nonwoven Material Defects Based on Machine Vision 被引量:2
8
作者 LI Chengzu WEI Kehan +4 位作者 ZHAO Yingbo TIAN Xuehui QIAN Yang ZHANG Lu WANG Rongwu 《Journal of Donghua University(English Edition)》 CAS 2024年第4期416-427,共12页
Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,maki... Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,making it a widely adopted approach in various industrial fields.This paper mainly studied the defect detection method for nonwoven materials based on the improved Nano Det-Plus model.Using the constructed samples of defects in nonwoven materials as the research objects,transfer learning experiments were conducted based on the Nano DetPlus object detection framework.Within this framework,the Backbone,path aggregation feature pyramid network(PAFPN)and Head network models were compared and trained through a process of freezing,with the ultimate aim of bolstering the model's feature extraction abilities and elevating detection accuracy.The half-precision quantization method was used to optimize the model after transfer learning experiments,reducing model weights and computational complexity to improve the detection speed.Performance comparisons were conducted between the improved model and the original Nano Det-Plus model,YOLO,SSD and other common industrial defect detection algorithms,validating that the improved methods based on transfer learning and semi-precision quantization enabled the model to meet the practical requirements of industrial production. 展开更多
关键词 defect detection nonwoven materials deep learning object detection algorithm transfer learning halfprecision quantization
下载PDF
A Hybrid Intrusion Detection Method Based on Convolutional Neural Network and AdaBoost 被引量:1
9
作者 Wu Zhijun Li Yuqi Yue Meng 《China Communications》 SCIE CSCD 2024年第11期180-189,共10页
To solve the problem of poor detection and limited application range of current intrusion detection methods,this paper attempts to use deep learning neural network technology to study a new type of intrusion detection... To solve the problem of poor detection and limited application range of current intrusion detection methods,this paper attempts to use deep learning neural network technology to study a new type of intrusion detection method.Hence,we proposed an intrusion detection algorithm based on convolutional neural network(CNN)and AdaBoost algorithm.This algorithm uses CNN to extract the characteristics of network traffic data,which is particularly suitable for the analysis of continuous and classified attack data.The AdaBoost algorithm is used to classify network attack data that improved the detection effect of unbalanced data classification.We adopt the UNSW-NB15 dataset to test of this algorithm in the PyCharm environment.The results show that the detection rate of algorithm is99.27%and the false positive rate is lower than 0.98%.Comparative analysis shows that this algorithm has advantages over existing methods in terms of detection rate and false positive rate for small proportion of attack data. 展开更多
关键词 ADABOOST CNN detection rate false positive rate feature extraction intrusion detection
下载PDF
Automated Vulnerability Detection of Blockchain Smart Contacts Based on BERT Artificial Intelligent Model 被引量:1
10
作者 Feng Yiting Ma Zhaofeng +1 位作者 Duan Pengfei Luo Shoushan 《China Communications》 SCIE CSCD 2024年第7期237-251,共15页
The widespread adoption of blockchain technology has led to the exploration of its numerous applications in various fields.Cryptographic algorithms and smart contracts are critical components of blockchain security.De... The widespread adoption of blockchain technology has led to the exploration of its numerous applications in various fields.Cryptographic algorithms and smart contracts are critical components of blockchain security.Despite the benefits of virtual currency,vulnerabilities in smart contracts have resulted in substantial losses to users.While researchers have identified these vulnerabilities and developed tools for detecting them,the accuracy of these tools is still far from satisfactory,with high false positive and false negative rates.In this paper,we propose a new method for detecting vulnerabilities in smart contracts using the BERT pre-training model,which can quickly and effectively process and detect smart contracts.More specifically,we preprocess and make symbol substitution in the contract,which can make the pre-training model better obtain contract features.We evaluate our method on four datasets and compare its performance with other deep learning models and vulnerability detection tools,demonstrating its superior accuracy. 展开更多
关键词 BERT blockchain smart contract vulnerability detection
下载PDF
YOLO-DD:Improved YOLOv5 for Defect Detection 被引量:1
11
作者 Jinhai Wang Wei Wang +4 位作者 Zongyin Zhang Xuemin Lin Jingxian Zhao Mingyou Chen Lufeng Luo 《Computers, Materials & Continua》 SCIE EI 2024年第1期759-780,共22页
As computer technology continues to advance,factories have increasingly higher demands for detecting defects.However,detecting defects in a plant environment remains a challenging task due to the presence of complex b... As computer technology continues to advance,factories have increasingly higher demands for detecting defects.However,detecting defects in a plant environment remains a challenging task due to the presence of complex backgrounds and defects of varying shapes and sizes.To address this issue,this paper proposes YOLO-DD,a defect detectionmodel based on YOLOv5 that is effective and robust.To improve the feature extraction process and better capture global information,the vanilla YOLOv5 is augmented with a new module called Relative-Distance-Aware Transformer(RDAT).Additionally,an Information Gap Filling Strategy(IGFS)is proposed to improve the fusion of features at different scales.The classic lightweight attention mechanism Squeeze-and-Excitation(SE)module is also incorporated into the neck section to enhance feature expression and improve the model’s performance.Experimental results on the NEU-DET dataset demonstrate that YOLO-DDachieves competitive results compared to state-of-the-art methods,with a 2.0% increase in accuracy compared to the original YOLOv5,achieving 82.41% accuracy and38.25FPS(framesper second).Themodel is also testedon a self-constructed fabric defect dataset,and the results show that YOLO-DD is more stable and has higher accuracy than the original YOLOv5,demonstrating its stability and generalization ability.The high efficiency of YOLO-DD enables it to meet the requirements of industrial high accuracy and real-time detection. 展开更多
关键词 YOLO-DD defect detection feature fusion attention mechanism
下载PDF
Enhancing Dense Small Object Detection in UAV Images Based on Hybrid Transformer 被引量:1
12
作者 Changfeng Feng Chunping Wang +2 位作者 Dongdong Zhang Renke Kou Qiang Fu 《Computers, Materials & Continua》 SCIE EI 2024年第3期3993-4013,共21页
Transformer-based models have facilitated significant advances in object detection.However,their extensive computational consumption and suboptimal detection of dense small objects curtail their applicability in unman... Transformer-based models have facilitated significant advances in object detection.However,their extensive computational consumption and suboptimal detection of dense small objects curtail their applicability in unmanned aerial vehicle(UAV)imagery.Addressing these limitations,we propose a hybrid transformer-based detector,H-DETR,and enhance it for dense small objects,leading to an accurate and efficient model.Firstly,we introduce a hybrid transformer encoder,which integrates a convolutional neural network-based cross-scale fusion module with the original encoder to handle multi-scale feature sequences more efficiently.Furthermore,we propose two novel strategies to enhance detection performance without incurring additional inference computation.Query filter is designed to cope with the dense clustering inherent in drone-captured images by counteracting similar queries with a training-aware non-maximum suppression.Adversarial denoising learning is a novel enhancement method inspired by adversarial learning,which improves the detection of numerous small targets by counteracting the effects of artificial spatial and semantic noise.Extensive experiments on the VisDrone and UAVDT datasets substantiate the effectiveness of our approach,achieving a significant improvement in accuracy with a reduction in computational complexity.Our method achieves 31.9%and 21.1%AP on the VisDrone and UAVDT datasets,respectively,and has a faster inference speed,making it a competitive model in UAV image object detection. 展开更多
关键词 UAv images TRANSFORMER dense small object detection
下载PDF
A Real-Time Small Target Vehicle Detection Algorithm with an Improved YOLOv5m Network Model 被引量:1
13
作者 Yaoyao Du Xiangkui Jiang 《Computers, Materials & Continua》 SCIE EI 2024年第1期303-327,共25页
To address the challenges of high complexity,poor real-time performance,and low detection rates for small target vehicles in existing vehicle object detection algorithms,this paper proposes a real-time lightweight arc... To address the challenges of high complexity,poor real-time performance,and low detection rates for small target vehicles in existing vehicle object detection algorithms,this paper proposes a real-time lightweight architecture based on You Only Look Once(YOLO)v5m.Firstly,a lightweight upsampling operator called Content-Aware Reassembly of Features(CARAFE)is introduced in the feature fusion layer of the network to maximize the extraction of deep-level features for small target vehicles,reducing the missed detection rate and false detection rate.Secondly,a new prediction layer for tiny targets is added,and the feature fusion network is redesigned to enhance the detection capability for small targets.Finally,this paper applies L1 regularization to train the improved network,followed by pruning and fine-tuning operations to remove redundant channels,reducing computational and parameter complexity and enhancing the detection efficiency of the network.Training is conducted on the VisDrone2019-DET dataset.The experimental results show that the proposed algorithmreduces parameters and computation by 63.8% and 65.8%,respectively.The average detection accuracy improves by 5.15%,and the detection speed reaches 47 images per second,satisfying real-time requirements.Compared with existing approaches,including YOLOv5m and classical vehicle detection algorithms,our method achieves higher accuracy and faster speed for real-time detection of small target vehicles in edge computing. 展开更多
关键词 vehicle detection YOLOv5m small target channel pruning CARAFE
下载PDF
Cross-Dimension Attentive Feature Fusion Network for Unsupervised Time-Series Anomaly Detection 被引量:1
14
作者 Rui Wang Yao Zhou +2 位作者 Guangchun Luo Peng Chen Dezhong Peng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3011-3027,共17页
Time series anomaly detection is crucial in various industrial applications to identify unusual behaviors within the time series data.Due to the challenges associated with annotating anomaly events,time series reconst... Time series anomaly detection is crucial in various industrial applications to identify unusual behaviors within the time series data.Due to the challenges associated with annotating anomaly events,time series reconstruction has become a prevalent approach for unsupervised anomaly detection.However,effectively learning representations and achieving accurate detection results remain challenging due to the intricate temporal patterns and dependencies in real-world time series.In this paper,we propose a cross-dimension attentive feature fusion network for time series anomaly detection,referred to as CAFFN.Specifically,a series and feature mixing block is introduced to learn representations in 1D space.Additionally,a fast Fourier transform is employed to convert the time series into 2D space,providing the capability for 2D feature extraction.Finally,a cross-dimension attentive feature fusion mechanism is designed that adaptively integrates features across different dimensions for anomaly detection.Experimental results on real-world time series datasets demonstrate that CAFFN performs better than other competing methods in time series anomaly detection. 展开更多
关键词 Time series anomaly detection unsupervised feature learning feature fusion
下载PDF
Multimodal Social Media Fake News Detection Based on Similarity Inference and Adversarial Networks 被引量:1
15
作者 Fangfang Shan Huifang Sun Mengyi Wang 《Computers, Materials & Continua》 SCIE EI 2024年第4期581-605,共25页
As social networks become increasingly complex, contemporary fake news often includes textual descriptionsof events accompanied by corresponding images or videos. Fake news in multiple modalities is more likely tocrea... As social networks become increasingly complex, contemporary fake news often includes textual descriptionsof events accompanied by corresponding images or videos. Fake news in multiple modalities is more likely tocreate a misleading perception among users. While early research primarily focused on text-based features forfake news detection mechanisms, there has been relatively limited exploration of learning shared representationsin multimodal (text and visual) contexts. To address these limitations, this paper introduces a multimodal modelfor detecting fake news, which relies on similarity reasoning and adversarial networks. The model employsBidirectional Encoder Representation from Transformers (BERT) and Text Convolutional Neural Network (Text-CNN) for extracting textual features while utilizing the pre-trained Visual Geometry Group 19-layer (VGG-19) toextract visual features. Subsequently, the model establishes similarity representations between the textual featuresextracted by Text-CNN and visual features through similarity learning and reasoning. Finally, these features arefused to enhance the accuracy of fake news detection, and adversarial networks have been employed to investigatethe relationship between fake news and events. This paper validates the proposed model using publicly availablemultimodal datasets from Weibo and Twitter. Experimental results demonstrate that our proposed approachachieves superior performance on Twitter, with an accuracy of 86%, surpassing traditional unimodalmodalmodelsand existing multimodal models. In contrast, the overall better performance of our model on the Weibo datasetsurpasses the benchmark models across multiple metrics. The application of similarity reasoning and adversarialnetworks in multimodal fake news detection significantly enhances detection effectiveness in this paper. However,current research is limited to the fusion of only text and image modalities. Future research directions should aimto further integrate features fromadditionalmodalities to comprehensively represent themultifaceted informationof fake news. 展开更多
关键词 Fake news detection attention mechanism image-text similarity multimodal feature fusion
下载PDF
An Underwater Target Detection Algorithm Based on Attention Mechanism and Improved YOLOv7 被引量:1
16
作者 Liqiu Ren Zhanying Li +2 位作者 Xueyu He Lingyan Kong Yinghao Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第2期2829-2845,共17页
For underwater robots in the process of performing target detection tasks,the color distortion and the uneven quality of underwater images lead to great difficulties in the feature extraction process of the model,whic... For underwater robots in the process of performing target detection tasks,the color distortion and the uneven quality of underwater images lead to great difficulties in the feature extraction process of the model,which is prone to issues like error detection,omission detection,and poor accuracy.Therefore,this paper proposed the CER-YOLOv7(CBAM-EIOU-RepVGG-YOLOv7)underwater target detection algorithm.To improve the algorithm’s capability to retain valid features from both spatial and channel perspectives during the feature extraction phase,we have added a Convolutional Block Attention Module(CBAM)to the backbone network.The Reparameterization Visual Geometry Group(RepVGG)module is inserted into the backbone to improve the training and inference capabilities.The Efficient Intersection over Union(EIoU)loss is also used as the localization loss function,which reduces the error detection rate and missed detection rate of the algorithm.The experimental results of the CER-YOLOv7 algorithm on the UPRC(Underwater Robot Prototype Competition)dataset show that the mAP(mean Average Precision)score of the algorithm is 86.1%,which is a 2.2%improvement compared to the YOLOv7.The feasibility and validity of the CER-YOLOv7 are proved through ablation and comparison experiments,and it is more suitable for underwater target detection. 展开更多
关键词 Deep learning underwater object detection improved YOLOv7 attention mechanism
下载PDF
A core-satellite self-assembled SERS aptasensor containing a“biological-silent region”Raman tag for the accurate and ultrasensitive detection of histamine 被引量:1
17
作者 Chen Chen Yingfang Zhang +3 位作者 Ximo Wang Xuguang Qiao Geoffrey I.N.Waterhouse Zhixiang Xu 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期1029-1039,共11页
Herein,a novel interference-free surface-enhanced Raman spectroscopy(SERS)strategy based on magnetic nanoparticles(MNPs)and aptamer-driven assemblies was proposed for the ultrasensitive detection of histamine.A core-s... Herein,a novel interference-free surface-enhanced Raman spectroscopy(SERS)strategy based on magnetic nanoparticles(MNPs)and aptamer-driven assemblies was proposed for the ultrasensitive detection of histamine.A core-satellite SERS aptasensor was constructed by combining aptamer-decorated Fe_(3)O_(4)@Au MNPs(as the recognize probe for histamine)and complementary DNA-modified silver nanoparticles carrying 4-mercaptobenzonitrile(4-MBN)(Ag@4-MBN@Ag-c-DNA)as the SERS signal probe for the indirect detection of histamine.Under an applied magnetic field in the absence of histamine,the assembly gave an intense Raman signal at“Raman biological-silent”region due to 4-MBN.In the presence of histamine,the Ag@4-MBN@Ag-c-DNA SERS-tag was released from the Fe_(3)O_(4)@Au MNPs,thus decreasing the SERS signal.Under optimal conditions,an ultra-low limit of detection of 0.65×10^(-3)ng/mL and a linear range 10^(-2)-10^5 ng/mL on the SERS aptasensor were obtained.The histamine content in four food samples were analyzed using the SERS aptasensor,with the results consistent with those determined by high performance liquid chromatography.The present work highlights the merits of indirect strategies for the ultrasensitive and highly selective SERS detection of small biological molecules in complex matrices. 展开更多
关键词 Surface-enhanced Raman spectroscopy Raman biological-silent region APTAMER Histamine detection Universal SERS-tag
下载PDF
Real-time Rescue Target Detection Based on UAV Imagery for Flood Emergency Response 被引量:1
18
作者 ZHAO Bofei SUI Haigang +2 位作者 ZHU Yihao LIU Chang WANG Wentao 《Journal of Geodesy and Geoinformation Science》 CSCD 2024年第1期74-89,共16页
Timely acquisition of rescue target information is critical for emergency response after a flood disaster.Unmanned Aerial Vehicles(UAVs)equipped with remote sensing capabilities offer distinct advantages,including hig... Timely acquisition of rescue target information is critical for emergency response after a flood disaster.Unmanned Aerial Vehicles(UAVs)equipped with remote sensing capabilities offer distinct advantages,including high-resolution imagery and exceptional mobility,making them well suited for monitoring flood extent and identifying rescue targets during floods.However,there are some challenges in interpreting rescue information in real time from flood images captured by UAVs,such as the complexity of the scenarios of UAV images,the lack of flood rescue target detection datasets and the limited real-time processing capabilities of the airborne on-board platform.Thus,we propose a real-time rescue target detection method for UAVs that is capable of efficiently delineating flood extent and identifying rescue targets(i.e.,pedestrians and vehicles trapped by floods).The proposed method achieves real-time rescue information extraction for UAV platforms by lightweight processing and fusion of flood extent extraction model and target detection model.The flood inundation range is extracted by the proposed method in real time and detects targets such as people and vehicles to be rescued based on this layer.Our experimental results demonstrate that the Intersection over Union(IoU)for flood water extraction reaches an impressive 80%,and the IoU for real-time flood water extraction stands at a commendable 76.4%.The information on flood stricken targets extracted by this method in real time can be used for flood emergency rescue. 展开更多
关键词 UAv flood extraction target rescue detection real time
下载PDF
Advanced Optimized Anomaly Detection System for IoT Cyberattacks Using Artificial Intelligence 被引量:1
19
作者 Ali Hamid Farea Omar H.Alhazmi Kerem Kucuk 《Computers, Materials & Continua》 SCIE EI 2024年第2期1525-1545,共21页
While emerging technologies such as the Internet of Things(IoT)have many benefits,they also pose considerable security challenges that require innovative solutions,including those based on artificial intelligence(AI),... While emerging technologies such as the Internet of Things(IoT)have many benefits,they also pose considerable security challenges that require innovative solutions,including those based on artificial intelligence(AI),given that these techniques are increasingly being used by malicious actors to compromise IoT systems.Although an ample body of research focusing on conventional AI methods exists,there is a paucity of studies related to advanced statistical and optimization approaches aimed at enhancing security measures.To contribute to this nascent research stream,a novel AI-driven security system denoted as“AI2AI”is presented in this work.AI2AI employs AI techniques to enhance the performance and optimize security mechanisms within the IoT framework.We also introduce the Genetic Algorithm Anomaly Detection and Prevention Deep Neural Networks(GAADPSDNN)sys-tem that can be implemented to effectively identify,detect,and prevent cyberattacks targeting IoT devices.Notably,this system demonstrates adaptability to both federated and centralized learning environments,accommodating a wide array of IoT devices.Our evaluation of the GAADPSDNN system using the recently complied WUSTL-IIoT and Edge-IIoT datasets underscores its efficacy.Achieving an impressive overall accuracy of 98.18%on the Edge-IIoT dataset,the GAADPSDNN outperforms the standard deep neural network(DNN)classifier with 94.11%accuracy.Furthermore,with the proposed enhancements,the accuracy of the unoptimized random forest classifier(80.89%)is improved to 93.51%,while the overall accuracy(98.18%)surpasses the results(93.91%,94.67%,94.94%,and 94.96%)achieved when alternative systems based on diverse optimization techniques and the same dataset are employed.The proposed optimization techniques increase the effectiveness of the anomaly detection system by efficiently achieving high accuracy and reducing the computational load on IoT devices through the adaptive selection of active features. 展开更多
关键词 Internet of Things SECURITY anomaly detection and prevention system artificial intelligence optimization techniques
下载PDF
Strip steel surface defect detection algorithm based on improved Faster R-CNN 被引量:1
20
作者 齐继阳 吴宇帆 《China Welding》 CAS 2024年第2期11-22,共12页
To solve the problems of the low accuracy and poor real-time performance of traditional strip steel surface defect detection meth-ods,which are caused by the characteristics of many kinds,complex shapes,and different ... To solve the problems of the low accuracy and poor real-time performance of traditional strip steel surface defect detection meth-ods,which are caused by the characteristics of many kinds,complex shapes,and different scales of strip surface defects,a strip steel surface defect detection algorithm based on improved Faster R-CNN is proposed.Firstly,the residual convolution module is inserted into the Swin Transformer network module to form the RC-Swin Transformer network module,and the RC-Swin Transformer module is introduced into the backbone network of the traditional Faster R-CNN to enhance the ability of the network to extract the global feature information of the image and adapt to the complex shape of the strip steel surface defect.To improve the attention of the network to defects in the image,a CBAM-BiFPN network module is designed,and then the backbone network is combined with the CBAM-BiFPN network to realize the de-tection and fusion of multi-scale features.The RoI align layer is used instead of the RoI pooling layer to improve the accuracy of defect loca-tion.Finally,Soft NMS is used to achieve non-maximum suppression and remove redundant boxes.In the comparative experiment on the NEU-DET dataset,the improved algorithm improves the mean average precision by 4.2%compared with the Faster R-CNN algorithm,and also improves the average precision by 6.1%and 6.7%for crazing defect and rolled-in scale defect,which are difficult to detect with the Faster R-CNN algorithm.The experiments show that the improvements proposed in the paper effectively improve the detection accuracy of the algorithm and have certain practical value. 展开更多
关键词 defect detection RC-Swin Transformer CBAM-BiFPN RoI align Soft NMS
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部