Objectives: The aim of this study was to compare the efficacy of using the synthetic β-TCP bone grafting material in two different manufacturing forms (putty and granular) in grafting the jumping zone around immediat...Objectives: The aim of this study was to compare the efficacy of using the synthetic β-TCP bone grafting material in two different manufacturing forms (putty and granular) in grafting the jumping zone around immediate implant. Patients and Method: A randomized controlled clinical and radiographic trial was conducted on 24 male patients aged from 45 - 55 with badly decayed non-restorable teeth in the posterior mandibular area and seeking for receiving immediate dental implant directly after extraction. Vertical bone height and bone density were taken at time of implant placement and 6 months postoperatively. Results: The Putty form group and the Granular form group did not differ statistically in terms of age, post-operative complications, or implant outcome six months postoperatively. Additionally, there was a statistically significant increase in Putty form group compared to the Granular form group regarding Marginal bone loss 6 months postoperatively, but there was no statistically significant difference between the Putty form group and the Granular form group regarding Bone density by CBCT. Conclusion: The β-TCP Putty material, compared to β-TCP granular, displayed better surgical handling properties, and both forms had no adverse effect on bone formation, bone tissue maturation or graft volume stability, The β-TCP granular material, compared to β-TCP putty, displayed less marginal bone loss 6 months post-operatively.展开更多
We developed a fixation method and evaluate bone regrowth in the cavities of a Ф4 mm× 8 mm titanium(Ti)tube through porous hydroxyapatite(HAP)/β-tricalcium phosphate(β-TCP)composite filling(group A),ch...We developed a fixation method and evaluate bone regrowth in the cavities of a Ф4 mm× 8 mm titanium(Ti)tube through porous hydroxyapatite(HAP)/β-tricalcium phosphate(β-TCP)composite filling(group A),chitosan/calcium phosphate composite filling(group B),and HAP particle modification(group C).After 2 and 5 months of implantation in dog tibia defects,new bone formation in the three groups was studied by histology and histomorphometry.Group A displayed the most bone regenerated area in both 2 and 5 months post-operation.The chitosan/calcium phosphate composite in group B mostly degraded 2 months after implantation,leading to fibrous tissue invasion after 5 months.By contrast,less bone formation was observed in group C.These results indicated that filling the cavities of metalprostheses with a porous HAP/β-TCP composite can be used for stable long-term fixation in clinicalsettings.展开更多
Osteoinductive properties of β-TCP remain unknown in humans. It is important to improve the bone grafts which have been the standard treatment for bone defect due to their biocompatibility and bone-healing properties...Osteoinductive properties of β-TCP remain unknown in humans. It is important to improve the bone grafts which have been the standard treatment for bone defect due to their biocompatibility and bone-healing properties. The purpose of this study was to radiologically clarify the bone forming property of β-TCP by evaluating the replacement of β-TCP by newly formed bone in the defect after fibular resection and to examine the histological features of a β-TCP specimen three months after grafting. Radiographs of 17 patients who underwent β-TCP grafting were evaluated. Osteoinductive and osteoconductive properties were assessed by examining bone formation from the remnant fibula, periosteum, and β-TCP alone. In one case, β-TCP was removed later because of postoperative complications and was evaluated histologically. Twenty two of 34 sites between the remnant fibula and β-TCP had achieved good bone regeneration. Five of 14 sites between the periosteum and β-TCP had achieved good bone regeneration. We found immature but evident bone formation in three cases with no osseous and periosteal sites. Histological analysis revealed bone formation on the outer macropore surface of β-TCP. Some blood vessels formed in the macropores expressed CD31 and CD34, while a few lymphatic vessels expressed CD34 and podoplanin. Thus, the osteoinductive ability of β-TCP alone was demonstrated in humans radiographically for the first time. The histological morphology of β-TCP was demonstrated at an early stage after grafting in humans.展开更多
Porous β-tricalcium phosphate (TCP) displays osteoinductivity in certain animals in the absence of osteoinductive agents. We evaluated whether the microstructure may be an important determinant of osteoinduction, and...Porous β-tricalcium phosphate (TCP) displays osteoinductivity in certain animals in the absence of osteoinductive agents. We evaluated whether the microstructure may be an important determinant of osteoinduction, and also investigated how bone formation was promoted using β-TCP combined with bone marrow aspirates. We prepared two types of β-TCP, namely, β-TCP A, which possessed interconnected macropores and micropores, and β-TCP B, which possessed macropores but had less detectable micropores. These were implanted with or without marrow in canine muscles. Bone formation and the resorption of each β-TCP implant were evaluated histologically. Newly formed bone began to appear at day 42 in the implants of β-TCP A alone, but the implants of β-TCP B alone did not show any bone formation by day 42. Meanwhile, bone formation was already evident on day 14 by loading with bone marrow aspirates with or without micropores. By immunohistochemistry, the number of cathepsin K-positive cells (osteoclasts) increased as time passed in the implants of β-TCP A alone, while the number of the osteoclasts did not change obviously in the implants of β-TCP B alone from day 14 to 56. Reticular fibrils were evident within the β-TCP A, and were barely observed in the β-TCP B in the silver impregnation. The present result would bring about the possible role to enhance the importance of the surface microstructure for the better osteoinductivity. Our findings suggest that the combination of porous β-TCP and bone marrow facilitates bone formation.展开更多
Ultrafine-tricalcium phosphate(β-TCP)powders with good crystalline structure were produced by a new process through bone tissue engineering approach rorous β-TCPcermic was combined with recombined human bone morphog...Ultrafine-tricalcium phosphate(β-TCP)powders with good crystalline structure were produced by a new process through bone tissue engineering approach rorous β-TCPcermic was combined with recombined human bone morphogenetic proteins-2(rhBMP-2)to develop a novel composite material ,osteogenesis capacity of the composite was investigated intramuscularly in rat with histological analyses and SEM examination pureβ-TCP porous carmic wsa investigated as the control results show that the compostie materials possess good bilcompatibility biodegradation and strong osteogenesis capacity through inductive process after implantation material degradation began from 2 weeks post-implantation accompanying with the changing o pore structure with the enwrapping and separation fo materials by hyperplatic mesenchymal cells and fibroblast and with the phagocytose reaction of multinucleated giant cells early in 72h immature cartilage could be found within novel composite mature lamellar bone was induced to generate after 3 weeks with strong osteoinduction capacity and controlable bildegradation the novel rhBMP-2\β-TCP porous ceramic is expected to be a promising bone grafting substitute for bone tissue engineering展开更多
The distribution and function of transforming growth factor-beta (TGF-β) in the region of bone defect repaired by collagen/nano-beta-tricalcium phosphate composite artificial bone (Co/N-TCP) and the ability of Co/N-T...The distribution and function of transforming growth factor-beta (TGF-β) in the region of bone defect repaired by collagen/nano-beta-tricalcium phosphate composite artificial bone (Co/N-TCP) and the ability of Co/N-TCP recruiting osteoblasts to precipitate the repair of bone defect were investigated Twenty-four domestic rabbits were operated on bilateral cranial bone to create an experimental bone defect of 8 0 mm in diameter through the whole bone On the left, Co/N-TCP was implanted as experimental group, but on the right, Co/TCP was implanted as control group At 2nd, 4th, 8th, 12th week after operation, all animals were sacrificed and the implanted materials with surrounding bone were taken out Immunohistochemical staining was performed for TGF-β assay by avidin-biotin complex method (SABC) Simultaneously, TGF-β was quantitatively analyzed by HPIAS-1000 imaging analysis system The inmmunohistochemical staining for TGF-β revealed that osteoblasts and immature osteocytes highly expressed TGF-β Diffused TGF-β positive staining particles appeared in the mesenchymal and fibrous-tissue There was no significant difference in the TGF-β positive staining between two groups in the medial region to original osseous beds at different time points ( P >0 05) However, in distal original osseous bed of the defected region, the positive expression of TGF-β in the Co/N-TCP group was significantly stronger than in the control group ( P <0 05 or 0 01) The Co/N-TCP has good bioactivities and ability of stimulating and conducting TGF-β to aggregate and precipitate the healing of bone defect展开更多
Porous β-tricalcium phosphate bioceramic (PTCP) has important roles in surgical implants because of good biocompatibility. But the low compressive strength of the ceramic limits its application. The preparation of ...Porous β-tricalcium phosphate bioceramic (PTCP) has important roles in surgical implants because of good biocompatibility. But the low compressive strength of the ceramic limits its application. The preparation of PTCP was improved with the adjustment of the constituents and the sintering-process. A new type of PTCP material with high compressive strength was made. The compositions, microstructure and properties of PTCP were analyzed by TG-DSC, XRD, TEM, SEM and so on. The result indicates that stearic acid burns sufficiently and gives out carbon dioxide and water vapor when slowly heated between 200 ℃ and 400 ℃ so that the porous structure like coral in β-TCP bioceramic is formed. Through crystallization at 470 ℃ and 570 ℃, more CaO-P2O5 glass-cement is converted into crystallite-glass, which is beneficial for improving the compressive strength of β-TCP bioceramic. PTCP can form a support action in bone imperfect section with good solubility.展开更多
We investigated the osteogenic characteristic and biodegradation behavior of porous beta-tricalcitum phosphate ( β- TCP ) and bone morphogenetic protein/beta-tricalcium phosphate ( BMP/ β- TCP ) complex in mand...We investigated the osteogenic characteristic and biodegradation behavior of porous beta-tricalcitum phosphate ( β- TCP ) and bone morphogenetic protein/beta-tricalcium phosphate ( BMP/ β- TCP ) complex in mandibular reconstruction and evaluated the advantages of BMP / β- TCP complex in repairing bone defects. Bone defects created in the lower margin of bilateral mandible bodies in 12 rabbits were repaired with β- TCP ( control group ) and BMP/ β- TCP complex ( experimental group ) respectively. The rabbits were euthanized after 2, 4, 8 and 12 weeks and examined by macroscopy, radiography, histology, histomorphometry and image analysis. 2 weeks after surgery, ossftcation of newly-generated tissue in BMP/ β- TCP complex group appeared and after 12 weeks, massive new bone and ossification maturation were seen. However, in β- TCP group without BMP , ossification was not found until 12 weeks after operation. Image analysis showed that bone regeneration rate of BMP/ β- TCP was 30%-40% higher and the degradation rate was 20%- 30% higher than that of β- TCP. Therefore, as a reconstructive material for bone defects, BMP/ β-TCP complex is superior to β-TCP and can be used in oral and maxillofacial surgery.展开更多
Intrinsic osteoinductivity—the ability to induce bone formation in ectopic sites without addition of osteogenic factors has been reported in various porous materials. Tartrate-resistant acid phosphatase (TRAP)-positi...Intrinsic osteoinductivity—the ability to induce bone formation in ectopic sites without addition of osteogenic factors has been reported in various porous materials. Tartrate-resistant acid phosphatase (TRAP)-positive osteoclast-like cells are thought to play an important role in material-induced osteoinduction. To investigate the influence of osteoclastic activity on intrinsic osteoinduction, we loaded alendronate (10–2 , 10–4 , and 10–6 M) onto porous β-tricalcium phosphate (β-TCP) blocks to inhibit osteoclastic activity, and evaluated osteoinductivity by implantation of the blocks into the dorsal muscles of adult beagle dogs. Alendronate-loaded porous β-TCP blocks increased both speed and amount of osteoinduction, as measured 4 weeks after implantation, with the 10–4 M alendronate-loaded β-TCP being especially active. This finding indicates that β-TCP loaded with 10–4 M alendronate might prove crucial in providing the desirable balance between the degradation rate of bone scaffolds and their osteoinductive replacement. Thus, material-induced osteoinduction may be controlled by local application of alendronate, establishing alendronate loading as a promising therapeutic approach.展开更多
In this work wollastonite/tricalcium phosphate (W/TCP) glass-ceramics with three W/TCP weight ratios (20/80;60/40 and 80/20) were implanted in rat calvaria and the modifications taking place during implantation were s...In this work wollastonite/tricalcium phosphate (W/TCP) glass-ceramics with three W/TCP weight ratios (20/80;60/40 and 80/20) were implanted in rat calvaria and the modifications taking place during implantation were studied by Raman spectroscopy. The experimental glass-ceramics were composed of different contents of βW, αW, βTCP, αTCP, and glassy phases. Materials were implanted for 7-, 15-, 45- and 120-day periods after which the implanted materials were recovered and analyzed by FT-Raman spectroscopy. The results suggested that the αW phase reabsorbs fast during implantation in the glass-ceramics 60/40 and 80/20, whereas βTCP and αTCP glass-ceramic are gradually attenuated and replaced by biological apatite-like bands. In the glass-ceramic 20/80, the bands related to the βTCP phase remained unvaried in all analyzed periods. New bands associated with the deposition of collagenous material appeared during implantation for all 60/40 and 80/20 glass-ceramics experimental groups, but important differences in intensities between both groups. The spectra corresponding to implants of 60/40 glass-ceramic at the 120-day period were very similar to those of the control group (normal cortical bone), with regards to Raman shifts and intensities, as well as in the FWHM value of the 962 cm<sup>-1</sup> apatite band (ν1 PO4 in hydroxyapatite), evidencing that apatite deposited at the implant site has the same crystallinity than biological apatite in normal bone mineral. The glass-ceramic 20/80 behaved just as an osteoconductive filling material, while glass-ceramics 60/40 and 80/20 were able to induce deposition of organic matrix mineralized new tissue. The 60/40 glass-ceramic showed the best performance and the most similar Raman spectrum to normal cortical bone.展开更多
β-TCP ceramic scaffolds were fabricated with selective laser sintering (SLS) in this work. Carbon nanotubes (CNTs) were mixed with porous β-TCP matrix to enhance the mechanical performance of the bone tissue enginee...β-TCP ceramic scaffolds were fabricated with selective laser sintering (SLS) in this work. Carbon nanotubes (CNTs) were mixed with porous β-TCP matrix to enhance the mechanical performance of the bone tissue engineering scaffolds. Scaffold reconstruction and microstructure analysis were fulfilled based on micro-computed tomography (Micro-CT) scanning data. Results show that the strength of scaffold mixed with 0.2% CNTs reaches 0.819 MPa which has been improved by 85.7% compared with that without CNTs. Micro-CT analysis shows that the scaffold has a good interconnectivity, and pore size mainly distributes in the two regions of 60-340 μm and 500-620 μm.展开更多
To test the efficacy of two calcium phosphate pastes compared to that of fluoride toothpaste on remineralizing artificial caries in situ, this study had a double-blind crossover in situ design, involving three experim...To test the efficacy of two calcium phosphate pastes compared to that of fluoride toothpaste on remineralizing artificial caries in situ, this study had a double-blind crossover in situ design, involving three experimental phases of 14 days each, with an 8-day washout period between phases. Nine healthy subjects participated in the study. The subjects wore removable palatal appliances mounted with six human enamel slabs with artificial caries lesions, and in each of the experimental phases, used one of the following methods two times/day: group A, brushing with 1.0 g of Colgate Regular Flavor, followed by applying 0.25 g of Tooth Mousse Plus; group B, brushing with 0.25 g of Clinpro Tooth Crbme; and group C, brushing with 1.0 g of Colgate Regular Flavor. After 14 days, the enamel slabs (54 slabs/ group) were embedded in resin, sectioned and examined with a polarized-light microscope, and the lesion areas were quantified using Image-Pro Plus. All experimental groups showed a significant reduction in lesion area compared to the initial lesion area (paired t-test, P〈O.O01). The mean reduction in lesion area of Groups A, B and C were (0.029__.0.010), (0.030_+0.009) and (0.027_+0.009) mm2, respectively. There were no statistical differences between groups (KruskaI-Wallis test, P〉0.05). All three groups remineralized the enamel slab lesions, indicating model sensitivity to fluoride. Given the differences in usage amounts and treated regimens, Clinpro Tooth Crbme provided similar benefits to the fluoride toothpaste; however, no additional benefit of Tooth Mousse Plus was observed when used in conjunction with the fluoride toothpaste.展开更多
Biodegradation of tricalcium phosphate (TCP) ceramics was observed through mixed culture of osteoclasts and TCP discs in vitro in this study. Osteo-clasts were isolated from newborn SD rat's marrow of long bone an...Biodegradation of tricalcium phosphate (TCP) ceramics was observed through mixed culture of osteoclasts and TCP discs in vitro in this study. Osteo-clasts were isolated from newborn SD rat's marrow of long bone and cultured on TCP discs. The culture terminated at the 48th h and 96th h respectively. Under an inverted microscope, the osteoclasts imparted round or oval body with multinu-clear and many thin processes. These cells were positively stained for tartrate-re-sistance acid phosphatase (TRAP). Scanning electron microscope showed that many resorption lacunae on TCP disc surface and their diameters were smaller than 20 μm. Osteoclasts were located in the lacunae. At the 96th h, the resorption lacunae become larger and osteoclasts showed degeneration. It is suggested that osteoclasts possess ability to re-absorb TCP ceramics under in vitro culturing condition.展开更多
The phosphate solubilizing characteristics of a strain YC, which was isolated from phosphate mines (Hubei, China), were studied in National Botanical Research Institute’s phosphate (NBRIP) growth medium containing tr...The phosphate solubilizing characteristics of a strain YC, which was isolated from phosphate mines (Hubei, China), were studied in National Botanical Research Institute’s phosphate (NBRIP) growth medium containing tricalcium phosphate (TCP) as sole phosphorus (P) source. The strain YC is identified as Stenotrophomonas maltophilia (S. maltophilia) based upon the results of morphologic, physiological and biochemical characteristics and 16S rRNA sequences analysis. The results show that the strain S. maltophilia YC can solubilize TCP and release soluble P in NBRIP growth medium. A positive correlation between concentration of soluble P and population of the isolate and a negative correlation between concentration of soluble P and pH in the culture medium are observed from statistical analysis results. Moreover, gluconic acid is detected in the culture medium by HPLC analysis. It indicates that the isolate can release gluconic acid during the solubilizing experiment, which causes acidification of the culture medium and then TCP solubilization. S. maltophilia YC has a maximal TCP solubilizing capability when using maltose as carbon source and ammonium nitrate as nitrogen source, respectively, in NBRIP growth medium.展开更多
To investigate the osteogenesis of calcium phosphate ceramics, β-TCP ceramics were implanted into the condyle femur of rabbits, and tetracycline was injected termly. Specimens were host at 1, 2, 3, 4, 5, 6 months aft...To investigate the osteogenesis of calcium phosphate ceramics, β-TCP ceramics were implanted into the condyle femur of rabbits, and tetracycline was injected termly. Specimens were host at 1, 2, 3, 4, 5, 6 months after implanted. The new bone formation and osteogenesis process were observed by the histomorphology, fluorescent microscope, SEM and EPMA. The results demonstrate that, osteogenesis is active, there are abundant osteoblasts on the surface of osteoid, mesenchymal cell hyperplasia and incursion is found in materials after 1 month. After 2 months, there is blood vessel formation and macrophage soakage within materials. Bone-island appears and connects by bone-bridge after 3 months. β-TCP ceramics degrade and are dispersed by new formation bone. Woven bone turns into bone lamella by rebuilding and calcification. The materials entirely change their original shape and combines with bone tissue as a whole after 6 months. The typical structure of spongy bone forms. It is confirmed that β-TCP is a degradable biocompatible artificial bone material which can incorporating in life.展开更多
A biphasic bone grafting biomaterial based on a mixture of calcium phosphates and beta-tricalcium phosphate (<em>β</em>-TCP) phases with high nanoporosity was synthesized. The synthesis route was based on...A biphasic bone grafting biomaterial based on a mixture of calcium phosphates and beta-tricalcium phosphate (<em>β</em>-TCP) phases with high nanoporosity was synthesized. The synthesis route was based on calcium phosphate composition and the incorporation of glycolic acid as a pore former, giving a material composed of 97% <em>β</em>-TCP and 3% calcium orthophosphates (CaPO<sub>4</sub>). An<em> i</em><em></em><span></span><em>n </em><em>vitro</em> study of the purity, microstructure, crystalline domain, and pores size for the material obtained was performed by SEM analysis as well as full structural characterization. The region of interest related to the surface was determined by the specific surface area measured with the BET method. <em>In vivo</em> evaluation of bone response was performed by implanting the new low-cost biphasic manufacturing material synthesized in this work, which was compared with a biphasic material of similar chemical and microstructural composition existing in the commercial market and with higher cost called Synergy Odontit<sup><span style="white-space:nowrap;">®</span></sup> <em>β</em>-TCP. The materials were implanted separately into 5 mm diameter defects in the tibias of New Zealand White rabbits at 30, 60, and 90 days. The results obtained showed that the host tissue well accepted the new biphasic material;the presence of new bone formation was observed. A more complete resorption was observed for the new microcrystalline biphasic material compared to for a commercial <em>β</em>-TCP material.展开更多
文摘Objectives: The aim of this study was to compare the efficacy of using the synthetic β-TCP bone grafting material in two different manufacturing forms (putty and granular) in grafting the jumping zone around immediate implant. Patients and Method: A randomized controlled clinical and radiographic trial was conducted on 24 male patients aged from 45 - 55 with badly decayed non-restorable teeth in the posterior mandibular area and seeking for receiving immediate dental implant directly after extraction. Vertical bone height and bone density were taken at time of implant placement and 6 months postoperatively. Results: The Putty form group and the Granular form group did not differ statistically in terms of age, post-operative complications, or implant outcome six months postoperatively. Additionally, there was a statistically significant increase in Putty form group compared to the Granular form group regarding Marginal bone loss 6 months postoperatively, but there was no statistically significant difference between the Putty form group and the Granular form group regarding Bone density by CBCT. Conclusion: The β-TCP Putty material, compared to β-TCP granular, displayed better surgical handling properties, and both forms had no adverse effect on bone formation, bone tissue maturation or graft volume stability, The β-TCP granular material, compared to β-TCP putty, displayed less marginal bone loss 6 months post-operatively.
基金Funded by the Science and Technology Planning Project of Guangdong Province(2013B010402019)the Natural Science Foundation of Guangdong Province(2015A030310345)the Medical Scientific Research Foundation of Guangdong Province(A2015352)
文摘We developed a fixation method and evaluate bone regrowth in the cavities of a Ф4 mm× 8 mm titanium(Ti)tube through porous hydroxyapatite(HAP)/β-tricalcium phosphate(β-TCP)composite filling(group A),chitosan/calcium phosphate composite filling(group B),and HAP particle modification(group C).After 2 and 5 months of implantation in dog tibia defects,new bone formation in the three groups was studied by histology and histomorphometry.Group A displayed the most bone regenerated area in both 2 and 5 months post-operation.The chitosan/calcium phosphate composite in group B mostly degraded 2 months after implantation,leading to fibrous tissue invasion after 5 months.By contrast,less bone formation was observed in group C.These results indicated that filling the cavities of metalprostheses with a porous HAP/β-TCP composite can be used for stable long-term fixation in clinicalsettings.
文摘Osteoinductive properties of β-TCP remain unknown in humans. It is important to improve the bone grafts which have been the standard treatment for bone defect due to their biocompatibility and bone-healing properties. The purpose of this study was to radiologically clarify the bone forming property of β-TCP by evaluating the replacement of β-TCP by newly formed bone in the defect after fibular resection and to examine the histological features of a β-TCP specimen three months after grafting. Radiographs of 17 patients who underwent β-TCP grafting were evaluated. Osteoinductive and osteoconductive properties were assessed by examining bone formation from the remnant fibula, periosteum, and β-TCP alone. In one case, β-TCP was removed later because of postoperative complications and was evaluated histologically. Twenty two of 34 sites between the remnant fibula and β-TCP had achieved good bone regeneration. Five of 14 sites between the periosteum and β-TCP had achieved good bone regeneration. We found immature but evident bone formation in three cases with no osseous and periosteal sites. Histological analysis revealed bone formation on the outer macropore surface of β-TCP. Some blood vessels formed in the macropores expressed CD31 and CD34, while a few lymphatic vessels expressed CD34 and podoplanin. Thus, the osteoinductive ability of β-TCP alone was demonstrated in humans radiographically for the first time. The histological morphology of β-TCP was demonstrated at an early stage after grafting in humans.
文摘Porous β-tricalcium phosphate (TCP) displays osteoinductivity in certain animals in the absence of osteoinductive agents. We evaluated whether the microstructure may be an important determinant of osteoinduction, and also investigated how bone formation was promoted using β-TCP combined with bone marrow aspirates. We prepared two types of β-TCP, namely, β-TCP A, which possessed interconnected macropores and micropores, and β-TCP B, which possessed macropores but had less detectable micropores. These were implanted with or without marrow in canine muscles. Bone formation and the resorption of each β-TCP implant were evaluated histologically. Newly formed bone began to appear at day 42 in the implants of β-TCP A alone, but the implants of β-TCP B alone did not show any bone formation by day 42. Meanwhile, bone formation was already evident on day 14 by loading with bone marrow aspirates with or without micropores. By immunohistochemistry, the number of cathepsin K-positive cells (osteoclasts) increased as time passed in the implants of β-TCP A alone, while the number of the osteoclasts did not change obviously in the implants of β-TCP B alone from day 14 to 56. Reticular fibrils were evident within the β-TCP A, and were barely observed in the β-TCP B in the silver impregnation. The present result would bring about the possible role to enhance the importance of the surface microstructure for the better osteoinductivity. Our findings suggest that the combination of porous β-TCP and bone marrow facilitates bone formation.
基金This study was financially supported by 863 Hi-Tech Research and Development Program of China(2002AA326080)The Fund for Youth Teacher of Education Ministry of China(2002123).
文摘Ultrafine-tricalcium phosphate(β-TCP)powders with good crystalline structure were produced by a new process through bone tissue engineering approach rorous β-TCPcermic was combined with recombined human bone morphogenetic proteins-2(rhBMP-2)to develop a novel composite material ,osteogenesis capacity of the composite was investigated intramuscularly in rat with histological analyses and SEM examination pureβ-TCP porous carmic wsa investigated as the control results show that the compostie materials possess good bilcompatibility biodegradation and strong osteogenesis capacity through inductive process after implantation material degradation began from 2 weeks post-implantation accompanying with the changing o pore structure with the enwrapping and separation fo materials by hyperplatic mesenchymal cells and fibroblast and with the phagocytose reaction of multinucleated giant cells early in 72h immature cartilage could be found within novel composite mature lamellar bone was induced to generate after 3 weeks with strong osteoinduction capacity and controlable bildegradation the novel rhBMP-2\β-TCP porous ceramic is expected to be a promising bone grafting substitute for bone tissue engineering
文摘The distribution and function of transforming growth factor-beta (TGF-β) in the region of bone defect repaired by collagen/nano-beta-tricalcium phosphate composite artificial bone (Co/N-TCP) and the ability of Co/N-TCP recruiting osteoblasts to precipitate the repair of bone defect were investigated Twenty-four domestic rabbits were operated on bilateral cranial bone to create an experimental bone defect of 8 0 mm in diameter through the whole bone On the left, Co/N-TCP was implanted as experimental group, but on the right, Co/TCP was implanted as control group At 2nd, 4th, 8th, 12th week after operation, all animals were sacrificed and the implanted materials with surrounding bone were taken out Immunohistochemical staining was performed for TGF-β assay by avidin-biotin complex method (SABC) Simultaneously, TGF-β was quantitatively analyzed by HPIAS-1000 imaging analysis system The inmmunohistochemical staining for TGF-β revealed that osteoblasts and immature osteocytes highly expressed TGF-β Diffused TGF-β positive staining particles appeared in the mesenchymal and fibrous-tissue There was no significant difference in the TGF-β positive staining between two groups in the medial region to original osseous beds at different time points ( P >0 05) However, in distal original osseous bed of the defected region, the positive expression of TGF-β in the Co/N-TCP group was significantly stronger than in the control group ( P <0 05 or 0 01) The Co/N-TCP has good bioactivities and ability of stimulating and conducting TGF-β to aggregate and precipitate the healing of bone defect
文摘Porous β-tricalcium phosphate bioceramic (PTCP) has important roles in surgical implants because of good biocompatibility. But the low compressive strength of the ceramic limits its application. The preparation of PTCP was improved with the adjustment of the constituents and the sintering-process. A new type of PTCP material with high compressive strength was made. The compositions, microstructure and properties of PTCP were analyzed by TG-DSC, XRD, TEM, SEM and so on. The result indicates that stearic acid burns sufficiently and gives out carbon dioxide and water vapor when slowly heated between 200 ℃ and 400 ℃ so that the porous structure like coral in β-TCP bioceramic is formed. Through crystallization at 470 ℃ and 570 ℃, more CaO-P2O5 glass-cement is converted into crystallite-glass, which is beneficial for improving the compressive strength of β-TCP bioceramic. PTCP can form a support action in bone imperfect section with good solubility.
文摘We investigated the osteogenic characteristic and biodegradation behavior of porous beta-tricalcitum phosphate ( β- TCP ) and bone morphogenetic protein/beta-tricalcium phosphate ( BMP/ β- TCP ) complex in mandibular reconstruction and evaluated the advantages of BMP / β- TCP complex in repairing bone defects. Bone defects created in the lower margin of bilateral mandible bodies in 12 rabbits were repaired with β- TCP ( control group ) and BMP/ β- TCP complex ( experimental group ) respectively. The rabbits were euthanized after 2, 4, 8 and 12 weeks and examined by macroscopy, radiography, histology, histomorphometry and image analysis. 2 weeks after surgery, ossftcation of newly-generated tissue in BMP/ β- TCP complex group appeared and after 12 weeks, massive new bone and ossification maturation were seen. However, in β- TCP group without BMP , ossification was not found until 12 weeks after operation. Image analysis showed that bone regeneration rate of BMP/ β- TCP was 30%-40% higher and the degradation rate was 20%- 30% higher than that of β- TCP. Therefore, as a reconstructive material for bone defects, BMP/ β-TCP complex is superior to β-TCP and can be used in oral and maxillofacial surgery.
文摘Intrinsic osteoinductivity—the ability to induce bone formation in ectopic sites without addition of osteogenic factors has been reported in various porous materials. Tartrate-resistant acid phosphatase (TRAP)-positive osteoclast-like cells are thought to play an important role in material-induced osteoinduction. To investigate the influence of osteoclastic activity on intrinsic osteoinduction, we loaded alendronate (10–2 , 10–4 , and 10–6 M) onto porous β-tricalcium phosphate (β-TCP) blocks to inhibit osteoclastic activity, and evaluated osteoinductivity by implantation of the blocks into the dorsal muscles of adult beagle dogs. Alendronate-loaded porous β-TCP blocks increased both speed and amount of osteoinduction, as measured 4 weeks after implantation, with the 10–4 M alendronate-loaded β-TCP being especially active. This finding indicates that β-TCP loaded with 10–4 M alendronate might prove crucial in providing the desirable balance between the degradation rate of bone scaffolds and their osteoinductive replacement. Thus, material-induced osteoinduction may be controlled by local application of alendronate, establishing alendronate loading as a promising therapeutic approach.
文摘In this work wollastonite/tricalcium phosphate (W/TCP) glass-ceramics with three W/TCP weight ratios (20/80;60/40 and 80/20) were implanted in rat calvaria and the modifications taking place during implantation were studied by Raman spectroscopy. The experimental glass-ceramics were composed of different contents of βW, αW, βTCP, αTCP, and glassy phases. Materials were implanted for 7-, 15-, 45- and 120-day periods after which the implanted materials were recovered and analyzed by FT-Raman spectroscopy. The results suggested that the αW phase reabsorbs fast during implantation in the glass-ceramics 60/40 and 80/20, whereas βTCP and αTCP glass-ceramic are gradually attenuated and replaced by biological apatite-like bands. In the glass-ceramic 20/80, the bands related to the βTCP phase remained unvaried in all analyzed periods. New bands associated with the deposition of collagenous material appeared during implantation for all 60/40 and 80/20 glass-ceramics experimental groups, but important differences in intensities between both groups. The spectra corresponding to implants of 60/40 glass-ceramic at the 120-day period were very similar to those of the control group (normal cortical bone), with regards to Raman shifts and intensities, as well as in the FWHM value of the 962 cm<sup>-1</sup> apatite band (ν1 PO4 in hydroxyapatite), evidencing that apatite deposited at the implant site has the same crystallinity than biological apatite in normal bone mineral. The glass-ceramic 20/80 behaved just as an osteoconductive filling material, while glass-ceramics 60/40 and 80/20 were able to induce deposition of organic matrix mineralized new tissue. The 60/40 glass-ceramic showed the best performance and the most similar Raman spectrum to normal cortical bone.
基金supported by the Innovation Program of Shanghai Municipal Education Commission (Grant No.09YZ34)
文摘β-TCP ceramic scaffolds were fabricated with selective laser sintering (SLS) in this work. Carbon nanotubes (CNTs) were mixed with porous β-TCP matrix to enhance the mechanical performance of the bone tissue engineering scaffolds. Scaffold reconstruction and microstructure analysis were fulfilled based on micro-computed tomography (Micro-CT) scanning data. Results show that the strength of scaffold mixed with 0.2% CNTs reaches 0.819 MPa which has been improved by 85.7% compared with that without CNTs. Micro-CT analysis shows that the scaffold has a good interconnectivity, and pore size mainly distributes in the two regions of 60-340 μm and 500-620 μm.
文摘To test the efficacy of two calcium phosphate pastes compared to that of fluoride toothpaste on remineralizing artificial caries in situ, this study had a double-blind crossover in situ design, involving three experimental phases of 14 days each, with an 8-day washout period between phases. Nine healthy subjects participated in the study. The subjects wore removable palatal appliances mounted with six human enamel slabs with artificial caries lesions, and in each of the experimental phases, used one of the following methods two times/day: group A, brushing with 1.0 g of Colgate Regular Flavor, followed by applying 0.25 g of Tooth Mousse Plus; group B, brushing with 0.25 g of Clinpro Tooth Crbme; and group C, brushing with 1.0 g of Colgate Regular Flavor. After 14 days, the enamel slabs (54 slabs/ group) were embedded in resin, sectioned and examined with a polarized-light microscope, and the lesion areas were quantified using Image-Pro Plus. All experimental groups showed a significant reduction in lesion area compared to the initial lesion area (paired t-test, P〈O.O01). The mean reduction in lesion area of Groups A, B and C were (0.029__.0.010), (0.030_+0.009) and (0.027_+0.009) mm2, respectively. There were no statistical differences between groups (KruskaI-Wallis test, P〉0.05). All three groups remineralized the enamel slab lesions, indicating model sensitivity to fluoride. Given the differences in usage amounts and treated regimens, Clinpro Tooth Crbme provided similar benefits to the fluoride toothpaste; however, no additional benefit of Tooth Mousse Plus was observed when used in conjunction with the fluoride toothpaste.
基金This project was supported by grant from the National Natural Science Foundation of China (No.5949320O)
文摘Biodegradation of tricalcium phosphate (TCP) ceramics was observed through mixed culture of osteoclasts and TCP discs in vitro in this study. Osteo-clasts were isolated from newborn SD rat's marrow of long bone and cultured on TCP discs. The culture terminated at the 48th h and 96th h respectively. Under an inverted microscope, the osteoclasts imparted round or oval body with multinu-clear and many thin processes. These cells were positively stained for tartrate-re-sistance acid phosphatase (TRAP). Scanning electron microscope showed that many resorption lacunae on TCP disc surface and their diameters were smaller than 20 μm. Osteoclasts were located in the lacunae. At the 96th h, the resorption lacunae become larger and osteoclasts showed degeneration. It is suggested that osteoclasts possess ability to re-absorb TCP ceramics under in vitro culturing condition.
基金Project(2004CB619201) supported by the Major State Basic Research and Development Program of ChinaProject(Z200515002) supported by the Key Project Foundation of the Education Department of Hubei Province, China+1 种基金Project(GCP200801) supported by the Open Research Fund of Key Laboratory for Green Chemical Process of Ministry of Education, ChinaProject(Q200811) supported by the Youths Science Foundation of Wuhan Institute of Technology, China
文摘The phosphate solubilizing characteristics of a strain YC, which was isolated from phosphate mines (Hubei, China), were studied in National Botanical Research Institute’s phosphate (NBRIP) growth medium containing tricalcium phosphate (TCP) as sole phosphorus (P) source. The strain YC is identified as Stenotrophomonas maltophilia (S. maltophilia) based upon the results of morphologic, physiological and biochemical characteristics and 16S rRNA sequences analysis. The results show that the strain S. maltophilia YC can solubilize TCP and release soluble P in NBRIP growth medium. A positive correlation between concentration of soluble P and population of the isolate and a negative correlation between concentration of soluble P and pH in the culture medium are observed from statistical analysis results. Moreover, gluconic acid is detected in the culture medium by HPLC analysis. It indicates that the isolate can release gluconic acid during the solubilizing experiment, which causes acidification of the culture medium and then TCP solubilization. S. maltophilia YC has a maximal TCP solubilizing capability when using maltose as carbon source and ammonium nitrate as nitrogen source, respectively, in NBRIP growth medium.
文摘To investigate the osteogenesis of calcium phosphate ceramics, β-TCP ceramics were implanted into the condyle femur of rabbits, and tetracycline was injected termly. Specimens were host at 1, 2, 3, 4, 5, 6 months after implanted. The new bone formation and osteogenesis process were observed by the histomorphology, fluorescent microscope, SEM and EPMA. The results demonstrate that, osteogenesis is active, there are abundant osteoblasts on the surface of osteoid, mesenchymal cell hyperplasia and incursion is found in materials after 1 month. After 2 months, there is blood vessel formation and macrophage soakage within materials. Bone-island appears and connects by bone-bridge after 3 months. β-TCP ceramics degrade and are dispersed by new formation bone. Woven bone turns into bone lamella by rebuilding and calcification. The materials entirely change their original shape and combines with bone tissue as a whole after 6 months. The typical structure of spongy bone forms. It is confirmed that β-TCP is a degradable biocompatible artificial bone material which can incorporating in life.
文摘A biphasic bone grafting biomaterial based on a mixture of calcium phosphates and beta-tricalcium phosphate (<em>β</em>-TCP) phases with high nanoporosity was synthesized. The synthesis route was based on calcium phosphate composition and the incorporation of glycolic acid as a pore former, giving a material composed of 97% <em>β</em>-TCP and 3% calcium orthophosphates (CaPO<sub>4</sub>). An<em> i</em><em></em><span></span><em>n </em><em>vitro</em> study of the purity, microstructure, crystalline domain, and pores size for the material obtained was performed by SEM analysis as well as full structural characterization. The region of interest related to the surface was determined by the specific surface area measured with the BET method. <em>In vivo</em> evaluation of bone response was performed by implanting the new low-cost biphasic manufacturing material synthesized in this work, which was compared with a biphasic material of similar chemical and microstructural composition existing in the commercial market and with higher cost called Synergy Odontit<sup><span style="white-space:nowrap;">®</span></sup> <em>β</em>-TCP. The materials were implanted separately into 5 mm diameter defects in the tibias of New Zealand White rabbits at 30, 60, and 90 days. The results obtained showed that the host tissue well accepted the new biphasic material;the presence of new bone formation was observed. A more complete resorption was observed for the new microcrystalline biphasic material compared to for a commercial <em>β</em>-TCP material.