Mo5Si3-20%Al2O3 (mass fraction) nanocomposite was synthesized by mechanical alloying (MA) of mixture of MoO3,Mo,Si and Al powders.The structural evolutions of powder particles during mechanical alloying were studi...Mo5Si3-20%Al2O3 (mass fraction) nanocomposite was synthesized by mechanical alloying (MA) of mixture of MoO3,Mo,Si and Al powders.The structural evolutions of powder particles during mechanical alloying were studied by X-ray diffractometry (XRD),scanning electron microscopy (SEM),transmission electron microscopy (TEM) and differential thermal analysis (DTA).Results show that Mo5Si3-20%Al2O3 was obtained after 10 h of milling.The spontaneous reaction of powders takes place in an explosive mode.The crystallite sizes of Mo5Si3 and Al2O3 after milling for 30 h were 36.3 nm and 21.9 nm,respectively.With longer milling time,the intensities of Mo5Si3 and Al2O3 peaks decreased and became broad due to the decrease in crystallite size.Thermal analysis results and XRD analysis results show that the Mo5Si3-Al2O3 nanocomposite powders are very stable during milling (up to 30 h) and heating (up to 1 000℃) and no transformation takes place.展开更多
In this study,Ag/γ-Al_(2)O_(3)catalysts were synthesized by an Ar dielectric barrier discharge plasma using silver nitrate as the Ag source andγ-alumina(γ-Al_(2)O_(3))as the support.It is revealed that plasma can r...In this study,Ag/γ-Al_(2)O_(3)catalysts were synthesized by an Ar dielectric barrier discharge plasma using silver nitrate as the Ag source andγ-alumina(γ-Al_(2)O_(3))as the support.It is revealed that plasma can reduce silver ions to generate crystalline silver nanoparticles(Ag NPs)of good dispersion and uniformity on the alumina surface,leading to the formation of Ag/γ-Al_(2)O_(3)catalysts in a green manner without traditional chemical reductants.Ag/γ-Al_(2)O_(3)exhibited good catalytic activity and stability in CO oxidation reactions,and the activity increased with increase in the Ag content.For catalysts with more than 2 wt%Ag,100%CO conversion can be achieved at 300°C.The catalytic activity of the Ag/γ-Al_(2)O_(3)catalysts is also closely related to the size of theγ-alumina,where Ag/nano-γ-Al_(2)O_(3)catalysts demonstrate better performance than Ag/micro-γ-Al_(2)O_(3)catalysts with the same Ag content.In addition,the catalytic properties of plasma-generated Ag/nano-γ-Al_(2)O_(3)(Ag/γ-Al_(2)O_(3)-P)catalysts were compared with those of Ag/nano-γ-Al_(2)O_(3)catalysts prepared by the traditional calcination approach(Ag/γ-Al_(2)O_(3)-C),with the plasma-generated samples demonstrating better overall performance.This simple,rapid and green plasma process is considered to be applicable for the synthesis of diverse noble metal-based catalysts.展开更多
Ultrafine alumina power was obtained by calcining the precursor at 1 200 ℃ for 2 h, which was prepared by homogeneous precipitation method using aluminium salts and urea as raw materials. The effects of anions on the...Ultrafine alumina power was obtained by calcining the precursor at 1 200 ℃ for 2 h, which was prepared by homogeneous precipitation method using aluminium salts and urea as raw materials. The effects of anions on the morphology, particle size, surface area and configuration of the precursors were studied. The results show that the reactions of urea with aluminium nitrate and aluminium chloride result in agglomerates gels with bad filtering performance, the morphology is fibrillar. Aluminium sulphate-urea reactions result in the direct formation of amorphous powders with good filtering performance, of which morphology are regular spherical particles with larger granularity and smaller surface area. The reaction of mutual compound of aluminium sulphate and aluminium nitrate with molar ratio of 40:60 with urea can produce precursor with good filtering performance, spherical morphology, and uniform granularity distribution in the particle size range of 2-3 μm.展开更多
The precursor of ammonium aluminum carbonate hydroxide was synthesized by using aluminum sulfate(Al2(SO4)3) and ammonium carbonate((NH4)2CO3). The effects of α-Al2O3 seeds and mixture composed of α-Al2O3 and...The precursor of ammonium aluminum carbonate hydroxide was synthesized by using aluminum sulfate(Al2(SO4)3) and ammonium carbonate((NH4)2CO3). The effects of α-Al2O3 seeds and mixture composed of α-Al2O3 and ammonium nitrate, as well as multiplex catalysts (AT) on phase transformation of alumina in sintering process were investigated respectively. The results show that the α-Al2O3 seeds and the mixture of α-Al2O3 and ammonium nitrate can lower the phase transformation temperature of α-Al2O3 to different extents while the particles obtained agglomerate heavily. AT has great potential synergistic effects on the phase transformation of alumina and reduces the phase transformation temperature of α-Al2O3 and the trends of necking-formation between particles. Therefore the dispersion of powder particles is improved significantly.展开更多
基金Project(3ZS061-A25-038) supported by the Natural Science Foundation of Gansu Province,China
文摘Mo5Si3-20%Al2O3 (mass fraction) nanocomposite was synthesized by mechanical alloying (MA) of mixture of MoO3,Mo,Si and Al powders.The structural evolutions of powder particles during mechanical alloying were studied by X-ray diffractometry (XRD),scanning electron microscopy (SEM),transmission electron microscopy (TEM) and differential thermal analysis (DTA).Results show that Mo5Si3-20%Al2O3 was obtained after 10 h of milling.The spontaneous reaction of powders takes place in an explosive mode.The crystallite sizes of Mo5Si3 and Al2O3 after milling for 30 h were 36.3 nm and 21.9 nm,respectively.With longer milling time,the intensities of Mo5Si3 and Al2O3 peaks decreased and became broad due to the decrease in crystallite size.Thermal analysis results and XRD analysis results show that the Mo5Si3-Al2O3 nanocomposite powders are very stable during milling (up to 30 h) and heating (up to 1 000℃) and no transformation takes place.
基金financial support from National Natural Science Foundation of China(Nos.52004102 and 22078125)Postdoctoral Science Foundation of China(No.2021M690068)+2 种基金Fundamental Research Funds for the Central Universities(Nos.JUSRP221018 and JUSRP622038)Key Laboratory of Green Cleaning Technology and Detergent of Zhejiang Province(No.Q202204)Open Project of Key Laboratory of Green Chemical Engineering Process of Ministry of Education(No.GCP202112)。
文摘In this study,Ag/γ-Al_(2)O_(3)catalysts were synthesized by an Ar dielectric barrier discharge plasma using silver nitrate as the Ag source andγ-alumina(γ-Al_(2)O_(3))as the support.It is revealed that plasma can reduce silver ions to generate crystalline silver nanoparticles(Ag NPs)of good dispersion and uniformity on the alumina surface,leading to the formation of Ag/γ-Al_(2)O_(3)catalysts in a green manner without traditional chemical reductants.Ag/γ-Al_(2)O_(3)exhibited good catalytic activity and stability in CO oxidation reactions,and the activity increased with increase in the Ag content.For catalysts with more than 2 wt%Ag,100%CO conversion can be achieved at 300°C.The catalytic activity of the Ag/γ-Al_(2)O_(3)catalysts is also closely related to the size of theγ-alumina,where Ag/nano-γ-Al_(2)O_(3)catalysts demonstrate better performance than Ag/micro-γ-Al_(2)O_(3)catalysts with the same Ag content.In addition,the catalytic properties of plasma-generated Ag/nano-γ-Al_(2)O_(3)(Ag/γ-Al_(2)O_(3)-P)catalysts were compared with those of Ag/nano-γ-Al_(2)O_(3)catalysts prepared by the traditional calcination approach(Ag/γ-Al_(2)O_(3)-C),with the plasma-generated samples demonstrating better overall performance.This simple,rapid and green plasma process is considered to be applicable for the synthesis of diverse noble metal-based catalysts.
基金Project(5JJ3010) supported by the Natural Science Foundation of Hunan Province, China
文摘Ultrafine alumina power was obtained by calcining the precursor at 1 200 ℃ for 2 h, which was prepared by homogeneous precipitation method using aluminium salts and urea as raw materials. The effects of anions on the morphology, particle size, surface area and configuration of the precursors were studied. The results show that the reactions of urea with aluminium nitrate and aluminium chloride result in agglomerates gels with bad filtering performance, the morphology is fibrillar. Aluminium sulphate-urea reactions result in the direct formation of amorphous powders with good filtering performance, of which morphology are regular spherical particles with larger granularity and smaller surface area. The reaction of mutual compound of aluminium sulphate and aluminium nitrate with molar ratio of 40:60 with urea can produce precursor with good filtering performance, spherical morphology, and uniform granularity distribution in the particle size range of 2-3 μm.
文摘The precursor of ammonium aluminum carbonate hydroxide was synthesized by using aluminum sulfate(Al2(SO4)3) and ammonium carbonate((NH4)2CO3). The effects of α-Al2O3 seeds and mixture composed of α-Al2O3 and ammonium nitrate, as well as multiplex catalysts (AT) on phase transformation of alumina in sintering process were investigated respectively. The results show that the α-Al2O3 seeds and the mixture of α-Al2O3 and ammonium nitrate can lower the phase transformation temperature of α-Al2O3 to different extents while the particles obtained agglomerate heavily. AT has great potential synergistic effects on the phase transformation of alumina and reduces the phase transformation temperature of α-Al2O3 and the trends of necking-formation between particles. Therefore the dispersion of powder particles is improved significantly.