Through measuring the coefficient of linear expansion, the structure and properties of the Li2O-Al2O3-SiO2 low expansion glass ceramics containing B2O3 are studied by JR and XRD. It is shoutn that the IR method is eff...Through measuring the coefficient of linear expansion, the structure and properties of the Li2O-Al2O3-SiO2 low expansion glass ceramics containing B2O3 are studied by JR and XRD. It is shoutn that the IR method is efficient in the study of the glass-ceramics structure. There is a " Boron abnormality" in the system which has an important influence on the properties of the glass-ceramics.展开更多
ZrO2-mullite nano-ceramics were fabricated by in-situ controlled crystallizing from SiO2-Al2O3-ZrO2 amorphous bulk. The thermal transformation sequences of the SiO2-Al2O3-ZrO2 amorphous bulk were investigated by X-ray...ZrO2-mullite nano-ceramics were fabricated by in-situ controlled crystallizing from SiO2-Al2O3-ZrO2 amorphous bulk. The thermal transformation sequences of the SiO2-Al2O3-ZrO2 amorphous bulk were investigated by X-ray diffraction, infrared spectrum, scanning electron microscope and differential scanning calorimetric. And the mechanical properties of the nano-ceramics were studied. The results show that the bulks are still in amorphous state at 900 ℃ and the t-ZrO2 forms at about 950 ℃ with a faint spinel-like phase which changes into mullite on further heating. ZrO2 and mullite become major phases at 1 100 ℃ and an amount of m-ZrO2 occur at the same time. The sample heated at 950 ℃ for 2 h and then at 1 100 ℃ for 1 h shows very dense and homogenous microstructure with ball-like grains in size of 20-50 nm. With the increase of crystallization temperature up to 1 350 ℃, the grains grow quickly and some grow into lath-shaped grains with major diameter of 5 μm. After two-step treatment the highest micro-hardness, flexural strength and fracture toughness of the samples are 13.72 GPa, 520 MPa and 5.13 MPa·m1/2, respectively.展开更多
SiO2-Al2O3-ZrO2 glasses with different nucleating agents were crystallized under special processing schedule. The microstructure and mechanical properties of the glass-ceramics in SiO2-Al2O3-ZrO2 system were investiga...SiO2-Al2O3-ZrO2 glasses with different nucleating agents were crystallized under special processing schedule. The microstructure and mechanical properties of the glass-ceramics in SiO2-Al2O3-ZrO2 system were investigated by differential scanning calorimetry, scanning electron microscopy, X-ray diffraction and three-point bending method. The results show that ZrO2 is not an effective nucleating agent in SiO2-Al2O3-ZrO2 system, while TiO2 is effective for the separation of spinel, and P2O5 facilitates solubility of ZrO2 in glass and crystallization. The main crystalline phases of the glass-ceramics are spinel, anorthite and tetragonal zirconia. With the increase of ZrO2 content in the glass, glass-ceramics show higher bending strength (120MPa) than others.展开更多
Lu2O3-doped ZnO-Bi2O3-based varistor ceramics samples were prepared by a conventional mixed oxide route and sintered at temperatures in the range of 900-1 000°C,and the microstructures of the varistor ceramics sa...Lu2O3-doped ZnO-Bi2O3-based varistor ceramics samples were prepared by a conventional mixed oxide route and sintered at temperatures in the range of 900-1 000°C,and the microstructures of the varistor ceramics samples were characterized by X-ray diffractometry(XRD)and scanning electron microscopy(SEM);at the same time,the electrical properties and V-I characteristics of the varistor ceramics samples were investigated by a DC parameter instrument for varistors.The results show that the ZnO-Bi2O3-based varistor ceramics with 0.3%Lu2O3(molar fraction)sintered at 950°C exhibit comparatively ideal comprehensive electrical properties.The XRD analysis of the samples shows the presence of ZnO,Bi-rich,spinel Zn7Sb2O12 and Lu2O3-based phases.展开更多
Optically transparent alumina ceramics were fabricated by conventional process and sintered without pressure in H2 atmosphere. The results indicate that relative densities of alumina specimens increase to theoretical ...Optically transparent alumina ceramics were fabricated by conventional process and sintered without pressure in H2 atmosphere. The results indicate that relative densities of alumina specimens increase to theoretical densities (T. D. ) with increasing content of La2O3. With increasing holding time during sintering, much less pores and larger grains were found in the sintered alumina samples. Higher transmittance was achieved in alumina codoped with MgO and La2O3 as compared with that doped with MgO only. The total-transmittance of alumina sample is up to 86% at twavelength range of 300 - 800 nm.展开更多
The Al2O3 abrasion-resistant ceramics is successfully prepared by using waste aluminum sludge as the main raw material with the addition of a little clay, talc and barium carbonate. The crystal structure and microstru...The Al2O3 abrasion-resistant ceramics is successfully prepared by using waste aluminum sludge as the main raw material with the addition of a little clay, talc and barium carbonate. The crystal structure and microstructure of ceramic are characterized by means of XRD, SEM, etc., and the physical and mechanical properties are also tested. The results show that besides the phase of corundum, a little mullite, Mg-Al spinel and hyalophane phases also exist in the product. These phases are produced via reaction in-situ, which can inhibit the overgrowth of Al2O3 grain in grain boundary, and improve the integral property of the material.展开更多
The effects of Al2O3 addition on both the sintering behavior and microwave dielectric properties of PbO-B203-SiO2 glass ceramics were investigated by Fourier transform infrared spectroscope (FTIR), differential ther...The effects of Al2O3 addition on both the sintering behavior and microwave dielectric properties of PbO-B203-SiO2 glass ceramics were investigated by Fourier transform infrared spectroscope (FTIR), differential thermal analysis (DTA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that with the increase of Al2O3 content the bands assigned to [SiO4] nearly disappear. Aluminum replaces silicon in the glass network, which is helpful for the formation of boron-oxygen rings. The increase of the transition temperature Tg and softening temperature Tf of PbO-B2O3-SiO2 glass ceramics leads to the increase of liquid phase precipitation temperature and promotes the structure stability in the glasses, and consequently contributes to the decreasing trend of crystallization. Densification and dielectric constants increase with the increase of Al2O3 content, but the dielectric loss is worsened. By contrast, the 3% (mass fraction) Al2O3-doped glass ceramics sintered at 725℃ have better properties of density p=2.72 g/cm3, dielectric constant Er=6.78, dielectric loss tan8=2.6×10^-3 (measured at 9.8 GHz), which suggest that the glass ceramics can be applied in multilayer microwave devices requiring low sintering temperatures.展开更多
The Al2O3-ZrO2(3Y)-SiC composite ceramics used in solar thermal power were prepared by micrometric Al2O3,nano-ZrO2 and SiC powders under the condition of pressureless sintering.The bulk density and bending strength ...The Al2O3-ZrO2(3Y)-SiC composite ceramics used in solar thermal power were prepared by micrometric Al2O3,nano-ZrO2 and SiC powders under the condition of pressureless sintering.The bulk density and bending strength of samples with 10vol% nano-ZrO2 sintered at 1480℃ were 3.222 g/cm3 and 160.4MPa,respectively.The bending strength of samples after 7 times thermal shock tests (quenching from 1000℃ to 25℃ in air medium) is 132.0MPa,loss rate of bending strength is only 17%.The effect of nano-ZrO2 content on the microstructure and performance of Al2O3-ZrO2(3Y)-SiC composite ceramic was investigated.The experimental results show that the bending strength of samples with above 10vol% nano-ZrO2 content has decreased,because the volume expansion resulting from t-ZrO2 to m-ZrO2 phase transformation is excessive;Adding proper nano-ZrO2 would be contributed to improve the thermal shock resistance of the composite ceramics.The Al2O3-ZrO2(3Y)-SiC composite ceramic has promising potential application in solar thermal power.展开更多
The 0.8Pb(Zr0.48Ti0.52)O3 – 0.125Pb(Zn1/3Nb2/3)O3 – 0.075Pb(Mn1/3Nb2/3)O3 + x wt% Fe2O3 ceramics (PZT-PZN-PMnN), where x = 0 ÷?0.35, has been prepared by two-stage calcination method. The effect of Fe2O3 conten...The 0.8Pb(Zr0.48Ti0.52)O3 – 0.125Pb(Zn1/3Nb2/3)O3 – 0.075Pb(Mn1/3Nb2/3)O3 + x wt% Fe2O3 ceramics (PZT-PZN-PMnN), where x = 0 ÷?0.35, has been prepared by two-stage calcination method. The effect of Fe2O3 content on the crystal structure and electrical properties of ceramics has been investigated. The results of X-ray diffraction (XRD) show that all samples have pure perovskite phase with tetragonal structure, the c/a ratio increases with increasing Fe2O3 content. At x = 0.25, electrical properties of ceramics are best: the density (r) of 7.86 g/cm3, the electromechanical coupling factor (kp) of 0.64, the dielectric constant (εr) of 1400, the dielectric loss (tand) of 0.003, the mechanical quality factor (Qm) of 1450, the piezoelectric constant (d31) of 155 pC/N, and the remanent polarization (Pr) of 37 μC/cm2, which makes it as a promising material for high power piezoelectric devices.展开更多
An optimized combination of gamma alumina (4 wt.%) and strontium (0.1 wt.%) was incorporated in cast Al-20Si alloy to obtain fine form of silicon. During casting process, the amount of γ-Al2O3 was varied from 0.5.6 w...An optimized combination of gamma alumina (4 wt.%) and strontium (0.1 wt.%) was incorporated in cast Al-20Si alloy to obtain fine form of silicon. During casting process, the amount of γ-Al2O3 was varied from 0.5.6 wt.% to refine primary Si and Sr was varied from 0.05.0.1 wt.% to modify eutectic Si. The results showed that the average size of primary Si is 24 μm for addition of 4 wt.%γ-Al2O3 to the alloy whereas 0.1 wt.% Sr resulted in sphericity of eutectic Si to ~0.6 and average length of ~1.2 μm. The thermal analysis revealed that γ-Al2O3 can act as potential heterogeneous nucleation sites. Moreover, simultaneous addition of γ-Al2O3 and Sr does not poison γ-Al2O3 particles and inhibit their nucleation efficiency as in the case of combined addition of phosphorous and strontium to Al-20Si alloy. Therefore, it was concluded that enhanced tensile strength, i.e., ultimate tensile strength (increase by 20%) and elongation (increase by 23%) in Al-20Si.4γ-Al2O3.0.1wt.%Sr alloy as compared to as-cast Al.20Si alloy can be attributed to refinement of primary Si, modification of eutectic Si and the presence of α(Al) in the alloy as evident from eutectic shift.展开更多
Through improving the aging process during synthesis of the support, γ-Al2O3 with large pore volume and high surface area was synthesized by a facile secondary reforming method. The synthesis parameters, such as the ...Through improving the aging process during synthesis of the support, γ-Al2O3 with large pore volume and high surface area was synthesized by a facile secondary reforming method. The synthesis parameters, such as the reaction temperature, the first aging temperature and the second aging temperature, were investigated. The textural properties of γ-Al2O3 were characterized by means of N2 adsorption-desorption isotherms, X-ray powder diffractometry (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and thermogravimetry (TG). The experimental results indicated that AACH and amorphous A1OOH were the precursors of alumina, which were formed via precipitation from solutions after reaction of aluminum sulphate with ammonium hydrogen carbonate. The precursor nanocrystallites grew and re-assembled during the secondary reforming process, which resulted in an increased pore size and pore volume and a decreased bulk density. The as-synthesized γ-Al2O3 materials featured meso/macroporosity, large pore volume (2.175 cm^3/g), high surface area (237.8 m^2/g), and low bulk density (0.284 g/mL).展开更多
The crystallization process of the eutectic composition of GdAlO_3-Al_2O_3 from the amorphous phase prepared by rapid-quenching of melt that leads to the formation of a cantaloupe skin-like microstructure was investig...The crystallization process of the eutectic composition of GdAlO_3-Al_2O_3 from the amorphous phase prepared by rapid-quenching of melt that leads to the formation of a cantaloupe skin-like microstructure was investigated using focused ion-beam scanning electron microscopy (FIB-SEM) and high-resolution transmission electron microscopy (HR-TEM).The amorphous films were heat-treated at temperatures between 1000 °C and 1500 °C for up to 30min to form the eutectic phases of GdAlO_3 and Al_2O_3.The GdAlO_3 and Al_2O_3 crystal phases that formed from the amorphous phase were identified by FIB-SEM and HR-TEM.Both components began to crystallize and grow from the amorphous phase separately at different temperatures.The formation process of these crystal phases was different from that of the ordinary eutectic microstructure solidified from the GdAlO_3-Al_2O_3 system.Therefore,the observed structure is termed "eutectic-like" for distinction.The microstructures formed from the amorphous phases at sufficiently high temperatures consisted of ultra-fine microstructures of individually crystallized components and were similar to ordinary eutectic microstructures.By heat-treating the amorphous films at 1500 °C for either 2 min,8min or 30min,the ultra-fine components of GdAlO_3 and Al_2O_3 were found to crystallize following a eutectic-like stage after 8min of heat treatment.展开更多
The α-Al_2O_3 platelets were prepared via solid-state reactions and the effect of the amount of lithium nitrate additive on the property of the platelets was investigated. The ICP results indicated that the high temp...The α-Al_2O_3 platelets were prepared via solid-state reactions and the effect of the amount of lithium nitrate additive on the property of the platelets was investigated. The ICP results indicated that the high temperature calcination process resulted in a large loss of lithium species because of volatilization, but there was still a small amount of residual lithium species in the α-Al_2O_3 platelets. The SEM micrographs showed that lithium nitrate led to decrease in the thickness of α-Al_2O_3 platelets and irregular morphology of aggregates. Pore structures results exhibited that addition of lithium nitrate led to decrease in the pore size and increase in the specific surface area of aggregates of α-Al_2O_3 platelets. The XRD and IR patterns suggested that the residual lithium and aluminum oxide formed LiAl_5O_8. The existence of LiAl_5O_8 was the basic reason for the changed performance of α-Al_2O_3 platelets.展开更多
Powder charges of micron-size Ni and Al2O3were utilized to deposit nano-structured Ni-Al2O3composite coatings on analuminum plate fixed at the top end of a milling vial using a planetary ball mill.Composite coatings w...Powder charges of micron-size Ni and Al2O3were utilized to deposit nano-structured Ni-Al2O3composite coatings on analuminum plate fixed at the top end of a milling vial using a planetary ball mill.Composite coatings were fabricated using powdermixtures with a wide range of Ni/Al2O3mass ratio varying from1:1to plain Ni.XRD,SEM and TEM techniques were employed tostudy the structural characteristics of the coatings.It was found that the composition of the starting mixture strongly affects the Al2O3content and the microstructure of the final coating.Mixtures containing higher contents of Al2O3yield higher volume fractions of theAl2O3particles in the coating.Though Ni-Al2O3composite coatings with about50%of Al2O3particles were successfully deposited,well-compacted and free of cracks and/or voids coatings included less than20%(volume fraction)of Al2O3particles which weredeposited from powder mixtures with Ni/Al2O3mass ratios of4:1or higher.Moreover,mechanical and metallurgical bondings arethe main mechanisms of the adhesion of the coating to the Al substrate.Finally,functionally graded composite coatings withnoticeable compaction and integrity were produced by deposition of two separate layers under identical coating conditions.展开更多
Raman spectrum of molten cryolite was recorded. Based on the new understanding of the scattering coefficients, contents of various structural entities in acidic NaF-AlF3 melts at 942-1 024 ℃ in previous research were...Raman spectrum of molten cryolite was recorded. Based on the new understanding of the scattering coefficients, contents of various structural entities in acidic NaF-AlF3 melts at 942-1 024 ℃ in previous research were reanalyzed. The new quantitative analysis results show that when cryolite ratio(CR) is less than 2, AlF4- is the dominant anion in the melts, and its mole fraction is about 0.70 for melts with CR=1.5 and 0.50 for melts with CR=2. When CR is more than 2.5, the mole fraction of AlF6^3- is relatively large, which is around 0.45 for melts with CR=2.5. Ionic structure of Na3AlF6-Al2O3 melts was investigated by UV-Raman spectroscopy. Octahedral AlF6^3- and tetrahedral AlF4- are proved to exist with possible partial replacement of F- by O^2-. Al2O2F4^2- with a large scattering coefficient also exists in the melts in which alumina concentration is more than 4% (mass fraction). The increase of temperature causes blue-shift of the bands in the Raman spectra.展开更多
The dielectric properties and phase transition characteristics of La2O3- and Sb2O3-doped barium strontium titanate ceramics prepared by solid state route were investigated. The microstructure was identified by X-ray d...The dielectric properties and phase transition characteristics of La2O3- and Sb2O3-doped barium strontium titanate ceramics prepared by solid state route were investigated. The microstructure was identified by X-ray diffraction method and scanning electron microscope was also employed to observe the surface morphologies. It is found that (La,Sb)-codoped barium strontium titanate ceramics exhibit typical perovskite structure and the average grain size decreases dramatically with increasing the content of Sb2O3. Both La3+ ions and Sb3+ ions occupy the A-sites in perovskite lattice. The dielectric constant and dielectric loss of barium strontium titanate based ceramics are obviously influenced by La2O3 as well as Sb2O3 addition content. The tetragonal-cubic phase transition of La2O3 modified barium strontium titanate ceramics is of second order and the Curie temperature shifts to lower value with increasing the La2O3 doping content. The phase transition of (La,Sb)-codoped barium strontium titanate ceramics diffuses and the deviation from Curie-Weiss law becomes more obvious with the increase in Sb2O3 concentration. The temperature corresponding to the dielectric constant maximum of (La,Sb)-codoped barium strontium titanate ceramics decreases with increasing the Sb2O3 content, which is attributed to the replacement of host ions by the Sb3+ ions.展开更多
This paper reports that polycrystalline (α-Al2O3:C ceramics are fabricated by conventional ceramics process. The excitation, emission spectra, thermoluminescence (TL) and optical stimulated luminescence (OSL) ...This paper reports that polycrystalline (α-Al2O3:C ceramics are fabricated by conventional ceramics process. The excitation, emission spectra, thermoluminescence (TL) and optical stimulated luminescence (OSL) of α-Al2O3:C polycrystalline ceramics are investigated. There exists 410nm maximum emission peak which is caused by recombination of an electron with F+ centre to produce an excited F centre. The samples show three clear TL glow peaks at 405, 493 and 610 K. The attenuation constant of exponentially decaying fast component (τ1) and slow component(τ2) of OSL curve are 8.43s and 41.73s, respectively. Those fluorescence and thermoluminescence characteristics are similar with α-Al2O3:C crystal.展开更多
The bonding and electronic structure of Cu/(0001)Al2O3 and Cu/(1120)Al2O3 interfaces has been studied experimentally using spatially-resolved transmission electron energy loss spectroscopy. The specimen were prepared ...The bonding and electronic structure of Cu/(0001)Al2O3 and Cu/(1120)Al2O3 interfaces has been studied experimentally using spatially-resolved transmission electron energy loss spectroscopy. The specimen were prepared by depositing Cu on single-crystal α-AI2O3 substrates, which have been Ar+-ion sputter-cleaned prior to the growth of Cu. For both orientations of the α-Al2O3 substrate, atomically abrupt interfaces formed as determined by high-resolution transmission electron microscopy. The investigations of the interfacial Cu-L2,3, Al-L2,3 and 0-K energy loss near-edge structures, which are proportional to the site- and angular-momentum-projected unoccupied density of states above the Fermi level, indicate the existence of metallic Cu-AI bonds at the Cu/AI2O3 interface independent of the substrate orientation.展开更多
文摘Through measuring the coefficient of linear expansion, the structure and properties of the Li2O-Al2O3-SiO2 low expansion glass ceramics containing B2O3 are studied by JR and XRD. It is shoutn that the IR method is efficient in the study of the glass-ceramics structure. There is a " Boron abnormality" in the system which has an important influence on the properties of the glass-ceramics.
基金Project(2003AA332040) supported by the National High Technology Research and Development Program of China
文摘ZrO2-mullite nano-ceramics were fabricated by in-situ controlled crystallizing from SiO2-Al2O3-ZrO2 amorphous bulk. The thermal transformation sequences of the SiO2-Al2O3-ZrO2 amorphous bulk were investigated by X-ray diffraction, infrared spectrum, scanning electron microscope and differential scanning calorimetric. And the mechanical properties of the nano-ceramics were studied. The results show that the bulks are still in amorphous state at 900 ℃ and the t-ZrO2 forms at about 950 ℃ with a faint spinel-like phase which changes into mullite on further heating. ZrO2 and mullite become major phases at 1 100 ℃ and an amount of m-ZrO2 occur at the same time. The sample heated at 950 ℃ for 2 h and then at 1 100 ℃ for 1 h shows very dense and homogenous microstructure with ball-like grains in size of 20-50 nm. With the increase of crystallization temperature up to 1 350 ℃, the grains grow quickly and some grow into lath-shaped grains with major diameter of 5 μm. After two-step treatment the highest micro-hardness, flexural strength and fracture toughness of the samples are 13.72 GPa, 520 MPa and 5.13 MPa·m1/2, respectively.
文摘SiO2-Al2O3-ZrO2 glasses with different nucleating agents were crystallized under special processing schedule. The microstructure and mechanical properties of the glass-ceramics in SiO2-Al2O3-ZrO2 system were investigated by differential scanning calorimetry, scanning electron microscopy, X-ray diffraction and three-point bending method. The results show that ZrO2 is not an effective nucleating agent in SiO2-Al2O3-ZrO2 system, while TiO2 is effective for the separation of spinel, and P2O5 facilitates solubility of ZrO2 in glass and crystallization. The main crystalline phases of the glass-ceramics are spinel, anorthite and tetragonal zirconia. With the increase of ZrO2 content in the glass, glass-ceramics show higher bending strength (120MPa) than others.
基金Project(50902061)supported by the National Natural Science Foundation of ChinaProject(2011-22)supported by the State Key Laboratory of Inorganic Synthesis and Preparative Chemistry of Jilin University,China+3 种基金Project(20100471380)supported by the China Postdoctoral Science FoundationProject(J50102)supported by the Leading Academic Discipline Program of Shanghai Municipal Education Commission,ChinaProject(10KJD430002)supported by the Universities Natural Science Research Program of Jiangsu Province,ChinaProject(2010002)supported by the Jiangsu University Undergraduate Practice-Innovation Training Program,China
文摘Lu2O3-doped ZnO-Bi2O3-based varistor ceramics samples were prepared by a conventional mixed oxide route and sintered at temperatures in the range of 900-1 000°C,and the microstructures of the varistor ceramics samples were characterized by X-ray diffractometry(XRD)and scanning electron microscopy(SEM);at the same time,the electrical properties and V-I characteristics of the varistor ceramics samples were investigated by a DC parameter instrument for varistors.The results show that the ZnO-Bi2O3-based varistor ceramics with 0.3%Lu2O3(molar fraction)sintered at 950°C exhibit comparatively ideal comprehensive electrical properties.The XRD analysis of the samples shows the presence of ZnO,Bi-rich,spinel Zn7Sb2O12 and Lu2O3-based phases.
文摘Optically transparent alumina ceramics were fabricated by conventional process and sintered without pressure in H2 atmosphere. The results indicate that relative densities of alumina specimens increase to theoretical densities (T. D. ) with increasing content of La2O3. With increasing holding time during sintering, much less pores and larger grains were found in the sintered alumina samples. Higher transmittance was achieved in alumina codoped with MgO and La2O3 as compared with that doped with MgO only. The total-transmittance of alumina sample is up to 86% at twavelength range of 300 - 800 nm.
基金This project was sponsored by "863" Project (No. 2003AA322020)
文摘The Al2O3 abrasion-resistant ceramics is successfully prepared by using waste aluminum sludge as the main raw material with the addition of a little clay, talc and barium carbonate. The crystal structure and microstructure of ceramic are characterized by means of XRD, SEM, etc., and the physical and mechanical properties are also tested. The results show that besides the phase of corundum, a little mullite, Mg-Al spinel and hyalophane phases also exist in the product. These phases are produced via reaction in-situ, which can inhibit the overgrowth of Al2O3 grain in grain boundary, and improve the integral property of the material.
基金Project(2007AA03Z0455) supported by the National High Technology Research and Development Program of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institution, China
文摘The effects of Al2O3 addition on both the sintering behavior and microwave dielectric properties of PbO-B203-SiO2 glass ceramics were investigated by Fourier transform infrared spectroscope (FTIR), differential thermal analysis (DTA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that with the increase of Al2O3 content the bands assigned to [SiO4] nearly disappear. Aluminum replaces silicon in the glass network, which is helpful for the formation of boron-oxygen rings. The increase of the transition temperature Tg and softening temperature Tf of PbO-B2O3-SiO2 glass ceramics leads to the increase of liquid phase precipitation temperature and promotes the structure stability in the glasses, and consequently contributes to the decreasing trend of crystallization. Densification and dielectric constants increase with the increase of Al2O3 content, but the dielectric loss is worsened. By contrast, the 3% (mass fraction) Al2O3-doped glass ceramics sintered at 725℃ have better properties of density p=2.72 g/cm3, dielectric constant Er=6.78, dielectric loss tan8=2.6×10^-3 (measured at 9.8 GHz), which suggest that the glass ceramics can be applied in multilayer microwave devices requiring low sintering temperatures.
文摘The Al2O3-ZrO2(3Y)-SiC composite ceramics used in solar thermal power were prepared by micrometric Al2O3,nano-ZrO2 and SiC powders under the condition of pressureless sintering.The bulk density and bending strength of samples with 10vol% nano-ZrO2 sintered at 1480℃ were 3.222 g/cm3 and 160.4MPa,respectively.The bending strength of samples after 7 times thermal shock tests (quenching from 1000℃ to 25℃ in air medium) is 132.0MPa,loss rate of bending strength is only 17%.The effect of nano-ZrO2 content on the microstructure and performance of Al2O3-ZrO2(3Y)-SiC composite ceramic was investigated.The experimental results show that the bending strength of samples with above 10vol% nano-ZrO2 content has decreased,because the volume expansion resulting from t-ZrO2 to m-ZrO2 phase transformation is excessive;Adding proper nano-ZrO2 would be contributed to improve the thermal shock resistance of the composite ceramics.The Al2O3-ZrO2(3Y)-SiC composite ceramic has promising potential application in solar thermal power.
文摘The 0.8Pb(Zr0.48Ti0.52)O3 – 0.125Pb(Zn1/3Nb2/3)O3 – 0.075Pb(Mn1/3Nb2/3)O3 + x wt% Fe2O3 ceramics (PZT-PZN-PMnN), where x = 0 ÷?0.35, has been prepared by two-stage calcination method. The effect of Fe2O3 content on the crystal structure and electrical properties of ceramics has been investigated. The results of X-ray diffraction (XRD) show that all samples have pure perovskite phase with tetragonal structure, the c/a ratio increases with increasing Fe2O3 content. At x = 0.25, electrical properties of ceramics are best: the density (r) of 7.86 g/cm3, the electromechanical coupling factor (kp) of 0.64, the dielectric constant (εr) of 1400, the dielectric loss (tand) of 0.003, the mechanical quality factor (Qm) of 1450, the piezoelectric constant (d31) of 155 pC/N, and the remanent polarization (Pr) of 37 μC/cm2, which makes it as a promising material for high power piezoelectric devices.
文摘An optimized combination of gamma alumina (4 wt.%) and strontium (0.1 wt.%) was incorporated in cast Al-20Si alloy to obtain fine form of silicon. During casting process, the amount of γ-Al2O3 was varied from 0.5.6 wt.% to refine primary Si and Sr was varied from 0.05.0.1 wt.% to modify eutectic Si. The results showed that the average size of primary Si is 24 μm for addition of 4 wt.%γ-Al2O3 to the alloy whereas 0.1 wt.% Sr resulted in sphericity of eutectic Si to ~0.6 and average length of ~1.2 μm. The thermal analysis revealed that γ-Al2O3 can act as potential heterogeneous nucleation sites. Moreover, simultaneous addition of γ-Al2O3 and Sr does not poison γ-Al2O3 particles and inhibit their nucleation efficiency as in the case of combined addition of phosphorous and strontium to Al-20Si alloy. Therefore, it was concluded that enhanced tensile strength, i.e., ultimate tensile strength (increase by 20%) and elongation (increase by 23%) in Al-20Si.4γ-Al2O3.0.1wt.%Sr alloy as compared to as-cast Al.20Si alloy can be attributed to refinement of primary Si, modification of eutectic Si and the presence of α(Al) in the alloy as evident from eutectic shift.
基金the financial support by the Natural Science Foundation of Liaoning Province of China (Grant No. 2013020122)the National Natural Science Foundationof China (Grant No. 21076100 and 51308045)the financial support by the PetroChina Company Limited (Grant No. 10-01A-01-01-01)
文摘Through improving the aging process during synthesis of the support, γ-Al2O3 with large pore volume and high surface area was synthesized by a facile secondary reforming method. The synthesis parameters, such as the reaction temperature, the first aging temperature and the second aging temperature, were investigated. The textural properties of γ-Al2O3 were characterized by means of N2 adsorption-desorption isotherms, X-ray powder diffractometry (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and thermogravimetry (TG). The experimental results indicated that AACH and amorphous A1OOH were the precursors of alumina, which were formed via precipitation from solutions after reaction of aluminum sulphate with ammonium hydrogen carbonate. The precursor nanocrystallites grew and re-assembled during the secondary reforming process, which resulted in an increased pore size and pore volume and a decreased bulk density. The as-synthesized γ-Al2O3 materials featured meso/macroporosity, large pore volume (2.175 cm^3/g), high surface area (237.8 m^2/g), and low bulk density (0.284 g/mL).
基金part of the study under the "Human Resource Development Center for Economic Region Leading Industry" Projectsupported by the Ministry of Education,Science & Technology(MEST)by the National Research Foundation of Korea(NRF)
文摘The crystallization process of the eutectic composition of GdAlO_3-Al_2O_3 from the amorphous phase prepared by rapid-quenching of melt that leads to the formation of a cantaloupe skin-like microstructure was investigated using focused ion-beam scanning electron microscopy (FIB-SEM) and high-resolution transmission electron microscopy (HR-TEM).The amorphous films were heat-treated at temperatures between 1000 °C and 1500 °C for up to 30min to form the eutectic phases of GdAlO_3 and Al_2O_3.The GdAlO_3 and Al_2O_3 crystal phases that formed from the amorphous phase were identified by FIB-SEM and HR-TEM.Both components began to crystallize and grow from the amorphous phase separately at different temperatures.The formation process of these crystal phases was different from that of the ordinary eutectic microstructure solidified from the GdAlO_3-Al_2O_3 system.Therefore,the observed structure is termed "eutectic-like" for distinction.The microstructures formed from the amorphous phases at sufficiently high temperatures consisted of ultra-fine microstructures of individually crystallized components and were similar to ordinary eutectic microstructures.By heat-treating the amorphous films at 1500 °C for either 2 min,8min or 30min,the ultra-fine components of GdAlO_3 and Al_2O_3 were found to crystallize following a eutectic-like stage after 8min of heat treatment.
基金supported by the Technology Development (Commission) Project of SINOPEC Catalyst Co. Ltd. (Grant No. 14-05-01)
文摘The α-Al_2O_3 platelets were prepared via solid-state reactions and the effect of the amount of lithium nitrate additive on the property of the platelets was investigated. The ICP results indicated that the high temperature calcination process resulted in a large loss of lithium species because of volatilization, but there was still a small amount of residual lithium species in the α-Al_2O_3 platelets. The SEM micrographs showed that lithium nitrate led to decrease in the thickness of α-Al_2O_3 platelets and irregular morphology of aggregates. Pore structures results exhibited that addition of lithium nitrate led to decrease in the pore size and increase in the specific surface area of aggregates of α-Al_2O_3 platelets. The XRD and IR patterns suggested that the residual lithium and aluminum oxide formed LiAl_5O_8. The existence of LiAl_5O_8 was the basic reason for the changed performance of α-Al_2O_3 platelets.
文摘Powder charges of micron-size Ni and Al2O3were utilized to deposit nano-structured Ni-Al2O3composite coatings on analuminum plate fixed at the top end of a milling vial using a planetary ball mill.Composite coatings were fabricated using powdermixtures with a wide range of Ni/Al2O3mass ratio varying from1:1to plain Ni.XRD,SEM and TEM techniques were employed tostudy the structural characteristics of the coatings.It was found that the composition of the starting mixture strongly affects the Al2O3content and the microstructure of the final coating.Mixtures containing higher contents of Al2O3yield higher volume fractions of theAl2O3particles in the coating.Though Ni-Al2O3composite coatings with about50%of Al2O3particles were successfully deposited,well-compacted and free of cracks and/or voids coatings included less than20%(volume fraction)of Al2O3particles which weredeposited from powder mixtures with Ni/Al2O3mass ratios of4:1or higher.Moreover,mechanical and metallurgical bondings arethe main mechanisms of the adhesion of the coating to the Al substrate.Finally,functionally graded composite coatings withnoticeable compaction and integrity were produced by deposition of two separate layers under identical coating conditions.
基金Project (51004034) supported by the National Natural Science, ChinaProject(N090302009) supported by the Fundamental Research Funds for the Central Universities, China
文摘Raman spectrum of molten cryolite was recorded. Based on the new understanding of the scattering coefficients, contents of various structural entities in acidic NaF-AlF3 melts at 942-1 024 ℃ in previous research were reanalyzed. The new quantitative analysis results show that when cryolite ratio(CR) is less than 2, AlF4- is the dominant anion in the melts, and its mole fraction is about 0.70 for melts with CR=1.5 and 0.50 for melts with CR=2. When CR is more than 2.5, the mole fraction of AlF6^3- is relatively large, which is around 0.45 for melts with CR=2.5. Ionic structure of Na3AlF6-Al2O3 melts was investigated by UV-Raman spectroscopy. Octahedral AlF6^3- and tetrahedral AlF4- are proved to exist with possible partial replacement of F- by O^2-. Al2O2F4^2- with a large scattering coefficient also exists in the melts in which alumina concentration is more than 4% (mass fraction). The increase of temperature causes blue-shift of the bands in the Raman spectra.
基金Project (11KJB430007) supported by the University Natural Science Research Program of Jiangsu Province, ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China
文摘The dielectric properties and phase transition characteristics of La2O3- and Sb2O3-doped barium strontium titanate ceramics prepared by solid state route were investigated. The microstructure was identified by X-ray diffraction method and scanning electron microscope was also employed to observe the surface morphologies. It is found that (La,Sb)-codoped barium strontium titanate ceramics exhibit typical perovskite structure and the average grain size decreases dramatically with increasing the content of Sb2O3. Both La3+ ions and Sb3+ ions occupy the A-sites in perovskite lattice. The dielectric constant and dielectric loss of barium strontium titanate based ceramics are obviously influenced by La2O3 as well as Sb2O3 addition content. The tetragonal-cubic phase transition of La2O3 modified barium strontium titanate ceramics is of second order and the Curie temperature shifts to lower value with increasing the La2O3 doping content. The phase transition of (La,Sb)-codoped barium strontium titanate ceramics diffuses and the deviation from Curie-Weiss law becomes more obvious with the increase in Sb2O3 concentration. The temperature corresponding to the dielectric constant maximum of (La,Sb)-codoped barium strontium titanate ceramics decreases with increasing the Sb2O3 content, which is attributed to the replacement of host ions by the Sb3+ ions.
基金supported by the National Natural Science Foundation of China (Grant No. 60578041)the Sciences and Technology Commission Foundation of Shanghai,China (Grant No. 08520707300)the Key Basic Research Project of Science and Technology of Shanghai (Grant No. 09JC1406500)
文摘This paper reports that polycrystalline (α-Al2O3:C ceramics are fabricated by conventional ceramics process. The excitation, emission spectra, thermoluminescence (TL) and optical stimulated luminescence (OSL) of α-Al2O3:C polycrystalline ceramics are investigated. There exists 410nm maximum emission peak which is caused by recombination of an electron with F+ centre to produce an excited F centre. The samples show three clear TL glow peaks at 405, 493 and 610 K. The attenuation constant of exponentially decaying fast component (τ1) and slow component(τ2) of OSL curve are 8.43s and 41.73s, respectively. Those fluorescence and thermoluminescence characteristics are similar with α-Al2O3:C crystal.
文摘The bonding and electronic structure of Cu/(0001)Al2O3 and Cu/(1120)Al2O3 interfaces has been studied experimentally using spatially-resolved transmission electron energy loss spectroscopy. The specimen were prepared by depositing Cu on single-crystal α-AI2O3 substrates, which have been Ar+-ion sputter-cleaned prior to the growth of Cu. For both orientations of the α-Al2O3 substrate, atomically abrupt interfaces formed as determined by high-resolution transmission electron microscopy. The investigations of the interfacial Cu-L2,3, Al-L2,3 and 0-K energy loss near-edge structures, which are proportional to the site- and angular-momentum-projected unoccupied density of states above the Fermi level, indicate the existence of metallic Cu-AI bonds at the Cu/AI2O3 interface independent of the substrate orientation.