A wound care system consisting of ciprofloxacin-loaded gelatin microspheres impregnated in a macroporous collagen scaffold was created to effectively control wound infection and regenerate soft tissue at the wound sit...A wound care system consisting of ciprofloxacin-loaded gelatin microspheres impregnated in a macroporous collagen scaffold was created to effectively control wound infection and regenerate soft tissue at the wound site.Histological and biochemical alterations were observed in infected wounds treated with these scaffolds in Albino Wistar rats.Furthermore,the study examined the immediate and prolonged release of ciprofloxacin from the scaffolds,as well as their function in eliminating bacterial infections and expediting the process of skin healing and regeneration.The developed technique was followed in the streamlined process of creating these collagen scaffolds.Compared to untreated wounds,the group receiving scaffold treatment experienced a faster rate of wound closure.It was noted that the rate of infections was considerably reduced and that full soft tissue regeneration occurred within 12 days.The development of well-deposited collagen bundles in the treated groups was demonstrated by H&E staining,which verified the flawless regeneration of the dermis and epidermis.The antimicrobial agent-loaded gelatin microspheres impregnated into the porous collagen scaffold demonstrated remarkable soft tissue regeneration and efficient infection control at the wound site.展开更多
The preparation and properties of adriamycin magnetic gelatin microspheres(Adr- MG-ms)were reported.The synthesis of magnetic iron oxide ultrafine particle and embolization effects of magnetic gelatin microspheres(MG-...The preparation and properties of adriamycin magnetic gelatin microspheres(Adr- MG-ms)were reported.The synthesis of magnetic iron oxide ultrafine particle and embolization effects of magnetic gelatin microspheres(MG-ms)in dog were studied.Adr- MG-ms consist of 2%(w/w)of adriamycin(Adr)as the core,and 68% of gelatin and 30% of magnetite as the shell with a mean particle size of 22 μm. In vitro experiment,the release rate of drug demonstrated that the microspheres have sustained-release properties.The average diameter of magnetic iron oxide was approximately l0 nm. Transcatheter embolization with MG-ms and  ̄(99m)Tc-labelled MG-ms was performed under external magenet control in dog liver,respectively.Gamma photography and angiogram revealed that MG-ms level was almost equal both in left and right hepatic arteries without magnet,while with magnet(1200 Gs),MG-ms level in left hepatic artery(target site)was about 2.25 fold higher than in right hepatic artery,and few MG-ms in thyroid gland,brain and heart was observed.Results showed that the MG-ms is a promising embolic agent for treatment of hepatic cancer under external magnet control.展开更多
A kind of slow release drug-loaded microspheres were prepared with gelatin, chitosan and montmorillonite(MMT) by an emulsification/chemical cross-linking method using glutaraldehyde as cross-linking agent and acyclo...A kind of slow release drug-loaded microspheres were prepared with gelatin, chitosan and montmorillonite(MMT) by an emulsification/chemical cross-linking method using glutaraldehyde as cross-linking agent and acyclovir as model drug. The microspheres were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and scanning electron microscopy (SEM), respectively. The morphology, drug content, encapsulation efficiency and drug-release behavior were investigated with different MMT contents. The experimental results indicated that intercalated microspheres could be prepared, the morphology of microspheres was markedly affected by MMT. The glomeration performance of uncross-linked microspheres was improved because of the physical cross-linking of MMT. Drug content and encapsulation efficiency were decreased when increased the content of MMT, but burst release and the drug release were significantly decreased with the addition of MMT. Effective physical cross-linking could be formed when added MMT, and MMT could reduce the content of toxic chemical cross-linking agents.展开更多
The captopril/Chitosan-gelatin net-polymer microspheres(CTP/CGNPMs) were prepared using Chitosan(CTS) and gelatin(GT) by the methods of emulsification,cross-linked reagent alone or in combination and microcrystalline ...The captopril/Chitosan-gelatin net-polymer microspheres(CTP/CGNPMs) were prepared using Chitosan(CTS) and gelatin(GT) by the methods of emulsification,cross-linked reagent alone or in combination and microcrystalline cellulose(MCC) added in the process of preparation of microspheres,which aimed to eliminate dose dumping and burst phenomenon of microspheres for the improvement of the therapeutic efficiency and the decrease of the side effects of captopril(CTP). The results indicated that CTP/CGNPMs had a spherical shape,smooth surface and integral structure inside but no adhesive phenomena in the preparation. The size distribution ranged from 220 μm to 280 μm. The CTP release test in vitro demonstrated that CTP/CGNPMs played the role of retarding the release of CTP compared with ordinary CTP tablets. The release behaviors of CGNPMS were influenced by preparation conditions such as experimental material ratio(EMR) and composition of cross linking reagents. Among these factors,the EMR(1/4),CLR(FA+SPP) and 0.75% microcrystalline cellulose(MCC) added to the microspheres constituted the optimal scheme for the preparation of CTP/CGNPMs. The ER,DL and SR of CTP/CGNPMs prepared according to the optimal scheme were 46.23±4.51%,9.95±0.77% and 261±42%,respectively. The CTP/CGNPMs had the good characteristics of sustained release of drug and the process of emulsification and cross-linking were simple and stable. The CGNPMs are likely to be an ideal sustained release formulation for water-soluble drugs.展开更多
The captopril/ Chitosan-gelatin net-polymer microspheres ( Gap/ CGNPMs ) were prepared using Chitosan ( CS ) and gelatin ( Gel ) by the methods of emulsification. A cross linked reagent alone or in combination ...The captopril/ Chitosan-gelatin net-polymer microspheres ( Gap/ CGNPMs ) were prepared using Chitosan ( CS ) and gelatin ( Gel ) by the methods of emulsification. A cross linked reagent alone or in combination with microcrystalline cellulose ( MCC ) was added in the process of preparation of microspheres to eliminate dose dumping and burst phenomenon of microspheres for the improvemeat of the therapeutic efficiency and the decrease of the side effects of captopril ( Cap ). The results indicate that Cap/ CGNPMs have a spherical shape , smooth surface roorphology and integral inside structure and no adhesive phenomena and good roobility , and the size distribution is mairdy from 220 to 280 μm. Researches on the Cap release test in vitro demonstrate that Cap/ CGNPMs are of the role of retarding release of Cap compared with Cap ordinary tablets (COT), embedding ratio (ER) , drug loading ( DL ), and swelling ratio ( SR ), and release behaviors of CGNPMS are influenced by process conditions of preparation such as experimental material ratio (EMR) , composition of cross linking reagents. Among these factors , the EMR(1/4), CLR ( FOR + TPP) and 0.75% microcrystulline cellulose (MCC) added to the microspheres are the optimal scheme to the preparation of Cap/CGNPMs. The Cap/CGNPMs have a good characteristic of sustained release of drug, and the process of emulsifieation and crossinking process is simple and stable. The CGNPMs is probable to be one of an ideal sustained release system for water-soluble drugs.展开更多
Blank and erythromycin-loaded gelatin microspheres were successfully fabricated via emulsion chemical- crosslinking technique. The surface morphology of the microspheres was characterized by scanning electron microsc...Blank and erythromycin-loaded gelatin microspheres were successfully fabricated via emulsion chemical- crosslinking technique. The surface morphology of the microspheres was characterized by scanning electron microscope(SEM) and optical microscope. The results show that the microspheres were spherical and smooth. The particle average size of erythromycin-loaded microspheres was found to be 20.6 μm, with a high purity of more than 90% and with a good dispersibility. The microspheres could be obtained in a high yield. Erythromycin released from the microspheres was monitored in buffer and artificial body fluid at 37 ℃. Average drug content was 27.2%, and erythromycin-loaded gelatin microspheres showed good release profiles with a nearly constant release during 4-8 h in artificial body fluid in vitro degradation studies. These gelatin microspheres are useful for studying and developing various drug-delivery systems.展开更多
Objective: To prepare Pingyangmycin gelatin microspheres (PYM-GMS) for carotid artery embolization therapy and to study the release characteristics in vivo and in vitro. Methods: PYM-GMS was prepared by optical doubl...Objective: To prepare Pingyangmycin gelatin microspheres (PYM-GMS) for carotid artery embolization therapy and to study the release characteristics in vivo and in vitro. Methods: PYM-GMS was prepared by optical double-phase emulsified condensation polymerization. Through UV-spectrophotometer drug content and encapsulation rate were measured. The characteristics of drug release in vitro which could simulate the actual state in vivo were tested by HPLC. Three ways of vein drop, artery perfusion and artery embolization were contrasted. Under the supervision of X-ray, PYM-GMS were perfused into the external carotid artery of rabbits by superselective artery embolization. Blood samples were tested at different time and analyzed statistically. Results: The roundness of PYM-GMS was 1.02?.005. The mean diameter was 85.6 mm, 78% of them ranging from 50-200 mm, which fitted the use of embolization. PYM content and encapsulation rate were 6.8% and 91.3% respectively. 70% of the drug was released in 3 h in the simulated environment in vivo and total drug was released after more than 6 h. After artery embolization with small dosage of PYM-GMS, the local drug concentration was 8 times higher than the blood drug concentration and the high level of local drug concentration was kept for more than 120 min. Conclusion: External carotid artery embolization with PYM-GMS, which significantly reduced the circulating drug level and employment dosage, could prolong the duration higher drug concentration and suit the purpose of targeted tumor therapy.展开更多
Gelatin ceftiofur alkali microsphere was prepared to observe its characteristics and evaluate preservation conditions. The glutaraldehyde was increased and the carboxylic methyl chitosan was added to improve the micro...Gelatin ceftiofur alkali microsphere was prepared to observe its characteristics and evaluate preservation conditions. The glutaraldehyde was increased and the carboxylic methyl chitosan was added to improve the microsphere. The experimental results show microspheres have a better morphology surface and fairly regular structure with 4% glutaraldehyde. The average particle size is 15.84 gm and particle size distribution is narrow which shows a good uniformity. Microsphere size was affected by the stirrer speed, dosing ratio and curing degree. The greater drug loaded is, the better microspheres loading is; but with the increase of drug loading rate, the entrapment efficiency increases first and then decreases. The drug release rate of the microsphere is 24.90% in 0.5 h and 84.90% in 48 h, when CMC-GMs with 4% curing agent is 32.03% in 0.5 h and 88.44% in 48 h. So Gms embedding of ceftiofur alkali are better than CMC-GM. The stability tests show that strong light, high temperature, high humidity have a great influence on the microspheres.展开更多
The magnetic gelatin-starch microspheres were prepared by modified emulsion cross-linking method with glutaraldehyde as the cross-linking agent. The structure, size distribution as well as morphology of magnetic micro...The magnetic gelatin-starch microspheres were prepared by modified emulsion cross-linking method with glutaraldehyde as the cross-linking agent. The structure, size distribution as well as morphology of magnetic microspheres were investigated by FT-IR spectrometer, dynamic laser scattering analyzer and scanning electron microscope, respectively. Bovine serum album(BSA)was chosen as model protein, and the adsorption processes were carried out under diversified conditions including BSA initial concentration, p H value, adsorption time and temperature to evaluate the performance of the magnetic microspheres. The average diameter of optimized spherical magnetic microspheres is 1.6 μm with excellent dispersivity, and the saturation magnetization is found to be equal to 1.056×10-2 A·m2. The adsorption isotherm of the BSA on the magnetic microspheres basically obeys the Langmuir model, with a maximum adsorption capacity of 120 mg/g and an adsorption equilibrium constant of 1.60 mL/mg.展开更多
The experiment of intratumor injection with gelatin microsphere containing 131I and mitomycin C (131I-MMC-GM) into implanted hepatoma-22 In mice is reported. Seventy Bal B/C mice were grouped into A, B, C, and D. Intr...The experiment of intratumor injection with gelatin microsphere containing 131I and mitomycin C (131I-MMC-GM) into implanted hepatoma-22 In mice is reported. Seventy Bal B/C mice were grouped into A, B, C, and D. Intratumor injection were given as follows: (A) 131I-MMC-GM, (B) 131I solution; (C) mitomycin C solution; (D) untreated control. The tumor-regression rates of the Group A, B and C as compared to Group D were 58. 7% , 23. 9% and 25. 4%. The average life times of Group A, B, C and were 40. 5, 25. 5, 24. 5 and 17. 1 days. Radioactivity counts in tumors and other organs in group A and B were measured with Y-Counter, which showed that 131I was concentrated in tumors in Group A but it was very low in other organs. The study showed that 131I-MMC-GM is effective and safe anticancer agent, intratumor injection with 131I-MMC-GM will be a promising therapy for the treatment of hepatoma.展开更多
Gelatin microsphere(GMS) was prepared through W/O emulsion chemical-crossline method.The best formula was selected by examining its appearance,size,drug carrier and drug dissolution rate.The experimental results sho...Gelatin microsphere(GMS) was prepared through W/O emulsion chemical-crossline method.The best formula was selected by examining its appearance,size,drug carrier and drug dissolution rate.The experimental results showed that the optimized gelatin microspheres were spherical ball with smooth surface and had well dispersion.The average size of blank gelatin microspheres was 15.84 μm,while the loaded microspheres'average diameter were 33.10 μm.It was also shown that drug loading of microspheres increased with increasing loading capacity,but drug encapsulation efficiency had a trend of climbing up and then decline.The encapsulation efficiency reached the maximum when the dosage ratio was 2:1.And the results show ceftiofur sodium microspheres have sustained release in the PBS buffer of pH7.4.展开更多
Hepatic arterioportal fistulas(APFs)are common in hepatocellular carcinoma(HCC).Moreover,correlated with poor prognosis,APFs often complicate antitumor treatments,including transarterial chemoembolization(TACE).AIM To...Hepatic arterioportal fistulas(APFs)are common in hepatocellular carcinoma(HCC).Moreover,correlated with poor prognosis,APFs often complicate antitumor treatments,including transarterial chemoembolization(TACE).AIM To compare the efficacy of ethanol-soaked gelatin sponges(ESG)and microspheres in the management of APFs and their impact on the prognosis of HCC.METHODS Data from patients diagnosed with HCC or hepatic APFs between June 2016 and December 2019 were retrospectively analyzed.Furthermore,APFs were embolized with ESG(group E)or microspheres(group M)during TACE.The primary outcomes were disease control rate(DCR)and objective response rate(ORR).The secondary outcomes included immediate and first follow-up APF improvement,overall survival(OS),and progression-free survival(PFS).RESULTS Altogether,91 participants were enrolled in the study,comprising 46 in group E and 45 in group M.The DCR was 93.5%and 91.1%in groups E and M,respectively(P=0.714).The ORRs were 91.3%and 66.7%in groups E and M,respectively(P=0.004).The APFs improved immediately after the procedure in 43(93.5%)patients in group E and 40(88.9%)patients in group M(P=0.485).After 2 mo,APF improvement was achieved in 37(80.4%)and 33(73.3%)participants in groups E and M,respectively(P=0.421).The OS was 26.2±1.4 and 20.6±1.1 mo in groups E and M,respectively(P=0.004),whereas the PFS was 16.6±1.0 and 13.8±0.7 mo in groups E and M,respectively(P=0.012).CONCLUSION Compared with microspheres,ESG embolization demonstrated a higher ORR and longer OS and PFS in patients of HCC with hepatic APFs.展开更多
Porous titanium with porosity of 60% was prepared by metal injection molding(MIM),and coated with gelatin sustained-release microspheres which were made by improved emulsified cold condensation method.The effects of...Porous titanium with porosity of 60% was prepared by metal injection molding(MIM),and coated with gelatin sustained-release microspheres which were made by improved emulsified cold condensation method.The effects of porous titanium coated with insulin-like growth factor-1(IGF-1) and transforming growth factor-β1(TGF-β1) gelatin microspheres on the function of MG63 cells were evaluated in vitro.The results show that porous titanium coated with gelatin sustained-release microspheres has no cytotoxicity.The IGF-1 and TGF-β1 loading concentrations are positively correlative with the proliferation and differentiation of MG63 after co-culturing with the concentrations of IGF-1 and TGF-β1 gelatin microspheres in the range of 0.1-10 ng/mg and 0.25-2.5 ng/mg,respectively.The MG63 cells exhibit the best proliferation and differentiation with the IGF-1 and TGF-β1 loading concentrations of 10 ng/mg and 2.5 ng/mg,respectively.The joint application of IGF-1 and TGF-β1 group,which promote adhesion,proliferation and differentiation of MG63 cells,is superior to a single application group.展开更多
The objective of this research was to develop gelatin microspheres(GMSs) and study their properties for embolization.The GMSs were prepared by emulsion chemical crosslinking method.The morphology and particle size o...The objective of this research was to develop gelatin microspheres(GMSs) and study their properties for embolization.The GMSs were prepared by emulsion chemical crosslinking method.The morphology and particle size of GMSs were observed under an optical microscope.The ratio of water absorption and GMSs swelling ratio were measured.The elasticity of GMSs was studied by TMS-Pro food texture analyzer.The deliverability of GMSs through catheter was investigated with a new device designed in this study.Finally,the acetone residue was determined by headspace capillary gas chromatography.The dried GMSs were elliptic with corrugated surface and the wet GMSs were round with smooth surface.The average diameter of dried GMSs was 430.5 μm with a range of 100-1000 μm,and that of wet GMSs was 601.2 μm with a range of 150-1425 μm.The maximum ratio of water absorption was 590.7% and the average swelling ratio was 103.0%.The elasticity of GMSs was proven to be appropriate for embolization.Three subgroups of wet GMSs(100-450 μm,450-700 μm and 700-940 μm) were delivered through catheter with acceptable pressure.The content of residual acetone in GMSs was less than the minimum limit in the Chinese Pharmacopoeia 2010.Therefore,we concluded that the GMSs were suitable for embolization according to the applicable properties in vitro.And the methods for assessing the properties of GMSs in this study were going to be useful in the evaluation of embolic microspheres.展开更多
文摘A wound care system consisting of ciprofloxacin-loaded gelatin microspheres impregnated in a macroporous collagen scaffold was created to effectively control wound infection and regenerate soft tissue at the wound site.Histological and biochemical alterations were observed in infected wounds treated with these scaffolds in Albino Wistar rats.Furthermore,the study examined the immediate and prolonged release of ciprofloxacin from the scaffolds,as well as their function in eliminating bacterial infections and expediting the process of skin healing and regeneration.The developed technique was followed in the streamlined process of creating these collagen scaffolds.Compared to untreated wounds,the group receiving scaffold treatment experienced a faster rate of wound closure.It was noted that the rate of infections was considerably reduced and that full soft tissue regeneration occurred within 12 days.The development of well-deposited collagen bundles in the treated groups was demonstrated by H&E staining,which verified the flawless regeneration of the dermis and epidermis.The antimicrobial agent-loaded gelatin microspheres impregnated into the porous collagen scaffold demonstrated remarkable soft tissue regeneration and efficient infection control at the wound site.
文摘The preparation and properties of adriamycin magnetic gelatin microspheres(Adr- MG-ms)were reported.The synthesis of magnetic iron oxide ultrafine particle and embolization effects of magnetic gelatin microspheres(MG-ms)in dog were studied.Adr- MG-ms consist of 2%(w/w)of adriamycin(Adr)as the core,and 68% of gelatin and 30% of magnetite as the shell with a mean particle size of 22 μm. In vitro experiment,the release rate of drug demonstrated that the microspheres have sustained-release properties.The average diameter of magnetic iron oxide was approximately l0 nm. Transcatheter embolization with MG-ms and  ̄(99m)Tc-labelled MG-ms was performed under external magenet control in dog liver,respectively.Gamma photography and angiogram revealed that MG-ms level was almost equal both in left and right hepatic arteries without magnet,while with magnet(1200 Gs),MG-ms level in left hepatic artery(target site)was about 2.25 fold higher than in right hepatic artery,and few MG-ms in thyroid gland,brain and heart was observed.Results showed that the MG-ms is a promising embolic agent for treatment of hepatic cancer under external magnet control.
文摘A kind of slow release drug-loaded microspheres were prepared with gelatin, chitosan and montmorillonite(MMT) by an emulsification/chemical cross-linking method using glutaraldehyde as cross-linking agent and acyclovir as model drug. The microspheres were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and scanning electron microscopy (SEM), respectively. The morphology, drug content, encapsulation efficiency and drug-release behavior were investigated with different MMT contents. The experimental results indicated that intercalated microspheres could be prepared, the morphology of microspheres was markedly affected by MMT. The glomeration performance of uncross-linked microspheres was improved because of the physical cross-linking of MMT. Drug content and encapsulation efficiency were decreased when increased the content of MMT, but burst release and the drug release were significantly decreased with the addition of MMT. Effective physical cross-linking could be formed when added MMT, and MMT could reduce the content of toxic chemical cross-linking agents.
文摘The captopril/Chitosan-gelatin net-polymer microspheres(CTP/CGNPMs) were prepared using Chitosan(CTS) and gelatin(GT) by the methods of emulsification,cross-linked reagent alone or in combination and microcrystalline cellulose(MCC) added in the process of preparation of microspheres,which aimed to eliminate dose dumping and burst phenomenon of microspheres for the improvement of the therapeutic efficiency and the decrease of the side effects of captopril(CTP). The results indicated that CTP/CGNPMs had a spherical shape,smooth surface and integral structure inside but no adhesive phenomena in the preparation. The size distribution ranged from 220 μm to 280 μm. The CTP release test in vitro demonstrated that CTP/CGNPMs played the role of retarding the release of CTP compared with ordinary CTP tablets. The release behaviors of CGNPMS were influenced by preparation conditions such as experimental material ratio(EMR) and composition of cross linking reagents. Among these factors,the EMR(1/4),CLR(FA+SPP) and 0.75% microcrystalline cellulose(MCC) added to the microspheres constituted the optimal scheme for the preparation of CTP/CGNPMs. The ER,DL and SR of CTP/CGNPMs prepared according to the optimal scheme were 46.23±4.51%,9.95±0.77% and 261±42%,respectively. The CTP/CGNPMs had the good characteristics of sustained release of drug and the process of emulsification and cross-linking were simple and stable. The CGNPMs are likely to be an ideal sustained release formulation for water-soluble drugs.
基金Funded by the National Natural Science Foundation of China(No.30370344)
文摘The captopril/ Chitosan-gelatin net-polymer microspheres ( Gap/ CGNPMs ) were prepared using Chitosan ( CS ) and gelatin ( Gel ) by the methods of emulsification. A cross linked reagent alone or in combination with microcrystalline cellulose ( MCC ) was added in the process of preparation of microspheres to eliminate dose dumping and burst phenomenon of microspheres for the improvemeat of the therapeutic efficiency and the decrease of the side effects of captopril ( Cap ). The results indicate that Cap/ CGNPMs have a spherical shape , smooth surface roorphology and integral inside structure and no adhesive phenomena and good roobility , and the size distribution is mairdy from 220 to 280 μm. Researches on the Cap release test in vitro demonstrate that Cap/ CGNPMs are of the role of retarding release of Cap compared with Cap ordinary tablets (COT), embedding ratio (ER) , drug loading ( DL ), and swelling ratio ( SR ), and release behaviors of CGNPMS are influenced by process conditions of preparation such as experimental material ratio (EMR) , composition of cross linking reagents. Among these factors , the EMR(1/4), CLR ( FOR + TPP) and 0.75% microcrystulline cellulose (MCC) added to the microspheres are the optimal scheme to the preparation of Cap/CGNPMs. The Cap/CGNPMs have a good characteristic of sustained release of drug, and the process of emulsifieation and crossinking process is simple and stable. The CGNPMs is probable to be one of an ideal sustained release system for water-soluble drugs.
基金Supported by the National Key Grant of Transgene of China(NoJY03-B-16-02)
文摘Blank and erythromycin-loaded gelatin microspheres were successfully fabricated via emulsion chemical- crosslinking technique. The surface morphology of the microspheres was characterized by scanning electron microscope(SEM) and optical microscope. The results show that the microspheres were spherical and smooth. The particle average size of erythromycin-loaded microspheres was found to be 20.6 μm, with a high purity of more than 90% and with a good dispersibility. The microspheres could be obtained in a high yield. Erythromycin released from the microspheres was monitored in buffer and artificial body fluid at 37 ℃. Average drug content was 27.2%, and erythromycin-loaded gelatin microspheres showed good release profiles with a nearly constant release during 4-8 h in artificial body fluid in vitro degradation studies. These gelatin microspheres are useful for studying and developing various drug-delivery systems.
基金This work was supported by the National Natural Science Foundation of China (No.30170271).
文摘Objective: To prepare Pingyangmycin gelatin microspheres (PYM-GMS) for carotid artery embolization therapy and to study the release characteristics in vivo and in vitro. Methods: PYM-GMS was prepared by optical double-phase emulsified condensation polymerization. Through UV-spectrophotometer drug content and encapsulation rate were measured. The characteristics of drug release in vitro which could simulate the actual state in vivo were tested by HPLC. Three ways of vein drop, artery perfusion and artery embolization were contrasted. Under the supervision of X-ray, PYM-GMS were perfused into the external carotid artery of rabbits by superselective artery embolization. Blood samples were tested at different time and analyzed statistically. Results: The roundness of PYM-GMS was 1.02?.005. The mean diameter was 85.6 mm, 78% of them ranging from 50-200 mm, which fitted the use of embolization. PYM content and encapsulation rate were 6.8% and 91.3% respectively. 70% of the drug was released in 3 h in the simulated environment in vivo and total drug was released after more than 6 h. After artery embolization with small dosage of PYM-GMS, the local drug concentration was 8 times higher than the blood drug concentration and the high level of local drug concentration was kept for more than 120 min. Conclusion: External carotid artery embolization with PYM-GMS, which significantly reduced the circulating drug level and employment dosage, could prolong the duration higher drug concentration and suit the purpose of targeted tumor therapy.
文摘Gelatin ceftiofur alkali microsphere was prepared to observe its characteristics and evaluate preservation conditions. The glutaraldehyde was increased and the carboxylic methyl chitosan was added to improve the microsphere. The experimental results show microspheres have a better morphology surface and fairly regular structure with 4% glutaraldehyde. The average particle size is 15.84 gm and particle size distribution is narrow which shows a good uniformity. Microsphere size was affected by the stirrer speed, dosing ratio and curing degree. The greater drug loaded is, the better microspheres loading is; but with the increase of drug loading rate, the entrapment efficiency increases first and then decreases. The drug release rate of the microsphere is 24.90% in 0.5 h and 84.90% in 48 h, when CMC-GMs with 4% curing agent is 32.03% in 0.5 h and 88.44% in 48 h. So Gms embedding of ceftiofur alkali are better than CMC-GM. The stability tests show that strong light, high temperature, high humidity have a great influence on the microspheres.
基金Project(GC201204)supported by the Open Fund of Guangdong Provincial Key Laboratory for the Green Chemicals,China
文摘The magnetic gelatin-starch microspheres were prepared by modified emulsion cross-linking method with glutaraldehyde as the cross-linking agent. The structure, size distribution as well as morphology of magnetic microspheres were investigated by FT-IR spectrometer, dynamic laser scattering analyzer and scanning electron microscope, respectively. Bovine serum album(BSA)was chosen as model protein, and the adsorption processes were carried out under diversified conditions including BSA initial concentration, p H value, adsorption time and temperature to evaluate the performance of the magnetic microspheres. The average diameter of optimized spherical magnetic microspheres is 1.6 μm with excellent dispersivity, and the saturation magnetization is found to be equal to 1.056×10-2 A·m2. The adsorption isotherm of the BSA on the magnetic microspheres basically obeys the Langmuir model, with a maximum adsorption capacity of 120 mg/g and an adsorption equilibrium constant of 1.60 mL/mg.
文摘The experiment of intratumor injection with gelatin microsphere containing 131I and mitomycin C (131I-MMC-GM) into implanted hepatoma-22 In mice is reported. Seventy Bal B/C mice were grouped into A, B, C, and D. Intratumor injection were given as follows: (A) 131I-MMC-GM, (B) 131I solution; (C) mitomycin C solution; (D) untreated control. The tumor-regression rates of the Group A, B and C as compared to Group D were 58. 7% , 23. 9% and 25. 4%. The average life times of Group A, B, C and were 40. 5, 25. 5, 24. 5 and 17. 1 days. Radioactivity counts in tumors and other organs in group A and B were measured with Y-Counter, which showed that 131I was concentrated in tumors in Group A but it was very low in other organs. The study showed that 131I-MMC-GM is effective and safe anticancer agent, intratumor injection with 131I-MMC-GM will be a promising therapy for the treatment of hepatoma.
文摘Gelatin microsphere(GMS) was prepared through W/O emulsion chemical-crossline method.The best formula was selected by examining its appearance,size,drug carrier and drug dissolution rate.The experimental results showed that the optimized gelatin microspheres were spherical ball with smooth surface and had well dispersion.The average size of blank gelatin microspheres was 15.84 μm,while the loaded microspheres'average diameter were 33.10 μm.It was also shown that drug loading of microspheres increased with increasing loading capacity,but drug encapsulation efficiency had a trend of climbing up and then decline.The encapsulation efficiency reached the maximum when the dosage ratio was 2:1.And the results show ceftiofur sodium microspheres have sustained release in the PBS buffer of pH7.4.
文摘Hepatic arterioportal fistulas(APFs)are common in hepatocellular carcinoma(HCC).Moreover,correlated with poor prognosis,APFs often complicate antitumor treatments,including transarterial chemoembolization(TACE).AIM To compare the efficacy of ethanol-soaked gelatin sponges(ESG)and microspheres in the management of APFs and their impact on the prognosis of HCC.METHODS Data from patients diagnosed with HCC or hepatic APFs between June 2016 and December 2019 were retrospectively analyzed.Furthermore,APFs were embolized with ESG(group E)or microspheres(group M)during TACE.The primary outcomes were disease control rate(DCR)and objective response rate(ORR).The secondary outcomes included immediate and first follow-up APF improvement,overall survival(OS),and progression-free survival(PFS).RESULTS Altogether,91 participants were enrolled in the study,comprising 46 in group E and 45 in group M.The DCR was 93.5%and 91.1%in groups E and M,respectively(P=0.714).The ORRs were 91.3%and 66.7%in groups E and M,respectively(P=0.004).The APFs improved immediately after the procedure in 43(93.5%)patients in group E and 40(88.9%)patients in group M(P=0.485).After 2 mo,APF improvement was achieved in 37(80.4%)and 33(73.3%)participants in groups E and M,respectively(P=0.421).The OS was 26.2±1.4 and 20.6±1.1 mo in groups E and M,respectively(P=0.004),whereas the PFS was 16.6±1.0 and 13.8±0.7 mo in groups E and M,respectively(P=0.012).CONCLUSION Compared with microspheres,ESG embolization demonstrated a higher ORR and longer OS and PFS in patients of HCC with hepatic APFs.
基金Project(2013zzts306)supported by the Fundamental Research Funds for the Central Universities of Central South University,ChinaProject(225)supported by the High Level Health Personnel in Hunan Province,China
文摘Porous titanium with porosity of 60% was prepared by metal injection molding(MIM),and coated with gelatin sustained-release microspheres which were made by improved emulsified cold condensation method.The effects of porous titanium coated with insulin-like growth factor-1(IGF-1) and transforming growth factor-β1(TGF-β1) gelatin microspheres on the function of MG63 cells were evaluated in vitro.The results show that porous titanium coated with gelatin sustained-release microspheres has no cytotoxicity.The IGF-1 and TGF-β1 loading concentrations are positively correlative with the proliferation and differentiation of MG63 after co-culturing with the concentrations of IGF-1 and TGF-β1 gelatin microspheres in the range of 0.1-10 ng/mg and 0.25-2.5 ng/mg,respectively.The MG63 cells exhibit the best proliferation and differentiation with the IGF-1 and TGF-β1 loading concentrations of 10 ng/mg and 2.5 ng/mg,respectively.The joint application of IGF-1 and TGF-β1 group,which promote adhesion,proliferation and differentiation of MG63 cells,is superior to a single application group.
文摘The objective of this research was to develop gelatin microspheres(GMSs) and study their properties for embolization.The GMSs were prepared by emulsion chemical crosslinking method.The morphology and particle size of GMSs were observed under an optical microscope.The ratio of water absorption and GMSs swelling ratio were measured.The elasticity of GMSs was studied by TMS-Pro food texture analyzer.The deliverability of GMSs through catheter was investigated with a new device designed in this study.Finally,the acetone residue was determined by headspace capillary gas chromatography.The dried GMSs were elliptic with corrugated surface and the wet GMSs were round with smooth surface.The average diameter of dried GMSs was 430.5 μm with a range of 100-1000 μm,and that of wet GMSs was 601.2 μm with a range of 150-1425 μm.The maximum ratio of water absorption was 590.7% and the average swelling ratio was 103.0%.The elasticity of GMSs was proven to be appropriate for embolization.Three subgroups of wet GMSs(100-450 μm,450-700 μm and 700-940 μm) were delivered through catheter with acceptable pressure.The content of residual acetone in GMSs was less than the minimum limit in the Chinese Pharmacopoeia 2010.Therefore,we concluded that the GMSs were suitable for embolization according to the applicable properties in vitro.And the methods for assessing the properties of GMSs in this study were going to be useful in the evaluation of embolic microspheres.