The aim of the present study was to observe the protective effects of α-lipoic acid(ALA)on vascular injury in rats with hyperuricemia(HUA).The ALA treatment groups(10,30 and 90 mg/kg,respectively)were administered wi...The aim of the present study was to observe the protective effects of α-lipoic acid(ALA)on vascular injury in rats with hyperuricemia(HUA).The ALA treatment groups(10,30 and 90 mg/kg,respectively)were administered with ALA via gavage for 2 weeks.Subsequently,the levels of blood urea nitrogen(BUN),creatinine(CREA),uric acid(UA),total cholesterol(TC),high density lipoprotein-C(HDL-C)and low density lipoprotein-C(LDL-C)were measured;the activities of glutathione peroxidase(GSH-Px),catalase(CAT),malonaldehyde(MDA),superoxide dismutase(SOD)and xanthine oxidase(XOD)were also determined.The thoracic aorta of rats in each experimental group was observed under a light microscope;ultrastructural analysis was performed.SOD and CAT protein contents were investigated by Western blotting.The results revealed that:i)Compared with the model group,the levels of UA were decreased in the ALA groups and the levels of BUN,CREA,TC,and LDL-C decreased in the 30 and 90 mg/kg ALA groups(P<0.05);ii)compared with the model group,the activities of GSH-Px,SOD and XOD were increased and the levels of MDA were reduced in the 90 mg/kg ALA group (P<0.05);and iii)in the model and 10 mg/kg ALA groups,edema and shedding were observed in endothelial cells.Compared with the model and 10 mg/kg ALA groups,the 30 and 90 mg/kg ALA groups exhibited fewer swollen endothelial cells.In summary,the results of the present study indicated that HUA resulted in vascular oxidative stress injury and decreased the activity of antioxidative enzymes,which leads to endothelial cell damage and vascular lesions.ALA may serve as a therapeutic agent for the treatment of HUA-induced endothelial dysfunction.展开更多
The protective roles of α-lipoic acid in the rat model of mitochondrial DNA (mtDNA) 4834bp deletion in inner ear were investigated. Forty female Wistar rats at 4 weeks of age were divided into four groups: group A (D...The protective roles of α-lipoic acid in the rat model of mitochondrial DNA (mtDNA) 4834bp deletion in inner ear were investigated. Forty female Wistar rats at 4 weeks of age were divided into four groups: group A (D-galactose group, n=10), group B (D-galactose+α-lipoic acid group, n=10), group C (α-lipoic acid group, n=10), and group D (control group, n=10). Auditory brainstem response (ABR) was used to detect the hearing threshold. Colorimetry was used to analyze activity of superoxide dismutase (SOD) and concentration of malondialdehyde (MDA). The percentage of mtDNA4834bp deletion in inner ear was identified by real-time PCR. There was no significant difference in ABR threshold shift among all groups. The percentage of mtDNA4834bp deletion in group A was higher than that in other groups, but there was no significant difference in percentage of mtDNA4834bp deletion among groups B, C, and D. The activity of SOD in group A was lower than that in other groups. The concentration of MDA in group A was higher than that in other groups. It was concluded that there was no significant hearing loss when the percentage of mtDNA4834bp deletion was lower than 12.5%. α-Lipoic acid could prevent the reactive oxygen species (ROS)-induced mtDNA4834bp deletion in inner ear of rats.展开更多
In this paper we described the effect of administrated CoQ10, and alfa-lipoic acid on the concentration of total CoQ10 inplasma end body tissues of eggs laying hens. Organisms raise a complex network of enzymes, metab...In this paper we described the effect of administrated CoQ10, and alfa-lipoic acid on the concentration of total CoQ10 inplasma end body tissues of eggs laying hens. Organisms raise a complex network of enzymes, metabolites and molecules with antioxidant activities in order to prevent oxidative damage of theirs bodies. Adequate blood concentrations of small weight molecules ingested with food and food additives are important for the proper functioning of the antioxidant defense. To test this hypothesis we prepared following experiment. Forty weeks old hens were selected from two genotypes;Ross 308 broiler mothers and Lohmann breed hens. Animals were fed for a period of 84 days. Concentrations of supplemented CoQ10 and ALAwere calculated from feed instruction tables so each hen received an average of approximately 5 mg of CoQ10 and 50 mg ofALAper kg of animal weight per day. During the experiment blood samples were taken and at the end of the experiment different body tissues (heart, liver, breast, legs) were collected and analyzed with originally developed HPLC-MS/MS method based selective ionization with LiCl on MRM scanning. We found a number of interesting and unexpected results. Supplemented CoQ10 increased concentrations of coenzyme CoQ10 inplasma and different hen’s tissues. Increased concentration of CoQ10 is the result of its transfer with chylomicrons from the digestive tract to various organs of the body and to the liver where exogenous and endogenous CoQ10 has been re-redistributed through lipoproteins. Supplemented ALA caused much greater concentration of CoQ10 indifferent tissues and plasma then CoQ10. Plausible explanation of our results is such that ALA may regenerates the antioxidants and accelerate the formation of endogenous CoQ10 which is distributed with lipoprotein carriers and increases overall concentration of CoQ10. Our experiments definitely show that Lipoic acid beside glutathione promotes also a synthesis of CoQ10 and increases the total concentration especially in liver and heart tissues.展开更多
Objective: To explore the influence of α-Lipoic acid adjuvant therapy on glucose metabolism, peripheral nerve conduction velocity and oxidative stress in patients with diabetic peripheral neuropathy. Methods: A total...Objective: To explore the influence of α-Lipoic acid adjuvant therapy on glucose metabolism, peripheral nerve conduction velocity and oxidative stress in patients with diabetic peripheral neuropathy. Methods: A total of 92 cases of patients with diabetic peripheral neuropathy were divided into observation group and control group according to the odd and even admission number, 46 cases in each group. All patients were given the conventional treatment, on this basis, patients in control group were given orally Pancreatic Kinionoge, patients in observation group were given α-Lipoic acid intravenous injection. They were treated for 14 d. The following indicators were observed in two groups before and after treatment: glucose metabolic index: fasting blood glucose (FBG), 2 h postprandial blood glucose (2hPBG) and glycosylated hemoglobin (HbA1c);peripheral nerve conduction velocity, median nerve, sensory nerve conduction velocity of nervus peroneus communis (MCV) and motor nerve conduction velocity (SCV), ankle arm index (ABI) and inner diameter of lower limb artery (femoral artery, dorsalis pedis artery, popliteal artery), oxidative stress indicators: superoxide dismutase (SOD) and malondialdehyde (MDA). Results: Compared with before treatment, the FBG, 2hPBG, HbA1c level in two groups after treatment were significantly reduced, but the difference of intergroup after treatment was no statistical significance;MCV and SCV of median nerve and nervus peroneus communis was increased significantly than control group after treatment, moreover MCV and SCV of median nerve and nervus peroneus communis in observation group were higher than control group after treatment, the difference was significant. After treatment, ABI and femoral artery, dorsalis pedis arteries, popliteal artery inner diameter in two groups were increased significantly, moreover after treatment the above level in observation group was obviously higher than control group, there was significant difference. After treatment, the MDA in observation group were reduced significantly and SOD level increased significantly, difference was statistically significant compared with before treatment and control group after the treatment;The difference in control group compared between before treatment and after treatment had no statistical significance. Conclusion: Diabetic peripheral neuropathy treated adjuvantly by α-Lipoic acid can significantly improve lower limb blood supply, improve the peripheral nerve conduction velocity, reduce level of oxidative stress, the effect on glucose metabolism still need long course of observation.展开更多
Alpha linolenic acid ( ALA), a kind of polyunsaturated fatty acid extracted from plants and fruits, has a variety of biological functions. In recent years, ALA has attracted much attention as a natural green feed ad...Alpha linolenic acid ( ALA), a kind of polyunsaturated fatty acid extracted from plants and fruits, has a variety of biological functions. In recent years, ALA has attracted much attention as a natural green feed additive. The physical and chemical properties, metabolic process, physiological function of ALA as well as its application and mechanisms in livestock and poultry production are summarized in the paper.展开更多
Objective:To use high-frequency ultrasound to evaluate the efficacy ofα-lipoic acid combined with traditional Chinese medicine in the treatment of diabetic peripheral neuropathy(DPN),so as to provide a basis for clin...Objective:To use high-frequency ultrasound to evaluate the efficacy ofα-lipoic acid combined with traditional Chinese medicine in the treatment of diabetic peripheral neuropathy(DPN),so as to provide a basis for clinical medication and evaluation of therapeutic effect.Methods:From December 2018 to December 2019,110 patients with DPN who met the inclusion and exclusion criteria were divided into observation group and control group according to different treatment plans.The control group was treated withα-lipoic acid,and the observation group was treated withα-lipoic acid combined with traditional Chinese medicine encapsulation treatment,and used high-frequency ultrasound,nerve conduction velocity and serological examination to comprehensively evaluate the effectiveness of the two treatment methods.Results:The mean amplitude of glycemic excursions(MAGE)value of the observation group and the control group after treatment was significantly lower than before treatment(P<0.05);After treatment,the SCV of the ulnar nerve,median nerve,and common peroneal nerve in the two groups was significantly faster than before treatment(P<0.05).Similar to SCV,the MCV of the three nerves measured after treatment in the two groups was significantly faster than before treatment(P<0.05).Compared between the groups after treatment,the three kinds of nerve SCV and MCV in the observation group were significantly faster than those in the control group(P<0.05).The cross-sectional area(CSA)value of the ulnar nerve,median nerve and common peroneal nerve in the observation group after treatment was significantly lower than before treatment(P<0.05).Compared with the control group after treatment,the three nerves CSA in the observation group was significantly lower than that in the control group(P<0.05).Abnormal ultrasound performance:The proportion of abnormal ultrasound performances of the ulnar nerve,median nerve,and common peroneal nerve in the observation group after treatment was significantly lower than before treatment(P<0.05).The composition ratio of internal echo reduction and ambiguity in the observation group after three nerve treatments was significantly lower than that in the control group after treatment(P<0.05).In the correlation analysis,the three kinds of nerve CSA before and after treatment were negatively correlated with SCV and amplitude(P<0.05),and positively correlated with latency(P<0.05).Conclusion:The combination ofα-lipoic acid and Chinese medicine encapsulation technology has a good effect on the treatment and repair of DPN nerve damage,and can be routinely applied in clinical treatment.High-frequency ultrasound can intuitively observe changes in peripheral nerves and can be used to evaluate the prognosis of DPN.展开更多
Objective:To investigate the effects ofα-lipoic acid on oxidative stress, vascular endothelium function and renal function in diabetic nephropathy patients.Methods: According to random data table method, a total of 8...Objective:To investigate the effects ofα-lipoic acid on oxidative stress, vascular endothelium function and renal function in diabetic nephropathy patients.Methods: According to random data table method, a total of 80 patients with diabetic nephropathy from September 2016 to August 2017 were divided into observation group and control group (n=40). The patients of control group were treated with routine therapy while the patients of observation group were given intravenous infusion ofα-lipoic acid on the basis of conventional therapy. The levels of oxidative stress, vascular endothelium function and renal function changes were compared between the two groups before and after the treatment.Results:The levels of SOD, MDA, NO, ET-1, RBP and CysC in the two groups before treatment were not statistically significant. Compared with the levels before treatment, the level of SOD in the observation group was significantly increased and the level of MDA was significantly decreased;the level of SOD in the observation group was significantly higher than that in the control group, and the level of MDA was significantly lower than that of the control group;the above differences were statistically significant. The levels of SOD and MDA had no significant changes in the control group before and after treatment. After treatment, the levels of ET-1, RBP and CysC in the two groups were significantly lower than those in the same group before treatment, and the observation group levels were significantly lower than those in the control group;the levels of NO in the two groups after treatment were significantly higher than those in the same group before treatment, and the observation group was significantly higher than that of the control group;the above differences were statistically significant.Conclusions: On the basis of conventional treatment, combining withα-lipoic acid can better reduce the level of oxidative stress, improve vascular endothelial function, renal function in patients with diabetic nephropathy, which has an important clinical value.展开更多
Objective: To discuss the effect of α-lipoic acid combined with nerve growth factor on bone metabolism, oxidative stress and nerve conduction function after femoral fracture surgery. Methods: A total of 110 patients ...Objective: To discuss the effect of α-lipoic acid combined with nerve growth factor on bone metabolism, oxidative stress and nerve conduction function after femoral fracture surgery. Methods: A total of 110 patients with femoral fracture who received surgical treatment in the hospital between January 2015 and January 2017 were collected and divided into the control group (n=55) and study group (n=55) by random number table. Control group received postoperative nerve growth factor therapy, and study group received postoperative α-lipoic acid combined with nerve growth factor therapy. The differences in the contents of bone metabolism and oxidative stress indexes as well as the levels of nerve conduction function indexes were compared between the two groups before and after treatment. Results: Before treatment, the differences in the contents of bone metabolism and oxidative stress indexes as well as the levels of nerve conduction function indexes were not statistically significant between the two groups. After treatment, serum bone metabolism indexes BGP and PⅠNP contents of study group were higher than those of control group while CTX-Ⅰ and TRAP contents were lower than those of control group;serum oxidative stress indexes TAC, CAT and SOD contents of study group were higher than those of control group while MDA content was lower than that of control group;limb nerve conduction velocity SCV and MCV levels of study group were higher than those of control group. Conclusion: α-lipoic acid combined with nerve growth factor therapy after femoral fracture surgery can effectively balance osteoblast/osteoclast activity, reduce oxidative stress and improve limb nerve conduction velocity.展开更多
以盆栽草莓为材料,研究了叶面喷布5-氨基乙酰丙酸(ALA)对草莓植株光合作用、叶绿素荧光特性、抗氧化酶活性和丙二醛(M DA)含量的影响.结果表明,100 m g/L ALA处理显著提高草莓叶片净光合速率(Pn),而且这一效应可能与其促进叶绿素含量和...以盆栽草莓为材料,研究了叶面喷布5-氨基乙酰丙酸(ALA)对草莓植株光合作用、叶绿素荧光特性、抗氧化酶活性和丙二醛(M DA)含量的影响.结果表明,100 m g/L ALA处理显著提高草莓叶片净光合速率(Pn),而且这一效应可能与其促进叶绿素含量和羧化效率(CE)提高,降低光呼吸速率(Rp)有关.叶绿素荧光动力学资料显示,ALA处理降低高光强(1 500μm o l.m-2.-s 1)下草莓叶片的初始荧光(Fo),表明它对光合膜系统有一定保护作用.ALA处理不仅明显提高草莓叶片最大荧光(Fm)和可变荧光(Fv),而且提高PSⅡ实际光化学效率(ΦPSⅡ)、光化学荧光猝灭(qP)、非光化学荧光猝灭系数(N PQ)、表观光合电子传递速率(ETR)、光化学速率(P CR)和天线热耗散(D),而降低了光下相对光合限制值(L(PFD)),表明叶绿素荧光产额提高和天线热耗散是保护光合器官并提高光合效率的两个方面.叶片抗氧化酶活性测定以及超氧化物歧化酶(SOD)活性抑制剂二乙基二硫代氨基甲酸(DDC)处理结果表明,ALA对草莓光合作用的促进作用还与其提高抗氧化酶活性有关.展开更多
文摘The aim of the present study was to observe the protective effects of α-lipoic acid(ALA)on vascular injury in rats with hyperuricemia(HUA).The ALA treatment groups(10,30 and 90 mg/kg,respectively)were administered with ALA via gavage for 2 weeks.Subsequently,the levels of blood urea nitrogen(BUN),creatinine(CREA),uric acid(UA),total cholesterol(TC),high density lipoprotein-C(HDL-C)and low density lipoprotein-C(LDL-C)were measured;the activities of glutathione peroxidase(GSH-Px),catalase(CAT),malonaldehyde(MDA),superoxide dismutase(SOD)and xanthine oxidase(XOD)were also determined.The thoracic aorta of rats in each experimental group was observed under a light microscope;ultrastructural analysis was performed.SOD and CAT protein contents were investigated by Western blotting.The results revealed that:i)Compared with the model group,the levels of UA were decreased in the ALA groups and the levels of BUN,CREA,TC,and LDL-C decreased in the 30 and 90 mg/kg ALA groups(P<0.05);ii)compared with the model group,the activities of GSH-Px,SOD and XOD were increased and the levels of MDA were reduced in the 90 mg/kg ALA group (P<0.05);and iii)in the model and 10 mg/kg ALA groups,edema and shedding were observed in endothelial cells.Compared with the model and 10 mg/kg ALA groups,the 30 and 90 mg/kg ALA groups exhibited fewer swollen endothelial cells.In summary,the results of the present study indicated that HUA resulted in vascular oxidative stress injury and decreased the activity of antioxidative enzymes,which leads to endothelial cell damage and vascular lesions.ALA may serve as a therapeutic agent for the treatment of HUA-induced endothelial dysfunction.
基金supported by grants from the State Key Program of National Natural Science of China (No. 30730094)the National Science & Technology Pillar Program during the Eleventh Five-year Plan Period (No. 2007BAI18B13)
文摘The protective roles of α-lipoic acid in the rat model of mitochondrial DNA (mtDNA) 4834bp deletion in inner ear were investigated. Forty female Wistar rats at 4 weeks of age were divided into four groups: group A (D-galactose group, n=10), group B (D-galactose+α-lipoic acid group, n=10), group C (α-lipoic acid group, n=10), and group D (control group, n=10). Auditory brainstem response (ABR) was used to detect the hearing threshold. Colorimetry was used to analyze activity of superoxide dismutase (SOD) and concentration of malondialdehyde (MDA). The percentage of mtDNA4834bp deletion in inner ear was identified by real-time PCR. There was no significant difference in ABR threshold shift among all groups. The percentage of mtDNA4834bp deletion in group A was higher than that in other groups, but there was no significant difference in percentage of mtDNA4834bp deletion among groups B, C, and D. The activity of SOD in group A was lower than that in other groups. The concentration of MDA in group A was higher than that in other groups. It was concluded that there was no significant hearing loss when the percentage of mtDNA4834bp deletion was lower than 12.5%. α-Lipoic acid could prevent the reactive oxygen species (ROS)-induced mtDNA4834bp deletion in inner ear of rats.
文摘In this paper we described the effect of administrated CoQ10, and alfa-lipoic acid on the concentration of total CoQ10 inplasma end body tissues of eggs laying hens. Organisms raise a complex network of enzymes, metabolites and molecules with antioxidant activities in order to prevent oxidative damage of theirs bodies. Adequate blood concentrations of small weight molecules ingested with food and food additives are important for the proper functioning of the antioxidant defense. To test this hypothesis we prepared following experiment. Forty weeks old hens were selected from two genotypes;Ross 308 broiler mothers and Lohmann breed hens. Animals were fed for a period of 84 days. Concentrations of supplemented CoQ10 and ALAwere calculated from feed instruction tables so each hen received an average of approximately 5 mg of CoQ10 and 50 mg ofALAper kg of animal weight per day. During the experiment blood samples were taken and at the end of the experiment different body tissues (heart, liver, breast, legs) were collected and analyzed with originally developed HPLC-MS/MS method based selective ionization with LiCl on MRM scanning. We found a number of interesting and unexpected results. Supplemented CoQ10 increased concentrations of coenzyme CoQ10 inplasma and different hen’s tissues. Increased concentration of CoQ10 is the result of its transfer with chylomicrons from the digestive tract to various organs of the body and to the liver where exogenous and endogenous CoQ10 has been re-redistributed through lipoproteins. Supplemented ALA caused much greater concentration of CoQ10 indifferent tissues and plasma then CoQ10. Plausible explanation of our results is such that ALA may regenerates the antioxidants and accelerate the formation of endogenous CoQ10 which is distributed with lipoprotein carriers and increases overall concentration of CoQ10. Our experiments definitely show that Lipoic acid beside glutathione promotes also a synthesis of CoQ10 and increases the total concentration especially in liver and heart tissues.
文摘Objective: To explore the influence of α-Lipoic acid adjuvant therapy on glucose metabolism, peripheral nerve conduction velocity and oxidative stress in patients with diabetic peripheral neuropathy. Methods: A total of 92 cases of patients with diabetic peripheral neuropathy were divided into observation group and control group according to the odd and even admission number, 46 cases in each group. All patients were given the conventional treatment, on this basis, patients in control group were given orally Pancreatic Kinionoge, patients in observation group were given α-Lipoic acid intravenous injection. They were treated for 14 d. The following indicators were observed in two groups before and after treatment: glucose metabolic index: fasting blood glucose (FBG), 2 h postprandial blood glucose (2hPBG) and glycosylated hemoglobin (HbA1c);peripheral nerve conduction velocity, median nerve, sensory nerve conduction velocity of nervus peroneus communis (MCV) and motor nerve conduction velocity (SCV), ankle arm index (ABI) and inner diameter of lower limb artery (femoral artery, dorsalis pedis artery, popliteal artery), oxidative stress indicators: superoxide dismutase (SOD) and malondialdehyde (MDA). Results: Compared with before treatment, the FBG, 2hPBG, HbA1c level in two groups after treatment were significantly reduced, but the difference of intergroup after treatment was no statistical significance;MCV and SCV of median nerve and nervus peroneus communis was increased significantly than control group after treatment, moreover MCV and SCV of median nerve and nervus peroneus communis in observation group were higher than control group after treatment, the difference was significant. After treatment, ABI and femoral artery, dorsalis pedis arteries, popliteal artery inner diameter in two groups were increased significantly, moreover after treatment the above level in observation group was obviously higher than control group, there was significant difference. After treatment, the MDA in observation group were reduced significantly and SOD level increased significantly, difference was statistically significant compared with before treatment and control group after the treatment;The difference in control group compared between before treatment and after treatment had no statistical significance. Conclusion: Diabetic peripheral neuropathy treated adjuvantly by α-Lipoic acid can significantly improve lower limb blood supply, improve the peripheral nerve conduction velocity, reduce level of oxidative stress, the effect on glucose metabolism still need long course of observation.
基金Supported by Key Scientific Research Project of Colleges and Universities in Henan Province(15A230012)
文摘Alpha linolenic acid ( ALA), a kind of polyunsaturated fatty acid extracted from plants and fruits, has a variety of biological functions. In recent years, ALA has attracted much attention as a natural green feed additive. The physical and chemical properties, metabolic process, physiological function of ALA as well as its application and mechanisms in livestock and poultry production are summarized in the paper.
基金National natural science foundation of China(No.81701891)Guided scientific research project of Shiyan science and technology bureau(No.18Y63)。
文摘Objective:To use high-frequency ultrasound to evaluate the efficacy ofα-lipoic acid combined with traditional Chinese medicine in the treatment of diabetic peripheral neuropathy(DPN),so as to provide a basis for clinical medication and evaluation of therapeutic effect.Methods:From December 2018 to December 2019,110 patients with DPN who met the inclusion and exclusion criteria were divided into observation group and control group according to different treatment plans.The control group was treated withα-lipoic acid,and the observation group was treated withα-lipoic acid combined with traditional Chinese medicine encapsulation treatment,and used high-frequency ultrasound,nerve conduction velocity and serological examination to comprehensively evaluate the effectiveness of the two treatment methods.Results:The mean amplitude of glycemic excursions(MAGE)value of the observation group and the control group after treatment was significantly lower than before treatment(P<0.05);After treatment,the SCV of the ulnar nerve,median nerve,and common peroneal nerve in the two groups was significantly faster than before treatment(P<0.05).Similar to SCV,the MCV of the three nerves measured after treatment in the two groups was significantly faster than before treatment(P<0.05).Compared between the groups after treatment,the three kinds of nerve SCV and MCV in the observation group were significantly faster than those in the control group(P<0.05).The cross-sectional area(CSA)value of the ulnar nerve,median nerve and common peroneal nerve in the observation group after treatment was significantly lower than before treatment(P<0.05).Compared with the control group after treatment,the three nerves CSA in the observation group was significantly lower than that in the control group(P<0.05).Abnormal ultrasound performance:The proportion of abnormal ultrasound performances of the ulnar nerve,median nerve,and common peroneal nerve in the observation group after treatment was significantly lower than before treatment(P<0.05).The composition ratio of internal echo reduction and ambiguity in the observation group after three nerve treatments was significantly lower than that in the control group after treatment(P<0.05).In the correlation analysis,the three kinds of nerve CSA before and after treatment were negatively correlated with SCV and amplitude(P<0.05),and positively correlated with latency(P<0.05).Conclusion:The combination ofα-lipoic acid and Chinese medicine encapsulation technology has a good effect on the treatment and repair of DPN nerve damage,and can be routinely applied in clinical treatment.High-frequency ultrasound can intuitively observe changes in peripheral nerves and can be used to evaluate the prognosis of DPN.
文摘Objective:To investigate the effects ofα-lipoic acid on oxidative stress, vascular endothelium function and renal function in diabetic nephropathy patients.Methods: According to random data table method, a total of 80 patients with diabetic nephropathy from September 2016 to August 2017 were divided into observation group and control group (n=40). The patients of control group were treated with routine therapy while the patients of observation group were given intravenous infusion ofα-lipoic acid on the basis of conventional therapy. The levels of oxidative stress, vascular endothelium function and renal function changes were compared between the two groups before and after the treatment.Results:The levels of SOD, MDA, NO, ET-1, RBP and CysC in the two groups before treatment were not statistically significant. Compared with the levels before treatment, the level of SOD in the observation group was significantly increased and the level of MDA was significantly decreased;the level of SOD in the observation group was significantly higher than that in the control group, and the level of MDA was significantly lower than that of the control group;the above differences were statistically significant. The levels of SOD and MDA had no significant changes in the control group before and after treatment. After treatment, the levels of ET-1, RBP and CysC in the two groups were significantly lower than those in the same group before treatment, and the observation group levels were significantly lower than those in the control group;the levels of NO in the two groups after treatment were significantly higher than those in the same group before treatment, and the observation group was significantly higher than that of the control group;the above differences were statistically significant.Conclusions: On the basis of conventional treatment, combining withα-lipoic acid can better reduce the level of oxidative stress, improve vascular endothelial function, renal function in patients with diabetic nephropathy, which has an important clinical value.
文摘Objective: To discuss the effect of α-lipoic acid combined with nerve growth factor on bone metabolism, oxidative stress and nerve conduction function after femoral fracture surgery. Methods: A total of 110 patients with femoral fracture who received surgical treatment in the hospital between January 2015 and January 2017 were collected and divided into the control group (n=55) and study group (n=55) by random number table. Control group received postoperative nerve growth factor therapy, and study group received postoperative α-lipoic acid combined with nerve growth factor therapy. The differences in the contents of bone metabolism and oxidative stress indexes as well as the levels of nerve conduction function indexes were compared between the two groups before and after treatment. Results: Before treatment, the differences in the contents of bone metabolism and oxidative stress indexes as well as the levels of nerve conduction function indexes were not statistically significant between the two groups. After treatment, serum bone metabolism indexes BGP and PⅠNP contents of study group were higher than those of control group while CTX-Ⅰ and TRAP contents were lower than those of control group;serum oxidative stress indexes TAC, CAT and SOD contents of study group were higher than those of control group while MDA content was lower than that of control group;limb nerve conduction velocity SCV and MCV levels of study group were higher than those of control group. Conclusion: α-lipoic acid combined with nerve growth factor therapy after femoral fracture surgery can effectively balance osteoblast/osteoclast activity, reduce oxidative stress and improve limb nerve conduction velocity.