期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Engineering of Corynebacterium glutamicum to Enhance L-ornithine Production by Gene Knockout and Comparative Proteomic Analysis 被引量:3
1
作者 卢冬梅 刘建忠 毛宗万 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第4期731-739,共9页
Engineered Corynebacterium glutamicum was constructed for L-ornithine production by disrupting genes of argF and proB to prevent the flux away from L-ornithine.Effect of the inactivation of 2-oxoglutarate de-hydrogena... Engineered Corynebacterium glutamicum was constructed for L-ornithine production by disrupting genes of argF and proB to prevent the flux away from L-ornithine.Effect of the inactivation of 2-oxoglutarate de-hydrogenase complex(ODHC) on L-ornithine production was also investigated.It was found that the inactivation of ODHC by knockout of the kgd gene enhanced L-ornithine production.The engineered C.glutamicum ATCC13032(ΔargFΔproBΔkgd) produced L-ornithine up to 4.78 g·L-1 from 0.24 g·L-1 of the wild-type strain.In order to understand the mechanism of L-ornithine production in C.glutamicum ATCC13032(ΔargFΔproBΔkgd) and find out new strategies for further enhancing L-ornithine production,the comparative proteome between the wild-type and the engineered strain was analyzed.L-Ornithine overproduction in the engineered strain was related to the up-regulation of the expression levels of enzymes involved in L-ornithine biosynthesis pathway and down-regulation of the expression levels of proteins involved in pentose phosphate pathway.The overexpression of genes in the upstream pathway of glutamate to increase the availability of endogenous glutamate may further in-crease ornithine production in the engineered C.glutamicum and the ornithine synthesis enzymes(ArgCJBD) may not be the limiting enzymes in the engineered C.glutamicum. 展开更多
关键词 L-ornithine production gene knockout 2-oxoglutarate dehydrogenase Corynebacterium glutamicum proteomic analysis
下载PDF
Alanine and aspartate aminotransferase and glutamine-cycling pathway:Their roles in pathogenesis of metabolic syndrome 被引量:12
2
作者 Silvia Sookoian Carlos J Pirola 《World Journal of Gastroenterology》 SCIE CAS CSCD 2012年第29期3775-3781,共7页
Although new research technologies are constantly used to look either for genes or biomarkers in the prediction of metabolic syndrome(MS),the pathogenesis and pathophysiology of this complex disease remains a major ch... Although new research technologies are constantly used to look either for genes or biomarkers in the prediction of metabolic syndrome(MS),the pathogenesis and pathophysiology of this complex disease remains a major challenge.Interestingly,Cheng et al recently investigated possible pathways underlying MS by high-throughput metabolite profiling in two large and well characterized community-based cohorts.The authors explored by liquid chromatography and mass spectrometry the plasma concentrations of 45 distinct metabolites and examined their relation to cardiometabolic risk,and observed that metabolic risk factors such as obesity,insulin resistance(IR),high blood pressure,and dyslipidemia were associated with several metabolites,including branched-chain amino acids,other hydrophobic amino acids,tryptophan breakdown products,and nucleotide metabolites.In addition,the authors found a significant association of IR traits with glutamine,glutamate and the glutamineto-glutamate ratio.These data provide new insight into the pathogenesis of MS-associated phenotypes and introduce a crucial role of glutamine-cycling pathway as prominently involved in the development of metabolic risk.We consider that the hypothesis about the role of abnormal glutamate metabolism in the pathogenesis of the MS is certainly challenging and suggests the critical role of the liver in the global metabolic modulation as glutamate metabolism is linked with aminotransferase reactions.We discuss here the critical role of the "liver metabolism" in the pathogenesis of the MS and IR,and postulate that before fatty liver develops,abnormal levels of liver enzymes,such as alanine and aspartate aminotransferases might reflect high levels of hepatic transamination of amino acids in the liver. 展开更多
关键词 Alanine Aspartate Glutamine Glutamate 2-oxoglutarate Glycolysis Pyruvate
下载PDF
Silencing JA hydroxylases in Nicotiana attenuata enhances jasmonic acid-isoleucine-mediated defenses against Spodoptera litura 被引量:2
3
作者 Jinxiang Tang Dahai Yang +2 位作者 Jianqiang Wu Suiyun Chen Lei Wang 《Plant Diversity》 SCIE CAS CSCD 2020年第2期111-119,共9页
Jasmonic acid(JA)plays important roles in plant resistance to insect herbivores.One important derivative of JA is 12-OH-JA,which is produced by two independent pathways:direct hydroxylation of JA by jasmonate-induced ... Jasmonic acid(JA)plays important roles in plant resistance to insect herbivores.One important derivative of JA is 12-OH-JA,which is produced by two independent pathways:direct hydroxylation of JA by jasmonate-induced oxygenases(JOXs)or hydrolyzation of 12-OH-JA-Ile.Yet the function of 12-OH-JA in plant-herbivore interactions remains largely unknown.In this study,we silenced four JOX homologs independently in the wild tobacco Nicotiana attenuata by virus-induced gene silencing(VIGS),and found that all four JOX homologs are involved in JA hydroxylation.Simultaneously silencing the four JA hydroxylases in VIGS-NaJOXs plants decreased herbivory-induced 12-OH-JA by 33%,but JA and JA-Ile levels increased by 45%and 30%,respectively,compared to those in control plants.Compared to direct hydroxylation from JA,hydrolyzation from 12-OH-JA-Ile is equally important for herbivory-induced 12-OHJA accumulation:in the 12-OH-JA-Ile deficient irJAR4/6 plants,12-OH-JA decreased 34%.Moreover,VIGSNaJOXs plants exhibited enhanced resistance to the generalist herbivore Spodoptera litura.The poor larval performance was strongly correlated with high levels of several JA-Ile-dependent direct defense metabolites in the VIGS-NaJOXs plants.When we simultaneously silenced all four JA hydroxylases in the JAIle-deficient irJAR4/6 background,the enhanced herbivore resistance diminished,demonstrating that enhanced herbivore resistance resulted from elevated JA-Ile levels.Given that silencing these NaJOX-like genes did not detectably alter plant growth but highly increased plant defense levels,we propose that JOX genes are potential targets for genetic improvement of herbivore-resistant crops. 展开更多
关键词 JA metabolism 12-OH-JA SPODOPTERA litura 2-oxoglutarate oxygenase HERBIVORE defense Nicotiana attenuata
下载PDF
Key genes expression of reductive tricarboxylic acid cycle from deep-sea hydrothermal chemolithoautotrophic Caminibacter profundus in response to salinity, pH and O_2 被引量:2
4
作者 HE Peiqing LIU Yan +1 位作者 YUE Wenjuan HUANG Xiaohang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2013年第2期35-41,共7页
CO2 fixation pathway of Caminibacter profundus, a chemolithoautotrophic e-Proteobacteria from deep-sea hydrothermal vent, was determined and characterized by genetic and enzymatic analyses. Gene expression of key enzy... CO2 fixation pathway of Caminibacter profundus, a chemolithoautotrophic e-Proteobacteria from deep-sea hydrothermal vent, was determined and characterized by genetic and enzymatic analyses. Gene expression of key enzymes for CO2 fixation in response to salinity, pH and O2 in Medium 829 were also investigated. The results demonstrate that C. profundus contained aclB, porA and oorA, the genes encoding key enzymes of reductive tricarboxylic acid (rTCA) cycle. However, genes fragments of cbbL and cbbMencoding key enzyme of Calvin cycle were not recovered. Key enzymatic activities of ATP citrate lyase (ACL), pyruvate: ferredoxin oxidoreductase (POR) and 2-oxoglutarate: ferredoxin oxidoreductase (OOR) were also present in C. profun- dus. The combination of genetic and enzymatic analyses confirm that C. profundus adopted rTCA cycle for carbon assimilation. The results of aclB and oorA relative expressions of C. profundus demonstrate that the ranges of environmental factors for high genes expression were sea salt 3.0%-5.0% (optimum 3.0%), pH 5.0-6.5(optimum pH 6.5), anaerobic to microaerobic conditions (optimum 1.0% 02). Gene expression pat- terns under different conditions show similar patterns with bacterial growth, revealing that key rTCA cycle genes provided molecular basis for bacterial growth and propagation. Our results suggest that C. profun- dus could regulate key genes of rTCA cycle for carbon assimilation and energy metabolism in response to environmental fluctuations in hydrothermal vent. 展开更多
关键词 Caminibacter profundus reductive tricarboxylic acid (rTCA) cycle ATP citrate lyase pyruvate:ferredoxin oxidoreductase 2-oxoglutarate ferredoxin oxidoreductase hydrothermal vent
下载PDF
Jasmonic Acid Oxidase 2 Hydroxylates Jasmonic Acid and Represses Basal Defense and Resistance Responses against Botrytis cinerea Infection 被引量:14
5
《Molecular Plant》 SCIE CAS CSCD 2017年第9期1159-1173,共15页
Jasmonates (JAs) orchestrate immune responses upon wound/herbivore injury or infection by necrotro- phic pathogens. Elucidation of catabolic routes has revealed new complexity in jasmonate metabolism. Two integrated... Jasmonates (JAs) orchestrate immune responses upon wound/herbivore injury or infection by necrotro- phic pathogens. Elucidation of catabolic routes has revealed new complexity in jasmonate metabolism. Two integrated pathways attenuate signaling by turning over the active hormone jasmonoyl-isoleucine (JA-Ile) through w-oxidation or deconjugation, and define an indirect route forming the derivative 12OH-JA. Here, we provide evidence for a second 12OH-JA formation pathway by direct jasmonic acid (JA) oxidation. Three jasmonic acid oxidases (JAOs) of the 2-oxoglutarate dioxygenase family catalyze spe- cific oxidation of JA to 12OH-JA, and their genes are induced by wounding or infection by the fungus Botrytis cinerea. JA02 exhibits the highest basal expression, and its deficiency in jao2 mutants strongly enhanced antifungal resistance. The resistance phenotype resulted from constitutive expression of antimi- crobial markers rather than from their higher induction in infected jao2 plants and could be reversed by ectopic expression of any of the three JAOs injao2. Elevated defense injao2 was dependent on the activity of JASMONATE RESPONSE 1 (JAR1) and CORONATINE-INSENSITIVE 1 (COI1) but was not correlated with erihanced JA-Ile accumulation. Instead, jao2 mutant lines displayed altered accumulation of several JA species in healthy and challenged plants, suggesting elevated metabolic flux through JA-Ile. Collectively, these data identify the missing enzymes hydroxylating JA and uncover an important metabolic diversion mechanism for repressing basal JA defense responses. 展开更多
关键词 2-oxoglutarate oxygenase jasmonic acid defense regulation hormone metabolism BOTRYTIS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部