Microfiltration membrane technology has been widely used in various industries for solid-liquid separation. However, pore clogging remains a persistent challenge. This study employs (CFD) and discrete element method (...Microfiltration membrane technology has been widely used in various industries for solid-liquid separation. However, pore clogging remains a persistent challenge. This study employs (CFD) and discrete element method (DEM) models to enhance our understanding of microfiltration membrane clogging. The models were validated by comparing them to experimental data, demonstrating reasonable consistency. Subsequently, a parametric study was conducted on a cross-flow model, exploring the influence of key parameters on clogging. Findings show that clogging is a complex phenomenon affected by various factors. The mean inlet velocity and transmembrane flux were found to directly impact clogging, while the confinement ratio and cosine of the membrane pore entrance angle had an inverse relationship with it. Two clog types were identified: internal (inside the pore) and external (arching at the pore entrance), with the confinement ratio determining the type. This study introduced a dimensionless number as a quantitative clogging indicator based on transmembrane flux, Reynolds number, filtration time, entrance angle cosine, and confinement ratio. While this hypothesis held true in simulations, future studies should explore variations in clogging indicators, and improved modeling of clogging characteristics. Calibration between numerical and physical times and consideration of particle volume fraction will enhance understanding.展开更多
A novel thermally induced graft polymerization technique was used to modify a polyvinylidene fluoride (PVDF) hollow fibre microfiltration membrane. An artificial neural network (ANN) was applied to optimize the pr...A novel thermally induced graft polymerization technique was used to modify a polyvinylidene fluoride (PVDF) hollow fibre microfiltration membrane. An artificial neural network (ANN) was applied to optimize the prepared condition of the membrane. The optimized dosing of acrylic acid (AA), acrylamide (AM), N, N'- methylenebisacrylamide (NMBA) and potassium persulphate (KSP) designed by ANN was that AA was 40.63 ml/L; AM acted as 6.25 g/L; NMBA was 1.72 g/L and KSP was 1.5 g/L, respectively. The thermal stability of the PVDF modified hollow fibre membrane (PVDF-PAA) was investigated by thermogravimetric (TG) and differential scanning calorimetry (DSC) analysis. The polycrystallinity of the PVDF-PAA membrane was evaluated by X-ray diffraction (XRD) analysis. The complex formation of the modified membrane was ascertained by Fourier transform infrared spectroscopy (FTIR). The morphology of the PVDF-PAA membrane was studied by environmental scanning electron microscopy (ESEM). The surface compositions of the membrane were analyzed by X-ray photoelectron spectroscopy (XPS). The adsorption capacity of Cu^2+ ion on the PVDF-PAA hollow fibre membrane was also investigated.展开更多
Precluding the excessive lipoproteins from plasma rapidly and effectively is highly needed for biomedical detection and reducing plasma product scrap in blood donation stations.The current centrifugation procedure is ...Precluding the excessive lipoproteins from plasma rapidly and effectively is highly needed for biomedical detection and reducing plasma product scrap in blood donation stations.The current centrifugation procedure is high-cost and time-consuming.Herein,we fabricated an anionic microfiltration polyethersulfone(PES)membrane modified by interface swelling and implanting of acrylic acid(AA)for screening out large particle lipoprotein chylomicron(CM)and adsorbing cationic very low-density lipoproteins(VLDL).To improve the separation efficiency,a two-stage filtration through carboxylated polyethersulfone microfiltration membranes with the mean pore size of 0.45 and 0.22μm respectively were conducted.Attenuated total reflection Fourier transform infrared technique(ATR-FTIR),water contact angle(WCA),Zeta potential and scanning electron microscope(SEM)were employed to characterize the modified membrane.To test the effectiveness of this membrane,plasma flux and concentration variation of plasma components were examined to study the purification effectiveness.Furthermore,the hemocompatibility of modified membranes was tested to confirm its practicability on bloodcontacting materials.The carboxylated polyethersulfone microfiltration membrane shows its promising potential application to purify chylous plasma.展开更多
Membrane microfiltration fermentation (MMF) with cell recycling was successfully applied to the production of glucose oxidase (GOD). A plate microfiltration module was found suitable for such purpose. By feeding whole...Membrane microfiltration fermentation (MMF) with cell recycling was successfully applied to the production of glucose oxidase (GOD). A plate microfiltration module was found suitable for such purpose. By feeding whole medium in MMF, the productivity of GOD was much higher than that by feeding glucose alone. With increasing dilution rate the enzyme productivity increased and average enzyme activity decreased. The enzyme productivity of MMF under D = 0.12h-1 and 0.20h-1 were 3871 and 3945U·h-1 respectively, which was about 3 times as that of batch fermentation (BF) and the average enzyme activity was still as high as STU·mL-1 under D = 0.12h-1. The relative efficiency of MMF applied to low yield strain was higher than that applied to high yield strain.展开更多
A study on the membrane coalescence demulsification was carried out with four working systems of water/n-butyl alcohol, water/n-octanol, water/30% TBP(in kerosene) and water/kerosene. The membranes made of polytetrafl...A study on the membrane coalescence demulsification was carried out with four working systems of water/n-butyl alcohol, water/n-octanol, water/30% TBP(in kerosene) and water/kerosene. The membranes made of polytetrafluoroethylene (PTFE) with 1.0μm pore size were used. The results indicated that the excellent demulsification efficiency for emulsions with various oil contents was obtained. A conductivity probe was used to study the demulsification mechanism. An electrode probe was designed and used to determine the oil content near the membrane surface. The obtained data showed that the oil content in the permeated stream was much higher than that in the feed emulsion. A physical mechanism to explain the membrane demulsification was put forward.展开更多
This paper reports a study on the role of fluid flow pattern and dynamic pressure on the permeate flux through a micro filtration membrane in laboratory scale.For this purpose,a dead-end membrane cell equipped with a ...This paper reports a study on the role of fluid flow pattern and dynamic pressure on the permeate flux through a micro filtration membrane in laboratory scale.For this purpose,a dead-end membrane cell equipped with a marine type impeller was used.The impeller was set to rotate in the clockwise and counter clockwise directions with the same angular velocities in order to illustrate the effect of rotation direction on permeate flux.Consequently, permeate fluxes were measured at various impeller rotational speeds.The computational fluid dynamics(CFD)predicted dynamic pressure was related to the fluxes obtained in the experiments.Using the CFD modeling,it is proven that the change in dynamic pressure upon the membrane surface has direct effect on the permeate flux.展开更多
The degradation of fulvic acid(FA) by nanoparticle TiO2 in a submerged membrane photocatalysis(SMPC) reactor was studied. In this reactor, photocatalytic oxidation and membrane separation co-occured. The continuou...The degradation of fulvic acid(FA) by nanoparticle TiO2 in a submerged membrane photocatalysis(SMPC) reactor was studied. In this reactor, photocatalytic oxidation and membrane separation co-occured. The continuous air supplier provided O2 for the photocatalytical reaction and mixed the solution through an airflow controller. The particle TiO2 could automatically settle due to gravity without particle agglomeration so it could be easily separated by microfiltration(MF) membrane. It was efficient to maintain high flux of membranes. The effects of operational parameters on the photocatalytic oxidation rate of FA were investigated. Results indicated that photocatalyst at 0.5 g/L and airflow at 0.06 m^3/h were the optimum condition for the removal of fulvic acid, the removal efficiency was higher in acid media than that in alkaline media. The effects of different filtration duration on permeate flux rate of MF with P25 powder and with nanoparticle TiO2 were compared. Experimental results indicated that the permeate flux rate of MF was improved and the membrane fouling phenomenon was reduced with the addition of nanoparticle TiO2 catalyst compared with conventional P25 powder. Therefore, this submerged membrane photocatalysis reactor can faciliate potential application of photocatalytic oxidation process in drinking water treatment.展开更多
The oily wastewater generated from pretreatment unit of electrocoating industry contains oils, phosphate, organic solvents, and surfactants. In order to improve the removal efficiencies of phosphate and oils, to mitig...The oily wastewater generated from pretreatment unit of electrocoating industry contains oils, phosphate, organic solvents, and surfactants. In order to improve the removal efficiencies of phosphate and oils, to mitigate the membrane fouling, coagulation for ceramic membrane microfiltration of oily wastewater was performed. The results of filtration tests show that the membrane fouling decreased and the permeate flux and quality increased with coagulation as pretreatment. At the coagulant Ca (OH)2 dosage of 900 mg/L, the removal efficiency of phosphate was increased from 46.4% without coagulation to 99.6%; the removal of COD and oils were 97.0% and 99.8%, respectively. And the permeate flux was about 70% greater than that when Ca(OH)2 was not used. The permeate obtained from coagulation and microfiltration can be reused as make-up water, and the recommended operation conditions for pilot and industrial application are transmembrane pressure of 0.10 MPa and cross-flow velocity of 5 m/s. The comparison results show that 0.2 μm ZrO2 microfilter with coagulation could be used to perform the filtration rather than conventional ultrafilter, with very substantial gain in flux and removal efficiency of phosphate.展开更多
Experimental investigation of the microfiltration (MF) using a revolving cross-flow membrane filter was performed under the condition of constant pressure difference, and different flat membranes made of polyvinylid...Experimental investigation of the microfiltration (MF) using a revolving cross-flow membrane filter was performed under the condition of constant pressure difference, and different flat membranes made of polyvinylidene fluoride (PVDF, 0.1 μm), cellulose acetate (CA, 0.22 μm), sulfonated polyethersulfone (SPES, 0.22 μm) and polyamide (PA, 0.45 μm), respectively, were used in filtration experiments. The dependence of the filtrate mass of the cross-flow MF on time was measured on-line. The experimental results showed that the effect of the cross-flow on high viscosity medium was more significant than that on the low viscosity one.展开更多
In order to understand the effect of low temperature on the formation process of aerobic granules and contaminants removal characteristics,the aerobic granules-membrane bioreactor (AGS-MBR) has been started up and ope...In order to understand the effect of low temperature on the formation process of aerobic granules and contaminants removal characteristics,the aerobic granules-membrane bioreactor (AGS-MBR) has been started up and operated at low temperature using the carbon resource of sodium acetate. Aerobic granules cultivated in AGS-MBR possess smooth surface and compact structure in morphology as well as better settling property and higher biomass after 38 days. The average parameters of aerobic granules are: diameter 3. 1 mm,wet density 1. 041 g/mL,sludge volume index 42. 35 mL/g and settling velocity 20. 6 - 45. 2 cm/min. During the start-up of AGS-MBR,the respectively average contaminants removal efficiencies at low temperature are 91. 9% for chemical oxygen demand (COD) ,89. 2% for NH4 + -N and 86. 3% for PO43- -P,and the overgrowth of filamentous bacteria has been well controlled. In addition,the hollow fiber microfiltration (MF) membrane fouling is light and the regime membrane layer is capable of enhancing membrane filtration as well as the average growth of trans-membrane pressure (TMP) is 1. 07 kPa/d. Compared with the conventional cultivation of aerobic granules,the sludge granulation time significantly decreases from 73 days to 38 days by the application of microfiltration membrane at low temperature.展开更多
Metal-organic frameworks(MOFs)are attractive in membrane separation due to their special pore structure and suitable aperture size.The fabrication of defect-free and robust MOF membranes with excellent durability is h...Metal-organic frameworks(MOFs)are attractive in membrane separation due to their special pore structure and suitable aperture size.The fabrication of defect-free and robust MOF membranes with excellent durability is highly demanded but remains challenging.In this work,we report a one-step activeγ-alumina conversion strategy for the facile and reliable fabrication of an MIL-96 membrane.In this case,theγ-Al_(2)O_(3) sol was dip-coated and sintered on theα-Al_(2)O_(3) disc as the active aluminum source and substrate for the nucleation and growth of MOF.A continuous and well-intergrown MIL-96 membrane was generated with exceptional stability due to the strong adhesion to the substrate.The resultant MIL-96 membrane yielded a satisfactory H_(2)/CO_(2) permselectivity and high-temperature resistance,delivering a selectivity of 12.35 with H_(2) permeance of 6.20×10^(−7) mol·m^(−2)·s^(−1)·Pa^(−1) at 150℃.Moreover,the probe membrane presented remarkable durability and recyclability under harsh hydrothermal conditions.This method paves the way for constructing highly stable and selective MOF membranes and could accelerate the development of advanced membrane separation technologies for gas purification and recycling in addressing the severe energy and environmental problems.展开更多
文摘Microfiltration membrane technology has been widely used in various industries for solid-liquid separation. However, pore clogging remains a persistent challenge. This study employs (CFD) and discrete element method (DEM) models to enhance our understanding of microfiltration membrane clogging. The models were validated by comparing them to experimental data, demonstrating reasonable consistency. Subsequently, a parametric study was conducted on a cross-flow model, exploring the influence of key parameters on clogging. Findings show that clogging is a complex phenomenon affected by various factors. The mean inlet velocity and transmembrane flux were found to directly impact clogging, while the confinement ratio and cosine of the membrane pore entrance angle had an inverse relationship with it. Two clog types were identified: internal (inside the pore) and external (arching at the pore entrance), with the confinement ratio determining the type. This study introduced a dimensionless number as a quantitative clogging indicator based on transmembrane flux, Reynolds number, filtration time, entrance angle cosine, and confinement ratio. While this hypothesis held true in simulations, future studies should explore variations in clogging indicators, and improved modeling of clogging characteristics. Calibration between numerical and physical times and consideration of particle volume fraction will enhance understanding.
文摘A novel thermally induced graft polymerization technique was used to modify a polyvinylidene fluoride (PVDF) hollow fibre microfiltration membrane. An artificial neural network (ANN) was applied to optimize the prepared condition of the membrane. The optimized dosing of acrylic acid (AA), acrylamide (AM), N, N'- methylenebisacrylamide (NMBA) and potassium persulphate (KSP) designed by ANN was that AA was 40.63 ml/L; AM acted as 6.25 g/L; NMBA was 1.72 g/L and KSP was 1.5 g/L, respectively. The thermal stability of the PVDF modified hollow fibre membrane (PVDF-PAA) was investigated by thermogravimetric (TG) and differential scanning calorimetry (DSC) analysis. The polycrystallinity of the PVDF-PAA membrane was evaluated by X-ray diffraction (XRD) analysis. The complex formation of the modified membrane was ascertained by Fourier transform infrared spectroscopy (FTIR). The morphology of the PVDF-PAA membrane was studied by environmental scanning electron microscopy (ESEM). The surface compositions of the membrane were analyzed by X-ray photoelectron spectroscopy (XPS). The adsorption capacity of Cu^2+ ion on the PVDF-PAA hollow fibre membrane was also investigated.
基金financially supported by Natural Science Foundation of Ningbo City(2018A610026)Zhejiang Provincial Natural Science Foundation of China for Distinguished Young Scholars(LR20E030002)+1 种基金Ten thousand plan-high level talents special support plan of Zhejiang province,China(ZJWR0108020)Youth Innovation Promotion Association of Chinese Academy of Science(2014258)。
文摘Precluding the excessive lipoproteins from plasma rapidly and effectively is highly needed for biomedical detection and reducing plasma product scrap in blood donation stations.The current centrifugation procedure is high-cost and time-consuming.Herein,we fabricated an anionic microfiltration polyethersulfone(PES)membrane modified by interface swelling and implanting of acrylic acid(AA)for screening out large particle lipoprotein chylomicron(CM)and adsorbing cationic very low-density lipoproteins(VLDL).To improve the separation efficiency,a two-stage filtration through carboxylated polyethersulfone microfiltration membranes with the mean pore size of 0.45 and 0.22μm respectively were conducted.Attenuated total reflection Fourier transform infrared technique(ATR-FTIR),water contact angle(WCA),Zeta potential and scanning electron microscope(SEM)were employed to characterize the modified membrane.To test the effectiveness of this membrane,plasma flux and concentration variation of plasma components were examined to study the purification effectiveness.Furthermore,the hemocompatibility of modified membranes was tested to confirm its practicability on bloodcontacting materials.The carboxylated polyethersulfone microfiltration membrane shows its promising potential application to purify chylous plasma.
基金Supported by the National Natural Science Foundation of China(No.39170020).
文摘Membrane microfiltration fermentation (MMF) with cell recycling was successfully applied to the production of glucose oxidase (GOD). A plate microfiltration module was found suitable for such purpose. By feeding whole medium in MMF, the productivity of GOD was much higher than that by feeding glucose alone. With increasing dilution rate the enzyme productivity increased and average enzyme activity decreased. The enzyme productivity of MMF under D = 0.12h-1 and 0.20h-1 were 3871 and 3945U·h-1 respectively, which was about 3 times as that of batch fermentation (BF) and the average enzyme activity was still as high as STU·mL-1 under D = 0.12h-1. The relative efficiency of MMF applied to low yield strain was higher than that applied to high yield strain.
基金Supported by the National Natural Science Foundation of China(No.29976021).
文摘A study on the membrane coalescence demulsification was carried out with four working systems of water/n-butyl alcohol, water/n-octanol, water/30% TBP(in kerosene) and water/kerosene. The membranes made of polytetrafluoroethylene (PTFE) with 1.0μm pore size were used. The results indicated that the excellent demulsification efficiency for emulsions with various oil contents was obtained. A conductivity probe was used to study the demulsification mechanism. An electrode probe was designed and used to determine the oil content near the membrane surface. The obtained data showed that the oil content in the permeated stream was much higher than that in the feed emulsion. A physical mechanism to explain the membrane demulsification was put forward.
文摘This paper reports a study on the role of fluid flow pattern and dynamic pressure on the permeate flux through a micro filtration membrane in laboratory scale.For this purpose,a dead-end membrane cell equipped with a marine type impeller was used.The impeller was set to rotate in the clockwise and counter clockwise directions with the same angular velocities in order to illustrate the effect of rotation direction on permeate flux.Consequently, permeate fluxes were measured at various impeller rotational speeds.The computational fluid dynamics(CFD)predicted dynamic pressure was related to the fluxes obtained in the experiments.Using the CFD modeling,it is proven that the change in dynamic pressure upon the membrane surface has direct effect on the permeate flux.
文摘The degradation of fulvic acid(FA) by nanoparticle TiO2 in a submerged membrane photocatalysis(SMPC) reactor was studied. In this reactor, photocatalytic oxidation and membrane separation co-occured. The continuous air supplier provided O2 for the photocatalytical reaction and mixed the solution through an airflow controller. The particle TiO2 could automatically settle due to gravity without particle agglomeration so it could be easily separated by microfiltration(MF) membrane. It was efficient to maintain high flux of membranes. The effects of operational parameters on the photocatalytic oxidation rate of FA were investigated. Results indicated that photocatalyst at 0.5 g/L and airflow at 0.06 m^3/h were the optimum condition for the removal of fulvic acid, the removal efficiency was higher in acid media than that in alkaline media. The effects of different filtration duration on permeate flux rate of MF with P25 powder and with nanoparticle TiO2 were compared. Experimental results indicated that the permeate flux rate of MF was improved and the membrane fouling phenomenon was reduced with the addition of nanoparticle TiO2 catalyst compared with conventional P25 powder. Therefore, this submerged membrane photocatalysis reactor can faciliate potential application of photocatalytic oxidation process in drinking water treatment.
文摘The oily wastewater generated from pretreatment unit of electrocoating industry contains oils, phosphate, organic solvents, and surfactants. In order to improve the removal efficiencies of phosphate and oils, to mitigate the membrane fouling, coagulation for ceramic membrane microfiltration of oily wastewater was performed. The results of filtration tests show that the membrane fouling decreased and the permeate flux and quality increased with coagulation as pretreatment. At the coagulant Ca (OH)2 dosage of 900 mg/L, the removal efficiency of phosphate was increased from 46.4% without coagulation to 99.6%; the removal of COD and oils were 97.0% and 99.8%, respectively. And the permeate flux was about 70% greater than that when Ca(OH)2 was not used. The permeate obtained from coagulation and microfiltration can be reused as make-up water, and the recommended operation conditions for pilot and industrial application are transmembrane pressure of 0.10 MPa and cross-flow velocity of 5 m/s. The comparison results show that 0.2 μm ZrO2 microfilter with coagulation could be used to perform the filtration rather than conventional ultrafilter, with very substantial gain in flux and removal efficiency of phosphate.
基金Supported by the State Key Development Program for Basic Research of China(2003CB615705)
文摘Experimental investigation of the microfiltration (MF) using a revolving cross-flow membrane filter was performed under the condition of constant pressure difference, and different flat membranes made of polyvinylidene fluoride (PVDF, 0.1 μm), cellulose acetate (CA, 0.22 μm), sulfonated polyethersulfone (SPES, 0.22 μm) and polyamide (PA, 0.45 μm), respectively, were used in filtration experiments. The dependence of the filtrate mass of the cross-flow MF on time was measured on-line. The experimental results showed that the effect of the cross-flow on high viscosity medium was more significant than that on the low viscosity one.
基金Sponsored by the National High Technology Research and Development Program of China (863 Program,Grant No.2008AA06Z304)State Water Pollution Control and Harnessing of the Major Projects (Grant No.2009ZX07424-005)International Cooperation Program (Grant No.2010DFA92460)
文摘In order to understand the effect of low temperature on the formation process of aerobic granules and contaminants removal characteristics,the aerobic granules-membrane bioreactor (AGS-MBR) has been started up and operated at low temperature using the carbon resource of sodium acetate. Aerobic granules cultivated in AGS-MBR possess smooth surface and compact structure in morphology as well as better settling property and higher biomass after 38 days. The average parameters of aerobic granules are: diameter 3. 1 mm,wet density 1. 041 g/mL,sludge volume index 42. 35 mL/g and settling velocity 20. 6 - 45. 2 cm/min. During the start-up of AGS-MBR,the respectively average contaminants removal efficiencies at low temperature are 91. 9% for chemical oxygen demand (COD) ,89. 2% for NH4 + -N and 86. 3% for PO43- -P,and the overgrowth of filamentous bacteria has been well controlled. In addition,the hollow fiber microfiltration (MF) membrane fouling is light and the regime membrane layer is capable of enhancing membrane filtration as well as the average growth of trans-membrane pressure (TMP) is 1. 07 kPa/d. Compared with the conventional cultivation of aerobic granules,the sludge granulation time significantly decreases from 73 days to 38 days by the application of microfiltration membrane at low temperature.
基金supported by the National Natural Science Foundation of China(Nos.22071076,22090061)the Project of the Department of Science and Technology of Guangdong Province,China(No.2021A1515010204).
文摘Metal-organic frameworks(MOFs)are attractive in membrane separation due to their special pore structure and suitable aperture size.The fabrication of defect-free and robust MOF membranes with excellent durability is highly demanded but remains challenging.In this work,we report a one-step activeγ-alumina conversion strategy for the facile and reliable fabrication of an MIL-96 membrane.In this case,theγ-Al_(2)O_(3) sol was dip-coated and sintered on theα-Al_(2)O_(3) disc as the active aluminum source and substrate for the nucleation and growth of MOF.A continuous and well-intergrown MIL-96 membrane was generated with exceptional stability due to the strong adhesion to the substrate.The resultant MIL-96 membrane yielded a satisfactory H_(2)/CO_(2) permselectivity and high-temperature resistance,delivering a selectivity of 12.35 with H_(2) permeance of 6.20×10^(−7) mol·m^(−2)·s^(−1)·Pa^(−1) at 150℃.Moreover,the probe membrane presented remarkable durability and recyclability under harsh hydrothermal conditions.This method paves the way for constructing highly stable and selective MOF membranes and could accelerate the development of advanced membrane separation technologies for gas purification and recycling in addressing the severe energy and environmental problems.