期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
T_(M)-Eigenvalues of Odd-Order Tensors
1
作者 M.Pakmanesh Hamidreza Afshin 《Communications on Applied Mathematics and Computation》 2022年第4期1258-1279,共22页
In this paper,we propose a definition for eigenvalues of odd-order tensors based on some operators.Also,we define the Schur form and the Jordan canonical form of such tensors,and discuss commuting families of tensors.... In this paper,we propose a definition for eigenvalues of odd-order tensors based on some operators.Also,we define the Schur form and the Jordan canonical form of such tensors,and discuss commuting families of tensors.Furthermore,we prove some eigenvalue ine-qualities for Hermitian tensors.Finally,we introduce characteristic polynomials of odd-order tensors. 展开更多
关键词 T_(M)-product T_(M)-eigenvalue T_(M)-Schur form T_(M)-Jordan canonical form Odd-order tensor F_(M)-upper(lower)triangular tensor
下载PDF
A NOTE ON EIGENVALUES
2
作者 陈杰诚 李加禹 《Chinese Science Bulletin》 SCIE EI CAS 1990年第7期536-540,共5页
For negatively curved, simply connected complete kiemannian manifold M, H. P. Mckean proved that if K_M, the sectional curvature of M, ≤-k^2【【0, then the spectrum
关键词 negatively curved MANIFOLDS L^2-eigenvalues.
原文传递
THE SOLUTION OF A PARAMETERIC EQUATION ARISING IN TRANSPORT THEORY
3
作者 杨斌 阳名珠 《Systems Science and Mathematical Sciences》 SCIE EI CSCD 1989年第1期92-96,共5页
This paper deals with the solution of a neutron transport equation with parameter δ.Usingthe theory of functional analysis,we discuss the distribution of the parameters which make the equationhave a non-zero solution... This paper deals with the solution of a neutron transport equation with parameter δ.Usingthe theory of functional analysis,we discuss the distribution of the parameters which make the equationhave a non-zero solution,and obtain a necessary and sufficient condition for the existence of thecontrol critical eigenvalue δ<sub>0</sub> which possesses a physical meaning. 展开更多
关键词 TRANSPORT EQUATION δ-eigenvalue COMPACT OPERATOR POSITIVE definite OPERATOR
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部