Na^+/K^+-ATPases are membrane-associated enzymes responsible for the active transport of Na^+ and K^+ ions across cell membranes, generating chemical and electrical gradients. These enzymes' α-subunit provides c...Na^+/K^+-ATPases are membrane-associated enzymes responsible for the active transport of Na^+ and K^+ ions across cell membranes, generating chemical and electrical gradients. These enzymes' α-subunit provides catalytic function, binding and hydrolyzing ATP, and itself becoming phosphorylated during the transport cycle. In this study, Na^+/K^+-ATPase α-subunit eDNA was cloned from gill tissue of the swimming crab Portunus trituberculatus by reverse-transcription polymerase chain reaction (RT-PCR) and rapid amplification of eDNA end methods. Analysis of the nucleotide sequence revealed that the eDNA had a full-length of 3 833 base pairs (bp), with an open reading frame of 3 120 bp, 5' untranslated region (UTR) of 317 bp, and 3' UTR of 396 bp. The sequence encoded a 1 039 amino acid protein with a predicted molecular weight of 115.57 kDa and with estimated pI of 5.21. It was predicted here to possess all expected features of Na^+/K^+-ATPase members, including eight transmembrane domains, putative ATP-binding site, and phosphorylation site. Comparison of arnino acid sequences showed that the P. tritubereulatus α-subunit possessed an overall identity of 75%-99% to that of other organisms. Phylogenetic analysis revealed that this α-subunit was in the same category as those of crustaceans. Quantitative real-time RT-PCR analysis indicated that this α-subunit's transcript were most highly expressed in gill and lowest in muscle. RT-PCR analysis also revealed that α-subunit expression in crab gill decreased after 2 and 6 h, but increased after 12, 24, 48, and 72 h. In addition, α-subunit expression in hepatopancreas of crab decreased after 2-72 h. These facts indicated that the crab's Na^+/K^+-ATPase α-subunit was potentially involved in the observed acute response to low salinity stress.展开更多
The effects of the deficiency of the allergenicα-subunit on soybean amino acid(AA)composition were studied using the cultivar Dongnong 47(DN47)as a genetic background.The near-isogenic line(NIL)NIL-DN47-Δα of DN47,...The effects of the deficiency of the allergenicα-subunit on soybean amino acid(AA)composition were studied using the cultivar Dongnong 47(DN47)as a genetic background.The near-isogenic line(NIL)NIL-DN47-Δα of DN47,with an introgression of theα-null trait allele from the high protein donor parent RiB,was created by marker assisted background selection and used to investigate the AA content and nutritional quality.The contents of crude protein,the total AAs,the total essential amino acids(EAAs)and sulfur-containing(Met and Cys)AAs increased by 4.11%,4.16%,5.20% and 11.96%,respectively in NIL-DN47-Δα compared with DN47.Analyses of the total EAAs(TEAAs)and the EAA index(EAAI)revealed that both parameters in NIL-DN47-Δα were higher than those in DN47.The null-allele of theα-subunit positively affected the AA scores.The quantitative changes in free AAs(FAAs)in the developing seeds of NIL-DN47-Δα and DN47 were compared as of 15 days after flowering(DAF)until maturity.The results showed that the total FAA content in NIL-DN47-Δα was significantly higher than that in the DN47 throughout the late maturation stage(40-60 DAF)of seeds.The high concentration of the FAAs in cgy-2 mutant seeds was a consequence of the high rates of synthesis and/or accumulation of individual FAAs during seed maturation where 25 DAF was an important turning point in the accumulation of the FAAs.The FAA contents of single soybeanα-null,double(α+α′)and triple(α+α′+group I)-null mutant combination lines were investigated.In all of these combinations,introduction of the cgy-2 gene invariably raised the FAA content of mature seeds above that of the DN47.In summary,the enhanced protein quality in cgy-2 mutants resulted from several factors.(1)There was a general increase in the contents of most AAs and FAAs in NIL-DN47-Δα.(2)The induced synthesis of free Arg contributed effectively to the high FAAs of various storage-protein-deficiency mutants.For example,in the S2(null α,group I),the free Arg content was seven times as much as that of DN47,accounting for more than half of the total FAA content in the seed.(3)The increase of sulfur-containing AAs in theα-null type NIL mainly resulted from elevated Met content.These data suggested that the cgy-2 mutation might improve the protein quality of soybean seeds and that lacked of the allergenicα-subunit resulted in increased the FAA content.展开更多
By PCR method, apo phycoerythrocyanin α subunit gene (pecA) of Mastigocladus laminosus (M. laminosus) was amplified from its genomic DNA, and then cloned in pBluescript. The pecA gene was subcloned into the exp...By PCR method, apo phycoerythrocyanin α subunit gene (pecA) of Mastigocladus laminosus (M. laminosus) was amplified from its genomic DNA, and then cloned in pBluescript. The pecA gene was subcloned into the expression vector pGEMD, and then transformed into E.coli BL21 (DE3). After induction, a new protein of molecular weight 19×10 3 existing in inclusion body was overexpressed. The expressed product was confirmed to be apo phycoerythrocyanin α subunit by Dot ELISA.展开更多
结合模糊识别方法评价的数学模型法和联合国粮农组织/世界卫生组织(Food and Agriculture Organiz ation/World Health Organization,FAO/WHO)、鸡蛋蛋白两种模式下的化学分析法评价两个致敏蛋白α亚基缺失型大豆蛋白质氨基酸营养价值...结合模糊识别方法评价的数学模型法和联合国粮农组织/世界卫生组织(Food and Agriculture Organiz ation/World Health Organization,FAO/WHO)、鸡蛋蛋白两种模式下的化学分析法评价两个致敏蛋白α亚基缺失型大豆蛋白质氨基酸营养价值,解析α亚基缺失特性对大豆氨基酸组分及营养品质的影响。用氨基酸分析仪测定氨基酸的组分和含量,α亚基缺失特性用十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(sodium dodecylsulfate polyacrylamide gel electrophoresis,SDS-PAGE)确认,蛋白和脂肪含量用Perten 8620近红外谷物分析仪测定。结果表明:1)致敏蛋白α亚基缺失型大豆的氨基酸总量、必需氨基酸总量、蛋白质、油分含量不因α亚基的缺失而降低;2)致敏蛋白α亚基缺失型大豆的11S/7S比值在4.65以上,高于目前普遍报道的2.0~3.0;3)致敏蛋白α亚基缺失型大豆必需氨基酸含量接近或高于FAO/WHO标准;两种模式下,α亚基缺失型大豆的5种化学评分及贴进度值都很高,接近标准蛋白。致敏蛋白α亚基缺失型大豆蛋白质氨基酸组分平衡,11S/7S比值更优,营养品质更高。展开更多
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2012AA10A409)the National Natural Science Foundation of China(No.41306177)the Special Scientific Research Funds for Central Non-Profit Institutes,Yellow Sea Fisheries Research Institutes(No.20603022013027)
文摘Na^+/K^+-ATPases are membrane-associated enzymes responsible for the active transport of Na^+ and K^+ ions across cell membranes, generating chemical and electrical gradients. These enzymes' α-subunit provides catalytic function, binding and hydrolyzing ATP, and itself becoming phosphorylated during the transport cycle. In this study, Na^+/K^+-ATPase α-subunit eDNA was cloned from gill tissue of the swimming crab Portunus trituberculatus by reverse-transcription polymerase chain reaction (RT-PCR) and rapid amplification of eDNA end methods. Analysis of the nucleotide sequence revealed that the eDNA had a full-length of 3 833 base pairs (bp), with an open reading frame of 3 120 bp, 5' untranslated region (UTR) of 317 bp, and 3' UTR of 396 bp. The sequence encoded a 1 039 amino acid protein with a predicted molecular weight of 115.57 kDa and with estimated pI of 5.21. It was predicted here to possess all expected features of Na^+/K^+-ATPase members, including eight transmembrane domains, putative ATP-binding site, and phosphorylation site. Comparison of arnino acid sequences showed that the P. tritubereulatus α-subunit possessed an overall identity of 75%-99% to that of other organisms. Phylogenetic analysis revealed that this α-subunit was in the same category as those of crustaceans. Quantitative real-time RT-PCR analysis indicated that this α-subunit's transcript were most highly expressed in gill and lowest in muscle. RT-PCR analysis also revealed that α-subunit expression in crab gill decreased after 2 and 6 h, but increased after 12, 24, 48, and 72 h. In addition, α-subunit expression in hepatopancreas of crab decreased after 2-72 h. These facts indicated that the crab's Na^+/K^+-ATPase α-subunit was potentially involved in the observed acute response to low salinity stress.
基金Support by the National Natural Science Foundation of China(31371650,31071440)Northeast Agricultural University Innovation Foundation For Postgraduates(yjscx4042)。
文摘The effects of the deficiency of the allergenicα-subunit on soybean amino acid(AA)composition were studied using the cultivar Dongnong 47(DN47)as a genetic background.The near-isogenic line(NIL)NIL-DN47-Δα of DN47,with an introgression of theα-null trait allele from the high protein donor parent RiB,was created by marker assisted background selection and used to investigate the AA content and nutritional quality.The contents of crude protein,the total AAs,the total essential amino acids(EAAs)and sulfur-containing(Met and Cys)AAs increased by 4.11%,4.16%,5.20% and 11.96%,respectively in NIL-DN47-Δα compared with DN47.Analyses of the total EAAs(TEAAs)and the EAA index(EAAI)revealed that both parameters in NIL-DN47-Δα were higher than those in DN47.The null-allele of theα-subunit positively affected the AA scores.The quantitative changes in free AAs(FAAs)in the developing seeds of NIL-DN47-Δα and DN47 were compared as of 15 days after flowering(DAF)until maturity.The results showed that the total FAA content in NIL-DN47-Δα was significantly higher than that in the DN47 throughout the late maturation stage(40-60 DAF)of seeds.The high concentration of the FAAs in cgy-2 mutant seeds was a consequence of the high rates of synthesis and/or accumulation of individual FAAs during seed maturation where 25 DAF was an important turning point in the accumulation of the FAAs.The FAA contents of single soybeanα-null,double(α+α′)and triple(α+α′+group I)-null mutant combination lines were investigated.In all of these combinations,introduction of the cgy-2 gene invariably raised the FAA content of mature seeds above that of the DN47.In summary,the enhanced protein quality in cgy-2 mutants resulted from several factors.(1)There was a general increase in the contents of most AAs and FAAs in NIL-DN47-Δα.(2)The induced synthesis of free Arg contributed effectively to the high FAAs of various storage-protein-deficiency mutants.For example,in the S2(null α,group I),the free Arg content was seven times as much as that of DN47,accounting for more than half of the total FAA content in the seed.(3)The increase of sulfur-containing AAs in theα-null type NIL mainly resulted from elevated Met content.These data suggested that the cgy-2 mutation might improve the protein quality of soybean seeds and that lacked of the allergenicα-subunit resulted in increased the FAA content.
文摘By PCR method, apo phycoerythrocyanin α subunit gene (pecA) of Mastigocladus laminosus (M. laminosus) was amplified from its genomic DNA, and then cloned in pBluescript. The pecA gene was subcloned into the expression vector pGEMD, and then transformed into E.coli BL21 (DE3). After induction, a new protein of molecular weight 19×10 3 existing in inclusion body was overexpressed. The expressed product was confirmed to be apo phycoerythrocyanin α subunit by Dot ELISA.
文摘结合模糊识别方法评价的数学模型法和联合国粮农组织/世界卫生组织(Food and Agriculture Organiz ation/World Health Organization,FAO/WHO)、鸡蛋蛋白两种模式下的化学分析法评价两个致敏蛋白α亚基缺失型大豆蛋白质氨基酸营养价值,解析α亚基缺失特性对大豆氨基酸组分及营养品质的影响。用氨基酸分析仪测定氨基酸的组分和含量,α亚基缺失特性用十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(sodium dodecylsulfate polyacrylamide gel electrophoresis,SDS-PAGE)确认,蛋白和脂肪含量用Perten 8620近红外谷物分析仪测定。结果表明:1)致敏蛋白α亚基缺失型大豆的氨基酸总量、必需氨基酸总量、蛋白质、油分含量不因α亚基的缺失而降低;2)致敏蛋白α亚基缺失型大豆的11S/7S比值在4.65以上,高于目前普遍报道的2.0~3.0;3)致敏蛋白α亚基缺失型大豆必需氨基酸含量接近或高于FAO/WHO标准;两种模式下,α亚基缺失型大豆的5种化学评分及贴进度值都很高,接近标准蛋白。致敏蛋白α亚基缺失型大豆蛋白质氨基酸组分平衡,11S/7S比值更优,营养品质更高。
文摘将鸡催乳素 (PRL)和抑制素 - α亚基 (INB- α)基因编码序列重组为融合基因 ,制备了同时包含这 2种激素基因的融合蛋白。通过 PCR和分子克隆的方法首先将全部粤黄鸡 PRL成熟肽 c DNA克隆到载体 p RSET A的 Bgl 和 Eco R 克隆位点之间 ,获得重组质粒 p PRL- RSET。鸡 INB- α片段经扩增后分别被克隆到质粒 p RSET A和 p PRL- RSET的 Nhe 和 Xho 克隆位点之间 ,获得重组质粒 p INB- RSET和 p INB- PRL。以上重组质粒构建的正确性分别由各特定引物组合扩增的 PCR产物长度、特定限制性内切酶消化各重组质粒所得产物长度以及对各质粒的测序结果得到验证。重组质粒 p PRL- RSET和 p INB- PRL 转化 E.coli BL2 1(DE3)株 ,IPTG诱导后所表达的产物经 SDS- PAGE显示 ,其分别与所预期的重组蛋白分子大小相符。质粒 p PRL - RSET和 p INB- PRL的表达产物和用 Ni- NTA凝胶纯化的 2重组蛋白产物都可与抗鸡 PRL 抗体产生特异的免疫印迹 ,并且表达菌裂解液和相应纯化蛋白的免疫印迹处于同一位置。结果说明 ,试验已成功完成了鸡 PRL、INB-α及 2者融合蛋白的构建。