Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0...Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0919),a self-developed antidepressant with selective sigma-1 receptor agonist properties,and its associated mechanisms and targets in traumatic brain injury.Behavioral experiments to assess functional deficits were followed by assessment of neuronal damage through histological analyses and examination of blood-brain barrier permeability and brain edema.Next,we investigated the antioxidative effects of YL-0919 by assessing the levels of traditional markers of oxidative stress in vivo in mice and in vitro in HT22 cells.Finally,the targeted action of YL-0919 was verified by employing a sigma-1 receptor antagonist(BD-1047).Our findings demonstrated that YL-0919 markedly improved deficits in motor function and spatial cognition on day 3 post traumatic brain injury,while also decreasing neuronal mortality and reversing blood-brain barrier disruption and brain edema.Furthermore,YL-0919 effectively combated oxidative stress both in vivo and in vitro.The protective effects of YL-0919 were partially inhibited by BD-1047.These results indicated that YL-0919 relieved impairments in motor and spatial cognition by restraining oxidative stress,a neuroprotective effect that was partially reversed by the sigma-1 receptor antagonist BD-1047.YL-0919 may have potential as a new treatment for traumatic brain injury.展开更多
Alzheimer’s disease is the most frequent form of dementia characterized by the deposition of amyloid-beta plaques and neurofibrillary tangles consisting of hyperphosphorylated tau.Targeting amyloid-beta plaques has b...Alzheimer’s disease is the most frequent form of dementia characterized by the deposition of amyloid-beta plaques and neurofibrillary tangles consisting of hyperphosphorylated tau.Targeting amyloid-beta plaques has been a primary direction for developing Alzheimer’s disease treatments in the last decades.However,existing drugs targeting amyloid-beta plaques have not fully yielded the expected results in the clinic,necessitating the exploration of alternative therapeutic strategies.Increasing evidence unravels that astrocyte morphology and function alter in the brain of Alzheimer’s disease patients,with dysregulated astrocytic purinergic receptors,particularly the P2Y1 receptor,all of which constitute the pathophysiology of Alzheimer’s disease.These receptors are not only crucial for maintaining normal astrocyte function but are also highly implicated in neuroinflammation in Alzheimer’s disease.This review delves into recent insights into the association between P2Y1 receptor and Alzheimer’s disease to underscore the potential neuroprotective role of P2Y1 receptor in Alzheimer’s disease by mitigating neuroinflammation,thus offering promising avenues for developing drugs for Alzheimer’s disease and potentially contributing to the development of more effective treatments.展开更多
Several experimental evidence suggests a link between brain Herpes simplex virus type-1 infection and the occurrence of Alzheimer’s disease.However,the molecular mechanisms underlying this association are not complet...Several experimental evidence suggests a link between brain Herpes simplex virus type-1 infection and the occurrence of Alzheimer’s disease.However,the molecular mechanisms underlying this association are not completely understood.Among the molecular mediators of synaptic and cognitive dysfunction occurring after Herpes simplex virus type-1 infection and reactivation in the brain neuroinflammatory cytokines seem to occupy a central role.Here,we specifically reviewed literature reports dealing with the impact of neuroinflammation on synaptic dysfunction observed after recurrent Herpes simplex virus type-1 reactivation in the brain,highlighting the role of interleukins and,in particular,interleukin 1βas a possible target against Herpes simplex virus type-1-induced neuronal dysfunctions.展开更多
Angiotensin II (Ang II) is the main mediator of the Renin-Angiotensin-System acting on AT<sub>1</sub> and other AT receptors. It is regarded as a pleiotropic agent that induces many actions, including func...Angiotensin II (Ang II) is the main mediator of the Renin-Angiotensin-System acting on AT<sub>1</sub> and other AT receptors. It is regarded as a pleiotropic agent that induces many actions, including functioning as a growth factor, and as a contractile hormone, among others. The aim of this work was to examine the impact of Ang II on the expression and function of α<sub>1</sub>-adrenergic receptors (α<sub>1</sub>-ARs) in cultured rat aorta, and aorta-derived smooth muscle cells. Isolated Wistar rat aorta was incubated for 24 h in DMEM at 37˚C, then subjected to isometric tension and to the action of added norepinephrine, in concentration-response curves. Ang II was added (1 × 10<sup>−5</sup> M), and in some experiments, 5-Methylurapidil (α<sub>1A</sub>-AR antagonist), AH11110A (α<sub>1B</sub>-AR antagonist), or BMY-7378 (α<sub>1D</sub>-AR antagonist), were used to identify the α<sub>1</sub>-AR involved in the response. Desensitization of the contractile response to norepinephrine was observed due to incubation time, and by the Ang II action. α<sub>1D</sub>-AR was protected from desensitization by BMY-7378;while RS-100329 and prazosin partially mitigated desensitization. In another set of experiments, isolated aorta-derived smooth muscle cells were exposed to Ang II and α<sub>1</sub>-ARs proteins were evaluated. α<sub>1D</sub>-AR increased at 30 and 60 min post Ang II exposure, the α<sub>1A</sub>-AR diminished from 1 to 4 h, while α<sub>1B</sub>-AR remained unchanged over 24 h of Ang II exposure. Ang II induced an increase of α<sub>1D</sub>-AR at short times, and BMY-7378 protected α<sub>1D</sub>-AR from desensitization.展开更多
背景:程序性细胞死亡受体1(programmed death receptor-1,PD-1)在高糖环境下影响骨髓间充质干细胞成骨分化的作用机制尚不清楚。目的:探讨高糖环境中PD-1对大鼠骨髓间充质干细胞成骨分化的影响及其调控机制。方法:将大鼠骨髓间充质干细...背景:程序性细胞死亡受体1(programmed death receptor-1,PD-1)在高糖环境下影响骨髓间充质干细胞成骨分化的作用机制尚不清楚。目的:探讨高糖环境中PD-1对大鼠骨髓间充质干细胞成骨分化的影响及其调控机制。方法:将大鼠骨髓间充质干细胞随机分为正常糖组(5.6 mmol/L)、高糖组(30 mmol/L)、PD-1过表达组、PD-1过表达空载组、PD-1敲低组、PD-1敲低空载组、PI3K/AKT通路抑制剂组(PD-1敲低+5μmol/L LY294002)。通过在高糖培养基中培养大鼠骨髓间充质干细胞来模拟体外糖尿病环境,采用qRT-PCR检测大鼠骨髓间充质干细胞中PD-1及其配体PD-L1和成骨标志物Runx2、OSX的mRNA表达,采用碱性磷酸酶染色和茜素红S染色观察成骨分化能力,采用CCK-8检测细胞增殖情况,采用Western blot检测PD-1、PD-L1、p-PI3K、p-AKT的蛋白表达。结果与结论:①高糖组PD-1及PD-L1表达显著高于正常糖组,高糖组骨髓间充质干细胞的成骨分化能力较正常糖组显著下降;②敲低PD-1表达可以促进骨髓间充质干细胞的成骨分化、增加细胞增殖活性,同时激活PI3K/AKT通路;③加入PI3K/AKT通路抑制剂LY294002后,骨髓间充质干细胞成骨分化能力显著下降。结果表明:PD-1依赖于PI3K/AKT信号通路抑制高糖环境下大鼠骨髓间充质干细胞的成骨分化。展开更多
In the present paper, the effect of α1 and α2 subtypes of the thoracic spinal cord on electroacupuncture (EA)-induced improvement of ischemic cardiac electrical and mechanical activities was observed in 80 anestheti...In the present paper, the effect of α1 and α2 subtypes of the thoracic spinal cord on electroacupuncture (EA)-induced improvement of ischemic cardiac electrical and mechanical activities was observed in 80 anesthetized rabbits by using ECG-ST, MBP, LVP and dp/dt max as indexes. Results showed that:1) EA at "Neiguan" could significantly improve the electrical and mechanical activities of the ischemic heart; 2) the effect of EA could be enhanced to a certain degree when α1 receptors of the thoracic spinal cord were activated by subarachnoid microinjection of phenylephrine, while it was weakened when α1 receptors were inhibited by microinjection of parison; and 3) activation or inhibition of α2 receptors of the thoracic spinal cord by microinjection of clonidine and yohimbine had no marked influence on the effect of EA in improving electrical activity of the ischemic heart, but when activated,they could weaken the effect of EA in raising MBP; while suppressed, they had no any striking influence on the effect of EA in raising MBP. It suggests that among α-receptors, predominantly α1-receptors participate in the process of EA-induced improvement of performance of ischemic heart.展开更多
基金supported by the National Natural Science Foundation of China,Nos.82204360(to HM)and 82270411(to GW)National Science and Technology Innovation 2030 Major Program,No.2021ZD0200900(to YL)。
文摘Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0919),a self-developed antidepressant with selective sigma-1 receptor agonist properties,and its associated mechanisms and targets in traumatic brain injury.Behavioral experiments to assess functional deficits were followed by assessment of neuronal damage through histological analyses and examination of blood-brain barrier permeability and brain edema.Next,we investigated the antioxidative effects of YL-0919 by assessing the levels of traditional markers of oxidative stress in vivo in mice and in vitro in HT22 cells.Finally,the targeted action of YL-0919 was verified by employing a sigma-1 receptor antagonist(BD-1047).Our findings demonstrated that YL-0919 markedly improved deficits in motor function and spatial cognition on day 3 post traumatic brain injury,while also decreasing neuronal mortality and reversing blood-brain barrier disruption and brain edema.Furthermore,YL-0919 effectively combated oxidative stress both in vivo and in vitro.The protective effects of YL-0919 were partially inhibited by BD-1047.These results indicated that YL-0919 relieved impairments in motor and spatial cognition by restraining oxidative stress,a neuroprotective effect that was partially reversed by the sigma-1 receptor antagonist BD-1047.YL-0919 may have potential as a new treatment for traumatic brain injury.
文摘Alzheimer’s disease is the most frequent form of dementia characterized by the deposition of amyloid-beta plaques and neurofibrillary tangles consisting of hyperphosphorylated tau.Targeting amyloid-beta plaques has been a primary direction for developing Alzheimer’s disease treatments in the last decades.However,existing drugs targeting amyloid-beta plaques have not fully yielded the expected results in the clinic,necessitating the exploration of alternative therapeutic strategies.Increasing evidence unravels that astrocyte morphology and function alter in the brain of Alzheimer’s disease patients,with dysregulated astrocytic purinergic receptors,particularly the P2Y1 receptor,all of which constitute the pathophysiology of Alzheimer’s disease.These receptors are not only crucial for maintaining normal astrocyte function but are also highly implicated in neuroinflammation in Alzheimer’s disease.This review delves into recent insights into the association between P2Y1 receptor and Alzheimer’s disease to underscore the potential neuroprotective role of P2Y1 receptor in Alzheimer’s disease by mitigating neuroinflammation,thus offering promising avenues for developing drugs for Alzheimer’s disease and potentially contributing to the development of more effective treatments.
基金supported by UniversitàCattolica(D1 intramural funds to RP)Italian Ministry of University and Research(PRIN 2022ZYLB7B,P2022YW7BP funds to CG).
文摘Several experimental evidence suggests a link between brain Herpes simplex virus type-1 infection and the occurrence of Alzheimer’s disease.However,the molecular mechanisms underlying this association are not completely understood.Among the molecular mediators of synaptic and cognitive dysfunction occurring after Herpes simplex virus type-1 infection and reactivation in the brain neuroinflammatory cytokines seem to occupy a central role.Here,we specifically reviewed literature reports dealing with the impact of neuroinflammation on synaptic dysfunction observed after recurrent Herpes simplex virus type-1 reactivation in the brain,highlighting the role of interleukins and,in particular,interleukin 1βas a possible target against Herpes simplex virus type-1-induced neuronal dysfunctions.
文摘Angiotensin II (Ang II) is the main mediator of the Renin-Angiotensin-System acting on AT<sub>1</sub> and other AT receptors. It is regarded as a pleiotropic agent that induces many actions, including functioning as a growth factor, and as a contractile hormone, among others. The aim of this work was to examine the impact of Ang II on the expression and function of α<sub>1</sub>-adrenergic receptors (α<sub>1</sub>-ARs) in cultured rat aorta, and aorta-derived smooth muscle cells. Isolated Wistar rat aorta was incubated for 24 h in DMEM at 37˚C, then subjected to isometric tension and to the action of added norepinephrine, in concentration-response curves. Ang II was added (1 × 10<sup>−5</sup> M), and in some experiments, 5-Methylurapidil (α<sub>1A</sub>-AR antagonist), AH11110A (α<sub>1B</sub>-AR antagonist), or BMY-7378 (α<sub>1D</sub>-AR antagonist), were used to identify the α<sub>1</sub>-AR involved in the response. Desensitization of the contractile response to norepinephrine was observed due to incubation time, and by the Ang II action. α<sub>1D</sub>-AR was protected from desensitization by BMY-7378;while RS-100329 and prazosin partially mitigated desensitization. In another set of experiments, isolated aorta-derived smooth muscle cells were exposed to Ang II and α<sub>1</sub>-ARs proteins were evaluated. α<sub>1D</sub>-AR increased at 30 and 60 min post Ang II exposure, the α<sub>1A</sub>-AR diminished from 1 to 4 h, while α<sub>1B</sub>-AR remained unchanged over 24 h of Ang II exposure. Ang II induced an increase of α<sub>1D</sub>-AR at short times, and BMY-7378 protected α<sub>1D</sub>-AR from desensitization.
文摘In the present paper, the effect of α1 and α2 subtypes of the thoracic spinal cord on electroacupuncture (EA)-induced improvement of ischemic cardiac electrical and mechanical activities was observed in 80 anesthetized rabbits by using ECG-ST, MBP, LVP and dp/dt max as indexes. Results showed that:1) EA at "Neiguan" could significantly improve the electrical and mechanical activities of the ischemic heart; 2) the effect of EA could be enhanced to a certain degree when α1 receptors of the thoracic spinal cord were activated by subarachnoid microinjection of phenylephrine, while it was weakened when α1 receptors were inhibited by microinjection of parison; and 3) activation or inhibition of α2 receptors of the thoracic spinal cord by microinjection of clonidine and yohimbine had no marked influence on the effect of EA in improving electrical activity of the ischemic heart, but when activated,they could weaken the effect of EA in raising MBP; while suppressed, they had no any striking influence on the effect of EA in raising MBP. It suggests that among α-receptors, predominantly α1-receptors participate in the process of EA-induced improvement of performance of ischemic heart.