期刊文献+
共找到7,225篇文章
< 1 2 250 >
每页显示 20 50 100
Transplantation of fibrin-thrombin encapsulated human induced neural stem cells promotes functional recovery of spinal cord injury rats through modulation of the microenvironment 被引量:2
1
作者 Sumei Liu Baoguo Liu +4 位作者 Qian Li Tianqi Zheng Bochao Liu Mo Li Zhiguo Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期440-446,共7页
Recent studies have mostly focused on engraftment of cells at the lesioned spinal cord,with the expectation that differentiated neurons facilitate recovery.Only a few studies have attempted to use transplanted cells a... Recent studies have mostly focused on engraftment of cells at the lesioned spinal cord,with the expectation that differentiated neurons facilitate recovery.Only a few studies have attempted to use transplanted cells and/or biomaterials as major modulators of the spinal cord injury microenvironment.Here,we aimed to investigate the role of microenvironment modulation by cell graft on functional recovery after spinal cord injury.Induced neural stem cells reprogrammed from human peripheral blood mononuclear cells,and/or thrombin plus fibrinogen,were transplanted into the lesion site of an immunosuppressed rat spinal cord injury model.Basso,Beattie and Bresnahan score,electrophysiological function,and immunofluorescence/histological analyses showed that transplantation facilitates motor and electrophysiological function,reduces lesion volume,and promotes axonal neurofilament expression at the lesion core.Examination of the graft and niche components revealed that although the graft only survived for a relatively short period(up to 15 days),it still had a crucial impact on the microenvironment.Altogether,induced neural stem cells and human fibrin reduced the number of infiltrated immune cells,biased microglia towards a regenerative M2 phenotype,and changed the cytokine expression profile at the lesion site.Graft-induced changes of the microenvironment during the acute and subacute stages might have disrupted the inflammatory cascade chain reactions,which may have exerted a long-term impact on the functional recovery of spinal cord injury rats. 展开更多
关键词 biomaterial FIBRINOGEN functional recovery induced neural stem cell transplantation MICROENVIRONMENT MICROGLIA spinal cord injury THROMBIN
下载PDF
The Effect of Tuberculosis Infection on Pancreatic Beta-Cell Function in Patients with Type 2 Diabetes Mellitus
2
作者 Mengdan Kong Ailin Zhong +1 位作者 Shilin Qu Junli Xue 《Advances in Bioscience and Biotechnology》 CAS 2024年第2期129-139,共11页
Objective: The aim of this study is to investigate how individuals with type 2 diabetes mellitus’ pancreatic β-cell function index and insulin resistance index are affected by tuberculosis infection. Methods: The st... Objective: The aim of this study is to investigate how individuals with type 2 diabetes mellitus’ pancreatic β-cell function index and insulin resistance index are affected by tuberculosis infection. Methods: The study group consisted of 89 patients with type 2 diabetes mellitus and tuberculosis infection who were admitted to Jingzhou Chest Hospital between March 2019 and March 2021. Gender and duration of diabetes were matching conditions. The control group was made up of 89 patients with type 2 diabetes who were admitted to Jingzhou Central Hospital’s endocrinology department during the same period. The two patient groups provided general information such as gender, age, length of diabetes, and blood biochemical indexes such as glycosylated hemoglobin (HbA1c), fasting glucose (FPG), and fasting C-peptide (FC-P). The HOMA calculator was used to calculate the HOMA-β and the HOMA-IR, and intergroup comparisons and correlation analyses were carried out. Results: Regarding gender, age, disease duration, FC-P, and HbA1c, the differences between the two groups were not statistically significant (P > 0.05). However, BMI, FPG, HOMA-β, and HOMA-IR showed statistically significant differences (P < 0.05). In comparison to the control group, the study group’s HOMA-β was lower and its HOMA-IR was greater. According to Spearman’s correlation analysis, HOMA-β had a negative association (P th FPG, HbA1c, and the length of the disease, and a positive correlation with BMI and FC-P. A positive correlation was found between HOMA-IR and BMI, FPG, and FC-P (P < 0.01), as well as a correlation with the length of the disease (P > 0.05) and HbA1c. Conclusions: In type 2 diabetes mellitus combined with tuberculosis infection, the patients had higher FPG levels and lower FC-P levels, the secretory function of pancreatic β-cells was more severely impaired, and insulin resistance was more obvious. 展开更多
关键词 Tuberculosis Infection Type 2 Diabetes Mellitus Pancreatic β-cell function Insulin Resistance
下载PDF
Role of Immune Cells and Non-immune Cells with Immune Functions in the Pathogenesis of ALI/ARDS
3
作者 Jincun LI Wenyu MA Gang LI 《Medicinal Plant》 2024年第4期51-58,共8页
This review outlines the effects of different types of cells with immune function on acute lung injury(ALI)inflammation and the regulation of inflammatory responses between these cells via cell-cell interactions.It is... This review outlines the effects of different types of cells with immune function on acute lung injury(ALI)inflammation and the regulation of inflammatory responses between these cells via cell-cell interactions.It is expected to provide some possible strategies for the research and treatment of ALI and acute respiratory distress syndrome(ARDS). 展开更多
关键词 Acute lung injury(ALI) Immune cell Non-immune cells with immune functions cell-cell interaction PATHOGENESIS
下载PDF
Insight into Function and Subcellular Localization of a Type III-Secreted Effector in Pseudomonas syringae pv. tomato DC3000
4
作者 Jianzhong Huang Kai Chen +4 位作者 Zhuojun Li Hongbin Zhang Xiuying Guan Xiaoju Zhong Peng Jia 《American Journal of Plant Sciences》 CAS 2024年第10期835-846,共12页
Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) is a bacterial pathogen of tomato and of the model plants Arabidopsis and Nicotiana benthamiana (N. benthamiana). Like numerous Gram-negative bacterial pathogens of ... Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) is a bacterial pathogen of tomato and of the model plants Arabidopsis and Nicotiana benthamiana (N. benthamiana). Like numerous Gram-negative bacterial pathogens of animals and plants, Pst DC3000 exploits the conserved type III secretion system (TTSS) to deliver multiple virulence effectors directly into the host cells. Type III effectors (T3Es) collectively participate in causing disease, by mechanisms that are not well clarity. Elucidating the virulence function of individual effector is fundamental for understanding bacterial infection of plants. Here, we focused on studying one of these effectors, HopAA1-1, and analyzed its potential function and subcellular localization in N. benthamiana. Using an Agrobacterium-mediated transient expression system, we found that HopAA1-1 can trigger domain-dependent cell death in N. benthamiana. The observation using confocal microscopy showed that the YFP-tagged HopAA1-1 localizes to diverse cellular components containing nucleus, cytoplasm and cell membrane, which was demonstrated through immunoblot analysis of membrane fractionation and nuclear separation. Enforced HopAA1-1 subcellular localization, by tagging with a nuclear localization sequence (NLS) or a nuclear export sequence (NES), shows that HopAA1-1-induced cell death in N. benthamiana is suppressed in the nucleus but enhanced in the cytoplasm. Our research is lay a foundation for revealed the molecular pathogenesis of Pseudomonas syringae pv. tomato. 展开更多
关键词 cell Death HopAA1-1 Nicotiana benthamiana Pst DC3000
下载PDF
Mesenchymal stem cell-derived extracellular vesicles as a cell-free therapy for traumatic brain injury via neuroprotection and neurorestoration 被引量:2
5
作者 Ye Xiong Asim Mahmood Michael Chopp 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期49-54,共6页
Traumatic brain injury is a serious and complex neurological condition that affects millions of people worldwide.Despite significant advancements in the field of medicine,effective treatments for traumatic brain injur... Traumatic brain injury is a serious and complex neurological condition that affects millions of people worldwide.Despite significant advancements in the field of medicine,effective treatments for traumatic brain injury remain limited.Recently,extracellular vesicles released from mesenchymal stem/stromal cells have emerged as a promising novel therapy for traumatic brain injury.Extracellular vesicles are small membrane-bound vesicles that are naturally released by cells,including those in the brain,and can be engineered to contain therapeutic cargo,such as anti-inflammatory molecules,growth factors,and microRNAs.When administered intravenously,extra cellular vesicles can cross the blood-brain barrier and deliver their cargos to the site of injury,where they can be taken up by recipient cells and modulate the inflammatory response,promote neuroregeneration,and improve functional outcomes.In preclinical studies,extracellular vesicle-based therapies have shown promising results in promoting recove ry after traumatic brain injury,including reducing neuronal damage,improving cognitive function,and enhancing motor recovery.While further research is needed to establish the safety and efficacy of extra cellular vesicle-based therapies in humans,extra cellular vesicles represent a promising novel approach for the treatment of traumatic brain injury.In this review,we summarize mesenchymal ste m/stromal cell-de rived extracellular vesicles as a cell-free therapy for traumatic brain injury via neuroprotection and neurorestoration and brainderived extracellular vesicles as potential biofluid biomarkers in small and large animal models of traumatic brain injury. 展开更多
关键词 biomarkers extracellular vesicles functional outcome mesenchymal stem/stromal cells NEUROINFLAMMATION NEUROPLASTICITY NEUROPROTECTION traumatic brain injury
下载PDF
Long non-coding RNA H19 regulates neurogenesis of induced neural stem cells in a mouse model of closed head injury 被引量:3
6
作者 Mou Gao Qin Dong +4 位作者 Zhijun Yang Dan Zou Yajuan Han Zhanfeng Chen Ruxiang Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期872-880,共9页
Stem cell-based therapies have been proposed as a potential treatment for neural regeneration following closed head injury.We previously reported that induced neural stem cells exert beneficial effects on neural regen... Stem cell-based therapies have been proposed as a potential treatment for neural regeneration following closed head injury.We previously reported that induced neural stem cells exert beneficial effects on neural regeneration via cell replacement.However,the neural regeneration efficiency of induced neural stem cells remains limited.In this study,we explored differentially expressed genes and long non-coding RNAs to clarify the mechanism underlying the neurogenesis of induced neural stem cells.We found that H19 was the most downregulated neurogenesis-associated lnc RNA in induced neural stem cells compared with induced pluripotent stem cells.Additionally,we demonstrated that H19 levels in induced neural stem cells were markedly lower than those in induced pluripotent stem cells and were substantially higher than those in induced neural stem cell-derived neurons.We predicted the target genes of H19 and discovered that H19 directly interacts with mi R-325-3p,which directly interacts with Ctbp2 in induced pluripotent stem cells and induced neural stem cells.Silencing H19 or Ctbp2 impaired induced neural stem cell proliferation,and mi R-325-3p suppression restored the effect of H19 inhibition but not the effect of Ctbp2 inhibition.Furthermore,H19 silencing substantially promoted the neural differentiation of induced neural stem cells and did not induce apoptosis of induced neural stem cells.Notably,silencing H19 in induced neural stem cell grafts markedly accelerated the neurological recovery of closed head injury mice.Our results reveal that H19 regulates the neurogenesis of induced neural stem cells.H19 inhibition may promote the neural differentiation of induced neural stem cells,which is closely associated with neurological recovery following closed head injury. 展开更多
关键词 closed head injury Ctbp2 induced neural stem cell lncRNA H19 miR-325-3p NEUROGENESIS
下载PDF
Bone marrow-derived mesenchymal stem cell-derived exosomeloaded miR-129-5p targets high-mobility group box 1 attenuates neurological-impairment after diabetic cerebral hemorrhage 被引量:1
7
作者 Yue-Ying Wang Ke Li +5 位作者 Jia-Jun Wang Wei Hua Qi Liu Yu-Lan Sun Ji-Ping Qi Yue-Jia Song 《World Journal of Diabetes》 SCIE 2024年第9期1979-2001,共23页
BACKGROUND Diabetic intracerebral hemorrhage(ICH)is a serious complication of diabetes.The role and mechanism of bone marrow mesenchymal stem cell(BMSC)-derived exosomes(BMSC-exo)in neuroinflammation post-ICH in patie... BACKGROUND Diabetic intracerebral hemorrhage(ICH)is a serious complication of diabetes.The role and mechanism of bone marrow mesenchymal stem cell(BMSC)-derived exosomes(BMSC-exo)in neuroinflammation post-ICH in patients with diabetes are unknown.In this study,we investigated the regulation of BMSC-exo on hyperglycemia-induced neuroinflammation.AIM To study the mechanism of BMSC-exo on nerve function damage after diabetes complicated with cerebral hemorrhage.METHODS BMSC-exo were isolated from mouse BMSC media.This was followed by transfection with microRNA-129-5p(miR-129-5p).BMSC-exo or miR-129-5poverexpressing BMSC-exo were intravitreally injected into a diabetes mouse model with ICH for in vivo analyses and were cocultured with high glucoseaffected BV2 cells for in vitro analyses.The dual luciferase test and RNA immunoprecipitation test verified the targeted binding relationship between miR-129-5p and high-mobility group box 1(HMGB1).Quantitative polymerase chain reaction,western blotting,and enzyme-linked immunosorbent assay were conducted to assess the levels of some inflammation factors,such as HMGB1,interleukin 6,interleukin 1β,toll-like receptor 4,and tumor necrosis factorα.Brain water content,neural function deficit score,and Evans blue were used to measure the neural function of mice.RESULTS Our findings indicated that BMSC-exo can promote neuroinflammation and functional recovery.MicroRNA chip analysis of BMSC-exo identified miR-129-5p as the specific microRNA with a protective role in neuroinflammation.Overexpression of miR-129-5p in BMSC-exo reduced the inflammatory response and neurological impairment in comorbid diabetes and ICH cases.Furthermore,we found that miR-129-5p had a targeted binding relationship with HMGB1 mRNA.CONCLUSION We demonstrated that BMSC-exo can reduce the inflammatory response after ICH with diabetes,thereby improving the neurological function of the brain. 展开更多
关键词 Bone marrow mesenchymal stem cells Exosome Diabetic cerebral hemorrhage Neuroinflammation MicroRNA-129-5p High mobility group box 1
下载PDF
Chondroitinase ABC combined with Schwann cell transplantation enhances restoration of neural connection and functional recovery following acute and chronic spinal cord injury
8
作者 Wenrui Qu Xiangbing Wu +13 位作者 Wei Wu Ying Wang Yan Sun Lingxiao Deng Melissa Walker Chen Chen Heqiao Dai Qi Han Ying Ding Yongzhi Xia George Smith Rui Li Nai-Kui Liu Xiao-Ming Xu 《Neural Regeneration Research》 SCIE CAS 2025年第5期1467-1482,共16页
Schwann cell transplantation is considered one of the most promising cell-based therapy to repair injured spinal cord due to its unique growth-promoting and myelin-forming properties.A the Food and Drug Administration... Schwann cell transplantation is considered one of the most promising cell-based therapy to repair injured spinal cord due to its unique growth-promoting and myelin-forming properties.A the Food and Drug Administration-approved Phase I clinical trial has been conducted to evaluate the safety of transplanted human autologous Schwann cells to treat patients with spinal cord injury.A major challenge for Schwann cell transplantation is that grafted Schwann cells are confined within the lesion cavity,and they do not migrate into the host environment due to the inhibitory barrier formed by injury-induced glial scar,thus limiting axonal reentry into the host spinal cord.Here we introduce a combinatorial strategy by suppressing the inhibitory extracellular environment with injection of lentivirus-mediated transfection of chondroitinase ABC gene at the rostral and caudal borders of the lesion site and simultaneously leveraging the repair capacity of transplanted Schwann cells in adult rats following a mid-thoracic contusive spinal cord injury.We report that when the glial scar was degraded by chondroitinase ABC at the rostral and caudal lesion borders,Schwann cells migrated for considerable distances in both rostral and caudal directions.Such Schwann cell migration led to enhanced axonal regrowth,including the serotonergic and dopaminergic axons originating from supraspinal regions,and promoted recovery of locomotor and urinary bladder functions.Importantly,the Schwann cell survival and axonal regrowth persisted up to 6 months after the injury,even when treatment was delayed for 3 months to mimic chronic spinal cord injury.These findings collectively show promising evidence for a combinatorial strategy with chondroitinase ABC and Schwann cells in promoting remodeling and recovery of function following spinal cord injury. 展开更多
关键词 axonal regrowth bladder function chondroitinase ABC functional recovery glial scar LENTIVIRUS migration Schwann cell spinal cord injury TRANSPLANTATION
下载PDF
Therapeutic potential of urine-derived stem cells in renal regeneration following acute kidney injury:A comparative analysis with mesenchymal stem cells
9
作者 Fang Li Bin Zhao +8 位作者 Lei Zhang Guo-Qing Chen Li Zhu Xiao-Ling Feng Meng-Jia Gong Cheng-Chen Hu Yuan-Yuan Zhang Ming Li Yong-Qiang Liu 《World Journal of Stem Cells》 SCIE 2024年第5期525-537,共13页
BACKGROUND Acute kidney injury(AKI)is a common clinical syndrome with high morbidity and mortality rates.The use of pluripotent stem cells holds great promise for the treatment of AKI.Urine-derived stem cells(USCs)are... BACKGROUND Acute kidney injury(AKI)is a common clinical syndrome with high morbidity and mortality rates.The use of pluripotent stem cells holds great promise for the treatment of AKI.Urine-derived stem cells(USCs)are a novel and versatile cell source in cell-based therapy and regenerative medicine that provide advantages of a noninvasive,simple,and low-cost approach and are induced with high multidifferentiation potential.Whether these cells could serve as a potential stem cell source for the treatment of AKI has not been determined.METHODS Stem cell markers with multidifferentiation potential were isolated from human amniotic fluid.AKI severe combined immune deficiency(SCID)mice models were induced by means of an intramuscular injection with glycerol.USCs isolated from human-voided urine were administered via tail veins.The functional changes in the kidney were assessed by the levels of blood urea nitrogen and serum creatinine.The histologic changes were evaluated by hematoxylin and eosin staining and transferase dUTP nick-end labeling staining.Meanwhile,we compared the regenerative potential of USCs with bone marrow-derived mesenchymal stem cells(MSCs).RESULTS Treatment with USCs significantly alleviated histological destruction and functional decline.The renal function was rapidly restored after intravenous injection of 5×105 human USCs into SCID mice with glycerol-induced AKI compared with injection of saline.Results from secretion assays conducted in vitro demonstrated that both stem cell varieties released a wide array of cytokines and growth factors.This suggests that a mixture of various mediators closely interacts with their biochemical functions.Two types of stem cells showed enhanced tubular cell prolif-eration and decreased tubular cell apoptosis,although USC treatment was not more effective than MSC treatment.We found that USC therapy significantly improved renal function and histological damage,inhibited inflammation and apoptosis processes in the kidney,and promoted tubular epithelial proliferation.CONCLUSION Our study demonstrated the potential of USCs for the treatment of AKI,representing a new clinical therapeutic strategy. 展开更多
关键词 Urine-derived stem cells Regenerative medicine Acute kidney injury Renal function recovery cell therapy
下载PDF
Revolutionizing stem cell research:unbiased insights through single-cell sequencing
10
作者 HAO WU NA HUO +3 位作者 SITUO WANG ZIWEI LIU YI JIANG QUAN SHI 《BIOCELL》 SCIE 2024年第11期1531-1542,共12页
Stem cells have shown great application potential in wound repair,tissue regeneration,and disease treatment.Therefore,a full understanding of stem cells and their related regulatory mechanisms in disease treatment is ... Stem cells have shown great application potential in wound repair,tissue regeneration,and disease treatment.Therefore,a full understanding of stem cells and their related regulatory mechanisms in disease treatment is conducive to improving the therapeutic effect of stem cells.However,thus far,there are still many unsolved mysteries in thefield of stem cells due to technical limitations,which hinder the in-depth exploration of stem cells and their wide clinical application.Single-cell sequencing(SCS)has provided very powerful and unbiased insights into cell gene expression profiles at the single-cell level,bringing exciting results to the stem cellfield.At present,SCS has been widely applied in thefield of stem cells,covering various aspects,including lineage tracing the development of stem cells,identifying new stem cell types,exploring cellular heterogeneity,and identifying internal functional subpopulations.In this paper,we focus on the latest research progress and discuss the application of SCS technology in stem cells. 展开更多
关键词 Stem cell Single-cell sequencing cellular heterogeneity SUBPOPULATIONS functional analysis Lineage-tracing
下载PDF
miR-24-3p promotes proliferation and inhibits apoptosis of porcine granulosa cells by targeting P27
11
作者 Shengjie Shi Lutong Zhang +7 位作者 Liguang Wang Huan Yuan Haowei Sun Mielie Madaniyati Chuanjiang Cai Weijun Pang Lei Gao Guiyan Chu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1315-1328,共14页
Ovarian follicle development is associated with the physiological functions of granulosa cells(GCs),including proliferation and apoptosis.The level of miR-24-3p in ovarian tissue of high-yielding Yorkshire×Landra... Ovarian follicle development is associated with the physiological functions of granulosa cells(GCs),including proliferation and apoptosis.The level of miR-24-3p in ovarian tissue of high-yielding Yorkshire×Landrace sows was significantly higher than that of low-yielding sows.However,the functions of miR-24-3p on GCs are unclear.In this study,using flow cytometry,5-ethynyl-2′-de-oxyuridine(EdU)staining,and cell count,we showed that miR-24-3p promoted the proliferation of GCs increasing the proportion of cells in the S phase and upregulating the expression of cell cycle genes,moreover,miR-24-3p inhibited GC apoptosis.Mechanistically,on-line prediction,bioinformatics analysis,a luciferase reporter assay,RT-qPCR,and Western blot results showed that the target gene of miR-24-3p in proliferation and apoptosis is cyclin-dependent kinase inhibitor 1B(P27/CDKN1B).Furthermore,the effect of miR-24-3p on GC proliferation and apoptosis was attenuated by P27 overexpression.These findings suggest that miR-24-3p regulates the physiological functions of GCs. 展开更多
关键词 miR-24-3p granulosa cells PROLIFERATION APOPTOSIS
下载PDF
Sirtuin 3 regulation:a target to alleviateβ-hydroxybutyric acid-induced mitochondrial dysfunction in bovine granulosa cells 被引量:1
12
作者 Shanjiang Zhao Jianfei Gong +6 位作者 Yi Wang Nuo Heng Huan Wang Zhihui Hu Haoyu Wang Haobo Zhang Huabin Zhu 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第4期1377-1394,共18页
Background During the transition period,the insufficient dry matter intake and a sharply increased in energy consumption to produce large quantities of milk,high yielding cows would enter a negative energy balance(NEB... Background During the transition period,the insufficient dry matter intake and a sharply increased in energy consumption to produce large quantities of milk,high yielding cows would enter a negative energy balance(NEB)that causes an increase in ketone bodies(KBs)and decrease in reproduction efficiency.The excess concentrations of circulating KBs,represented byβ-hydroxybutyric acid(BHBA),could lead to oxidative damage,which potentially cause injury to follicular granulosa cells(fGCs)and delayed follicular development.Sirtuin 3(Sirt3)regulates mitochondria reactive oxygen species(mitoROS)homeostasis in a beneficial manner;however,the molecular mechanisms underlying its involvement in the BHBA-induced injury of fGCs is poorly understood.The aim of this study was to explore the protection effects and underlying mechanisms of Sirt3 against BHBA overload-induced damage of fGCs.Results Our findings demonstrated that 2.4 mmol/L of BHBA stress increased the levels of mitoROS in bovine fGCs.Further investigations identified the subsequent mitochondrial dysfunction,including an increased abnormal rate of mitochondrial architecture,mitochondrial permeability transition pore(MPTP)opening,reductions in mitochondrial membrane potential(MMP)and Ca^(2+)release;these dysfunctions then triggered the caspase cascade reaction of apoptosis in fGCs.Notably,the overexpression of Sirt3 prior to treatment enhanced mitochondrial autophagy by increasing the expression levels of Beclin-1,thus preventing BHBA-induced mitochondrial oxidative stress and mitochondrial dysfunction in fGCs.Furthermore,our data suggested that the AMPK-mTOR-Beclin-1 pathway may be involved in the protective mechanism of Sirt3 against cellular injury triggered by BHBA stimulation.Conclusions These findings indicate that Sirt3 protects fGCs from BHBA-triggered injury by enhancing autophagy,attenuating oxidative stress and mitochondrial damage.This study provides new strategies to mitigate the fGCs injury caused by excessive BHBA stress in dairy cows with ketosis. 展开更多
关键词 BHBA Dairy cows Granulosa cells KETOSIS Mitochondrial function Sirt3
下载PDF
Exosome-Transmitted miR-224-5p Promotes Colorectal Cancer Cell Proliferation via Targeting ULK2 in p53-Dependent Manner
13
作者 YANG Le Mei ZHENG Qi +5 位作者 LIU Xiao Jia LI Xian Xian Veronica Lim CHEN Qi ZHAO Zhong Hua WANG Shu Yang 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2024年第1期71-84,共14页
Objective To investigate the role and molecular mechanism of exosomal miR-224-5p in colorectal cancer(CRC).Methods The miR-224-5p expression in CRC patient tissues and cell-derived exosomes was measured by laser captu... Objective To investigate the role and molecular mechanism of exosomal miR-224-5p in colorectal cancer(CRC).Methods The miR-224-5p expression in CRC patient tissues and cell-derived exosomes was measured by laser capture microdissection and qRT-PCR,respectively.Dual-luciferase reporter gene assay was used to determine the target gene of miR-224-5p.The protein expressions of p53 and unc-51 like kinase 2(ULK2)in CRC cells were detected by western blot.Flow cytometry was used to detect cell cycle and apoptosis.Cell proliferation was measured by CCK8 and EdU assay.Results The miR-224-5p expression was upregulated in CRC tissues and increased progressively with the rise of CRC stage.CRC cells secreted extracellular miR-224-5p mainly in an exosome-dependent manner,and then miR-224-5p could be transferred to surrounding tumor cells to regulate cell proliferation in the form of autocrine or paracrine.Moreover,ULK2 was characterized as a direct target of miR-224-5p and was downregulated in CRC tissues.Interestingly,ULK2 inhibited CRC cell proliferation in a p53-dependent manner.Furthermore,exosome-derived miR-224-5p partially reversed the proliferation regulation of ULK2 on CRC cells.Conclusion Our findings demonstrate that exosome-transmitted miR-224-5p promotes p53-dependent cell proliferation by targeting ULK2 in CRC,which may offer promising targets for CRC prevention and therapy. 展开更多
关键词 miR-224-5p EXOSOME ULK2 P53 cell proliferation Colorectal cancer
下载PDF
Biological function of miRNA-145-5p in angiotensin II induced renal inflammation
14
作者 BIN LI YUCHENG SHENG +7 位作者 XIAOYING XU SHENGCUN WANG HONGYAN SONG JINGYUAN LI HAONAN JI QINGHUA WANG XIAODI ZHOU LONGJU QI 《BIOCELL》 SCIE 2024年第4期601-611,共11页
Objective:Chronic kidney disease(CKD)is a progressive disorder characterized by intricate structural and functional alterations in the kidneys,attributable to diverse causative factors.Notably,the therapeutic promise ... Objective:Chronic kidney disease(CKD)is a progressive disorder characterized by intricate structural and functional alterations in the kidneys,attributable to diverse causative factors.Notably,the therapeutic promise of miR-145-5p in addressing renal pathologies has been discerned.This investigation seeks to elucidate the functional role of miR-145-5p in injured kidneys by subjecting human glomerular mesangial cells(HGMCs)to stimulation with Angiotensin II(AngII).Materials and Methods:Cellular viability and the levels of inflammatory mediators were evaluated utilizing Cell Counting Kit-8(CCK-8),quantitative real-time polymerase chain reaction(qRT-PCR),and western blot methodologies,both in the presence of AngII incubation and in scenarios of miR-145p overexpression and downregulation.Furthermore,the cell cycle dynamics were elucidated through Fluorescence-activated Cell Sorting(FACS)analysis.Results:AngII incubation induced an upregulation of miR-145-5p and inflammatory factors including Intercellular Adhesion Molecule 1(ICAM-1),Interleukin 6(IL-6),Interleukin 8(IL-8),and Interleukin 1β(IL-1β).Additionally,it elevated the expression of Cyclin A2,Cyclin D1,and the G2/M cell cycle ratio.Conversely,inhibition of miR-145-5p heightened the levels of inflammatory factors and cell cycle regulators induced by AngII incubation.Reduced expression of miR-145-5p correlated with a downregulation of Interleukin 10(IL-10)expression,concurrently promoting HGMC proliferation under AngII stimulation.Moreover,ectopic miR-145-5p expression demonstrated a reduction in inflammatory factors,cell cyclin regulators,G2/M cell cycle ratio,and overall proliferation.Conclusion:MiR-145-5p exhibited inhibitory effects on the inflammatory response and proliferation induced by Angiotensin II in HGMCs,showcasing its potential as a therapeutic avenue for the treatment of kidney injury. 展开更多
关键词 miR-145-5p KIDNEY Angiotensin II cell cycle INFLAMMATION
下载PDF
Epstein-Barr virus positive post-transplant lymphoproliferative disorder with significantly decreased T-cell chimerism early after transplantation:A case report
15
作者 Qing-Na Guo Hai-Sheng Liu +13 位作者 Lin Li Dian-Ge Jin Ji-Min Shi Xiao-Yu Lai Li-Zhen Liu Yan-Min Zhao Jian Yu Yan-Yuan Li Fang-Quan Yu Zhe Gao Jiao Yan He Huang Yi Luo Yi-Shan Ye 《World Journal of Radiology》 2024年第10期600-607,共8页
BACKGROUND Post-transplant lymphoproliferative disorder(PTLD)is a rare but highly fatal complication occurring after allogeneic hematopoietic cell transplantation(allo-HCT)or solid organ transplantation(SOT).Unlike SO... BACKGROUND Post-transplant lymphoproliferative disorder(PTLD)is a rare but highly fatal complication occurring after allogeneic hematopoietic cell transplantation(allo-HCT)or solid organ transplantation(SOT).Unlike SOT,PTLD after allo-HCT usually originates from the donor and is rarely accompanied by a loss of donor chimerism.CASE SUMMARY We report a case of Epstein-Barr virus positive PTLD manifesting as diffuse large B-cell lymphoma(DLBCL)with significantly decreased T-cell chimerism early after allo-HCT.A 30-year-old patient with acute myeloid leukemia underwent unrelated allo-HCT after first complete remission.Nearly 3 mo after transplantation,the patient developed cervical lymph node enlargement and gastric lesions,both of which were pathologically suggestive of DLBCL.Meanwhile,the patient experienced a significant and persistent decrease in T-cell chimerism.A partial remission was achieved after chemotherapy with single agent rituximab and subsequent R-CHOP combined chemotherapy.CONCLUSION The loss of T-cell chimerism and the concomitant T-cell insufficiency may be the cause of PTLD in this patient. 展开更多
关键词 Post-transplant lymphoproliferative disorder T-cell chimerism Epstein-Barr virus T cell function Case report
下载PDF
Minimizing Carbon Content with Three-in-One Functionalized Nano Conductive Ceramics:Toward More Practical and Safer S Cathodes of Li-S Cells 被引量:1
16
作者 Ning Li Chang Sun +5 位作者 Jianhui Zhu Shun Li Yanlong Wang Maowen Xu Changming Li Jian Jiang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期31-39,共9页
Using porous carbon hosts in cathodes of Li-S cells can disperse S actives and offset their poor electrical conductivity.However,such reservoirs would in turn absorb excess electrolyte solvents to S-unfilled regions,c... Using porous carbon hosts in cathodes of Li-S cells can disperse S actives and offset their poor electrical conductivity.However,such reservoirs would in turn absorb excess electrolyte solvents to S-unfilled regions,causing the electrolyte overconsumption,specific energy decline,and even safety hazards for battery devices.To build better cathodes,we propose to substitute carbons by In-doped SnO_(2)(ITO)nano ceramics that own three-in-one functionalities:1)using conductive ITO enables minimizing the total carbon content to an extremely low mass ratio(~3%)in cathodes,elevating the electrode tap density and averting the electrolyte overuse;2)polar ITO nanoclusters can serve as robust anchors toward Li polysulfide(LiPS)by electrostatic adsorption or chemical bond interactions;3)they offer catalysis centers for liquid–solid phase conversions of S-based actives.Also,such ceramics are intrinsically nonflammable,preventing S cathodes away from thermal runaway or explosion.These merits entail our configured cathodes with high tap density(1.54 g cm^(−3)),less electrolyte usage,good security for flame retardance,and decent Li-storage behaviors.With lean and LiNO_(3)-free electrolyte,packed full cells exhibit excellent redox kinetics,suppressed LiPS shuttling,and excellent cyclability.This may trigger great research enthusiasm in rational design of low-carbon and safer S cathodes. 展开更多
关键词 flame retardance Li-S cells minimized carbon ratio nano conductive ceramics three-in-one functionality
下载PDF
Ghrelin regulates insulin resistance by targeting insulin-like growth factor-1 receptor via miR-455-5p in hepatic cells
17
作者 GUO Zhan-hong JU Yue-jun +4 位作者 SHEN Ting ZHANG Lin-qi SHENG Zhong-qi WU Run-ze KONG Ying-hong 《Journal of Hainan Medical University》 CAS 2024年第1期22-28,共7页
Objective: To explore the mechanism by which ghrelin regulates insulin sensitivity through modulation of miR-455-5p in hepatic cells. Methods: HepG2 cells were treated with or without DAG (1 μM). Glucose consumption,... Objective: To explore the mechanism by which ghrelin regulates insulin sensitivity through modulation of miR-455-5p in hepatic cells. Methods: HepG2 cells were treated with or without DAG (1 μM). Glucose consumption, intracellular glycogen content, phosphorylation of PI3K and Akt stimulated by insulin, expression of miR-455-5p, as well as IGF-1R protein level were analyzed. In addition, bioinformatic analysis, dual luciferase reporter assay, miR- 455-5p mimic or inhibitor treatment was conducted to investigate the molecular mechanisms. Results: High glucose treatment upregulated miR-455-5p expression but reduced glucose consumption and glycogen content. DAG reversed the effect of high glucose on glucose metabolism, increased protein level of IGF-1R and phosphorylation of PI3K/Akt stimulated by insulin, as well as downregulated miR-455-5p expression. Bioinformatic analysis indicated IGF-1R was the target of miR-455-5p. Dual luciferase reporter assay, as well as transfection with miR-455-5p mimic/inhibitor confirmed that DAG activated IGF-1R/PI3K/Akt signaling via inhibiting miR-455-5p. Conclusion: DAG improves insulin resistance via miR-455-5p- mediated activation of IGF-1R/PI3K/Akt system, suggesting that suppression of miR-455-5p or activation of DAG may be potential targets for T2DM therapy. 展开更多
关键词 GHRELIN miR-455-5p IGF-1R Insulin resistance HepG2 cells
下载PDF
Inhibitory Effect of Flavonoid Glycosides from Chlorophytum comosum on Nasopharyngeal Carcinoma 5-8F Cells and Its Mechanism
18
作者 Chenliang CHU Xinchen WANG +2 位作者 Kuan LU Liang QIN Lu JIN 《Medicinal Plant》 2024年第1期66-70,共5页
[Objectives]To study the inhibitory activity of two flavonoid glycosides isolated from Chlorophytum comosum Laxum R.Br on human nasopharyngeal carcinoma(NPC)cell line 5-8F in vitro and its mechanism.[Methods]The flavo... [Objectives]To study the inhibitory activity of two flavonoid glycosides isolated from Chlorophytum comosum Laxum R.Br on human nasopharyngeal carcinoma(NPC)cell line 5-8F in vitro and its mechanism.[Methods]The flavonoid glycosides were isolated and purified from the ethanol alcoholic extract of the roots of Liliaceae plant Chlorophytum comosum by silica gel column chromatography,macroporous resin column chromatography,Sephadex LH-20,and reverse column chromatography(ODS).The inhibitory activity of flavonoid glycosides on human nasopharyngeal carcinoma cells was analyzed by CCK-8 method,and the potential mechanism was preliminarily analyzed by molecular docking.[Results]Two flavonoid glycosides were identified as isovitexin 2″-0-rhamnoside and 7-2″-di-O-β-glucopyranosylisovitexin.Two flavonoid glycosides showed promising inhibitory effect on human nasopharyngeal carcinoma cell line 5-8F,with IC_(50) values of 24.8 and 27.5μmol/L,respectively.Molecular docking results showed that the potential targets of two flavonoid glycosides include CyclinD1,Bcl-2β-Catenin,ILK,TGF-β,in addition,two glycosides showed higher predicted binding affinity towards CyclinD1,which verifies the cytotoxicity of the two compounds on human nasopharyngeal carcinoma cell line 5-8F in vitro.[Conclusions]Two flavonoid glycosides are the active molecules in Chlorophytum comosum that can inhibit the proliferation of human nasopharyngeal carcinoma cells,and have the potential to be used in the research and development of anti nasopharyngeal carcinoma drugs. 展开更多
关键词 Chlorophytum comosum Laxum R.Br. Flavonoid glycosides 5-8F cells Antitumor mechanism
下载PDF
Mitochondrial dysfunction and programmed cell death in osteosarcoma
19
作者 Ke Zhang Ming-Yang Jiang +2 位作者 Kai-Cheng Liu Yong-Heng Dai Zhan-Dong Bo 《Journal of Nutritional Oncology》 2024年第2期37-45,共9页
Osteosarcoma is the most prevalent primarymalignant bone tumor,primarily affecting adolescents aged 15–25 years.It is characterized by a high recurrence rate,poor prognosis,and lack of important biomarkers.Significan... Osteosarcoma is the most prevalent primarymalignant bone tumor,primarily affecting adolescents aged 15–25 years.It is characterized by a high recurrence rate,poor prognosis,and lack of important biomarkers.Significant mitochondrial dysfunction in osteosarcoma cells has been widely reported by recent studies.Dysfunctional mitochondria occupy an important position in cellularmetabolic reprogramming,immune microenvironment regulation,and programmed cell death.Therefore,targeting mitochondrial dysfunction may represent a new mechanism to overcome therapeutic barriers in the treatment of osteosarcoma and provides crucial target molecules for further development of targeted therapies and immunotherapies.The present article summarizes the recent reports of mitochondrial dysfunction in osteosarcoma and links it to various programmed cell death mechanisms,aiming to provide the basis for further clinical practice. 展开更多
关键词 OSTEOSARCOMA Mitochondrial function Programmed cell death MITOPHAGY Metabolic reprogramming
下载PDF
Modulating J-V hysteresis of planar perovskite solar cells and mini-modules via work function engineering
20
作者 Zenghua Wang Bing Cai +2 位作者 Deyu Xin Min Zhang Xiaojia Zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期19-29,I0003,共12页
Commercialization of perovskite solar cells(PSCs) requires the development of high-efficiency devices with none current density-voltage(J-V) hysteresis. Here, electron transport layers(ETLs) with gradual change in wor... Commercialization of perovskite solar cells(PSCs) requires the development of high-efficiency devices with none current density-voltage(J-V) hysteresis. Here, electron transport layers(ETLs) with gradual change in work function(WF) are successfully fabricated and employed as an ideal model to investigate the energy barriers, charge transfer and recombination kinetics at ETL/perovskite interface. The energy barrier for electron injection existing at ETL/perovskite is directly assessed by surface photovoltage microscopy, and the results demonstrate the tunable barriers have significant impact on the J-V hysteresis and performance of PSCs. By work function engineering of ETL, PSCs exhibit PCEs over 21% with negligible hysteresis. These results provide a critical understanding of the origin reason for hysteresis effect in planar PSCs, and clear reveal that the J-V hysteresis can be effectively suppressed by carefully tuning the interface features in PSCs. By extending this strategy to a modified formamidinium-cesium-rubidium(FA-Cs-Rb) perovskite system, the PCEs are further boosted to 24.18%. Moreover, 5 cm × 5 cm perovskite mini-modules are also fabricated with an impressive efficiency of 20.07%, demonstrating compatibility and effectiveness of our strategy on upscaled devices. 展开更多
关键词 J-V hysteresis Work function Planar perovskite solar cells Energy barriers Charge transfer kinetics Perovskite solar modules
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部