Background Xylanase andβ-glucanase combination(XG)hydrolyzes soluble non-starch polysaccharides that are anti-nutritional compounds.This study aimed to evaluate the effects of increasing levels of XG on intestinal he...Background Xylanase andβ-glucanase combination(XG)hydrolyzes soluble non-starch polysaccharides that are anti-nutritional compounds.This study aimed to evaluate the effects of increasing levels of XG on intestinal health and growth performance of nursery pigs.Methods Forty pigs(6.5±0.4 kg)were assigned to 5 dietary treatments and fed for 35 d in 3 phases(11,9,and 15 d,respectively).Basal diets mainly included corn,soybean meal,and corn distiller's dried grains with solubles,contained phytase(750 FTU/kg),and were supplemented with 5 levels of XG at(1)0,(2)280 TXU/kg xylanase and 125 TGU/kgβ-glucanase,(3)560 and 250,(4)840 and 375,or(5)1,120 and 500,respectively.Growth performance was measured.On d 35,all pigs were euthanized and jejunal mucosa,jejunal digesta,jejunal tissues,and ileal digesta were collected to determine the effects of increasing XG levels and XG intake on intestinal health.Results Increasing XG intake tended to quadratically decrease(P=0.059)viscosity of jejunal digesta(min:1.74 m Pa·s at 751/335(TXU/TGU)/kg).Increasing levels of XG quadratically decreased(P<0.05)Prevotellaceae(min:0.6%at 630/281(TXU/TGU)/kg)in the jejunal mucosa.Increasing XG intake quadratically increased(P<0.05)Lactobacillaceae(max:40.3%at 608/271(TXU/TGU)/kg)in the jejunal mucosa.Increasing XG intake quadratically decreased(P<0.05)Helicobacteraceae(min:1.6%at 560/250(TXU/TGU)/kg)in the jejunal mucosa.Increasing levels of XG tended to linearly decrease(P=0.073)jejunal Ig G and tended to quadratically increase(P=0.085)jejunal villus height to crypt depth ratio(max:2.62 at 560/250(TXU/TGU)/kg).Increasing XG intake tended to linearly increase the apparent ileal digestibility of dry matter(P=0.087)and ether extract(P=0.065).Increasing XG intake linearly increased(P<0.05)average daily gain.Conclusions A combinational use of xylanase andβ-glucanase would hydrolyze the non-starch polysaccharides fractions,positively modulating the jejunal mucosa-associated microbiota.Increased intake of these enzyme combination possibly reduced digesta viscosity and humoral immune response in the jejunum resulting in improved intestinal structure,and ileal digestibility of nutrients,and finally improving growth of nursery pigs.The beneficial effects were maximized at a combination of 550 to 800 TXU/kg xylanase and 250 to 360 TGU/kgβ-glucanase.展开更多
Many animal feed grains contain high β-glucan in the cell wall. Pigs do not secret β-glucanase to degrade the β-glucan in their feed. The indigestible β-glucan not only blocks the release of nutrients from the gra...Many animal feed grains contain high β-glucan in the cell wall. Pigs do not secret β-glucanase to degrade the β-glucan in their feed. The indigestible β-glucan not only blocks the release of nutrients from the grain cell wall, but also increases the digesta viscosity in the gastrointestinal tract of pigs. Therefore, dietary β-glucan significantly inhibits nutrient digestion and absorption in pigs. Transgenic expression of β-glucanase in the digestive tract of pigs may offer a solution to solve this problem. In the current study, four artificial codon-optimized β-glucanases genes was prepared and expressed in porcine cells. Only p Bg A and p Egx showed high activity in transfected pig kidney cells. To improve the p H range and p H stability of β-glucanase, the two β-glucanases, p Bg A and p Egx, were co-expressed in pig kidney cells and salivary gland cells by Linker A3 or 2A peptide. The resulting dual enzymes of p Bg A3 p Eg and p Bg2 Ap Eg showed significantly enlarged p H range and significantly increased p H stability, as compared to parental enzymes. These results provide useful data for future study on increasing the feed digestibility of pigs by transgenic expression of β-glucanase in their salivary glands.展开更多
背景:目前运动疗法是非药物治疗腰痛的有效方法,运动疗法可通过骨骼和肌肉之间的机械-化学偶联维持腰椎的稳定,但目前尚无关于运动疗法通过机械-化学偶联缓解慢性非特异性下背痛之间研究进展及最佳治疗方案的明确阐述。目的:综述运动疗...背景:目前运动疗法是非药物治疗腰痛的有效方法,运动疗法可通过骨骼和肌肉之间的机械-化学偶联维持腰椎的稳定,但目前尚无关于运动疗法通过机械-化学偶联缓解慢性非特异性下背痛之间研究进展及最佳治疗方案的明确阐述。目的:综述运动疗法时椎旁肌通过机械-化学偶联影响腰椎稳定性进而缓解慢性非特异性下背痛的相关研究进展,以及目前运动疗法治疗慢性非特异性下背痛的最佳方案。方法:在万方数据库、中国知网、维普、Web of Science和PubMed数据库进行文献检索,以“慢性非特异性下背痛,腰椎稳定,椎旁肌,运动疗法”为中文检索词,以“chronic nonspecific low back pain,lumbar stabilization,paravertebral muscle,exercise therapy”为英文检索词,检索各数据库建库至2024年1月发表的相关文献,最终纳入93篇文献进行归纳总结。结果与结论:运动疗法可以通过适当的机械刺激作用于椎旁肌和骨骼并使其产生相应的变化。运动疗法主要通过机械-化学偶联方式来提高椎旁肌的质量,进而维持腰椎稳定,从而更好地缓解慢性非特异性下背痛,是慢性非特异性下背痛的重要干预措施。但是,对于运动疗法通过腰椎稳定来治疗慢性非特异性下背痛的确切有效方案尚无明确报道。个体化运动方案的制定对于慢性非特异性下背痛的治疗和预后尤为重要。同一个体的肌肉质量与骨骼质量是密切相关的,影像学评估椎旁肌的质量和体积对于疾病的发现和干预具有重要意义。展开更多
This work aimed at isolation, purification and study of biochemical features of cellulolytic enzymes synthesized by Trichoderma harzianum UzCF-28 strain. Strain UzCF-28 revealed a high cellulolytic activity during sub...This work aimed at isolation, purification and study of biochemical features of cellulolytic enzymes synthesized by Trichoderma harzianum UzCF-28 strain. Strain UzCF-28 revealed a high cellulolytic activity during submerged cultivation in the liquid culture on modified Mandels nutrient medium, where wheat straw was used as a source of carbon. As a result of purification by precipitation with ammonium sulfate and further ion exchange chromatography, two isoforms of endo- 1,4-β-glucanase-EG II and EG III with molecular weight of 135 and 75 kDa respectively were revealed. The pH optimum for EG I and EG III was 4.5, while for EG II—4.7, irrespective of the applied substrates—either CMC or “Whatman filter” paper. Heating up to 40°C of EG III did not lead to its inactivation, and on the contrary, its activity increased by more than three times comparing to the initial activity of the enzyme, i.e. thermostability of EG III among tested enzymes significantly varied.展开更多
背景:阿尔茨海默病患者存在严重的脑能量障碍,近年来基于酮体干预的脑能量拯救策略在阿尔茨海默病的治疗中越来越受到重视。目的:探讨β-羟基丁酸能否改善β淀粉样蛋白1-42(β-amyloid protein 1-42,Aβ_(1-42))诱导的小鼠海马神经元HT2...背景:阿尔茨海默病患者存在严重的脑能量障碍,近年来基于酮体干预的脑能量拯救策略在阿尔茨海默病的治疗中越来越受到重视。目的:探讨β-羟基丁酸能否改善β淀粉样蛋白1-42(β-amyloid protein 1-42,Aβ_(1-42))诱导的小鼠海马神经元HT22细胞能量障碍。方法:将HT22细胞分为4组,分别为对照组、β-羟基丁酸组、Aβ_(1-42)组、Aβ_(1-42)+β-羟基丁酸组。使用相应试剂盒检测HT22细胞的存活率、ATP水平、α-酮戊二酸脱氢酶活性、Na^(+)K^(+)-ATP酶活性、线粒体膜电位及活性氧水平。结果与结论:与对照组相比,Aβ_(1-42)组HT22细胞的存活率、ATP水平、α-酮戊二酸脱氢酶活性、Na^(+)K^(+)-ATP酶活性、线粒体膜电位均显著降低(P<0.05),活性氧水平显著升高(P<0.05)。与Aβ_(1-42)组相比,Aβ_(1-42)+β-羟基丁酸组HT22细胞的存活率、ATP水平、α-酮戊二酸脱氢酶活性、Na^(+)K^(+)-ATP酶活性、线粒体膜电位均显著升高(P<0.05),活性氧水平显著降低(P<0.05)。结果表明:β-羟基丁酸提高了线粒体生物能量功能和细胞存活率,最终改善了Aβ_(1-42)诱导的HT22细胞能量障碍。展开更多
基金North Carolina Agricultural Foundation(#660101,Raleigh,NC,USA)USDANIFA(Hatch#02893,Washing DC,USA)Financial support for this research from BASF SE(Ludwigshafen,Germany)。
文摘Background Xylanase andβ-glucanase combination(XG)hydrolyzes soluble non-starch polysaccharides that are anti-nutritional compounds.This study aimed to evaluate the effects of increasing levels of XG on intestinal health and growth performance of nursery pigs.Methods Forty pigs(6.5±0.4 kg)were assigned to 5 dietary treatments and fed for 35 d in 3 phases(11,9,and 15 d,respectively).Basal diets mainly included corn,soybean meal,and corn distiller's dried grains with solubles,contained phytase(750 FTU/kg),and were supplemented with 5 levels of XG at(1)0,(2)280 TXU/kg xylanase and 125 TGU/kgβ-glucanase,(3)560 and 250,(4)840 and 375,or(5)1,120 and 500,respectively.Growth performance was measured.On d 35,all pigs were euthanized and jejunal mucosa,jejunal digesta,jejunal tissues,and ileal digesta were collected to determine the effects of increasing XG levels and XG intake on intestinal health.Results Increasing XG intake tended to quadratically decrease(P=0.059)viscosity of jejunal digesta(min:1.74 m Pa·s at 751/335(TXU/TGU)/kg).Increasing levels of XG quadratically decreased(P<0.05)Prevotellaceae(min:0.6%at 630/281(TXU/TGU)/kg)in the jejunal mucosa.Increasing XG intake quadratically increased(P<0.05)Lactobacillaceae(max:40.3%at 608/271(TXU/TGU)/kg)in the jejunal mucosa.Increasing XG intake quadratically decreased(P<0.05)Helicobacteraceae(min:1.6%at 560/250(TXU/TGU)/kg)in the jejunal mucosa.Increasing levels of XG tended to linearly decrease(P=0.073)jejunal Ig G and tended to quadratically increase(P=0.085)jejunal villus height to crypt depth ratio(max:2.62 at 560/250(TXU/TGU)/kg).Increasing XG intake tended to linearly increase the apparent ileal digestibility of dry matter(P=0.087)and ether extract(P=0.065).Increasing XG intake linearly increased(P<0.05)average daily gain.Conclusions A combinational use of xylanase andβ-glucanase would hydrolyze the non-starch polysaccharides fractions,positively modulating the jejunal mucosa-associated microbiota.Increased intake of these enzyme combination possibly reduced digesta viscosity and humoral immune response in the jejunum resulting in improved intestinal structure,and ileal digestibility of nutrients,and finally improving growth of nursery pigs.The beneficial effects were maximized at a combination of 550 to 800 TXU/kg xylanase and 250 to 360 TGU/kgβ-glucanase.
基金funded by a grant from the National Science and Technology Major Projects of China (2014ZX08006004)three grants from the Department of Science and Technology of Guangdong,China (20111090700016,2011A020102003 and 2011A020201009)
文摘Many animal feed grains contain high β-glucan in the cell wall. Pigs do not secret β-glucanase to degrade the β-glucan in their feed. The indigestible β-glucan not only blocks the release of nutrients from the grain cell wall, but also increases the digesta viscosity in the gastrointestinal tract of pigs. Therefore, dietary β-glucan significantly inhibits nutrient digestion and absorption in pigs. Transgenic expression of β-glucanase in the digestive tract of pigs may offer a solution to solve this problem. In the current study, four artificial codon-optimized β-glucanases genes was prepared and expressed in porcine cells. Only p Bg A and p Egx showed high activity in transfected pig kidney cells. To improve the p H range and p H stability of β-glucanase, the two β-glucanases, p Bg A and p Egx, were co-expressed in pig kidney cells and salivary gland cells by Linker A3 or 2A peptide. The resulting dual enzymes of p Bg A3 p Eg and p Bg2 Ap Eg showed significantly enlarged p H range and significantly increased p H stability, as compared to parental enzymes. These results provide useful data for future study on increasing the feed digestibility of pigs by transgenic expression of β-glucanase in their salivary glands.
文摘背景:目前运动疗法是非药物治疗腰痛的有效方法,运动疗法可通过骨骼和肌肉之间的机械-化学偶联维持腰椎的稳定,但目前尚无关于运动疗法通过机械-化学偶联缓解慢性非特异性下背痛之间研究进展及最佳治疗方案的明确阐述。目的:综述运动疗法时椎旁肌通过机械-化学偶联影响腰椎稳定性进而缓解慢性非特异性下背痛的相关研究进展,以及目前运动疗法治疗慢性非特异性下背痛的最佳方案。方法:在万方数据库、中国知网、维普、Web of Science和PubMed数据库进行文献检索,以“慢性非特异性下背痛,腰椎稳定,椎旁肌,运动疗法”为中文检索词,以“chronic nonspecific low back pain,lumbar stabilization,paravertebral muscle,exercise therapy”为英文检索词,检索各数据库建库至2024年1月发表的相关文献,最终纳入93篇文献进行归纳总结。结果与结论:运动疗法可以通过适当的机械刺激作用于椎旁肌和骨骼并使其产生相应的变化。运动疗法主要通过机械-化学偶联方式来提高椎旁肌的质量,进而维持腰椎稳定,从而更好地缓解慢性非特异性下背痛,是慢性非特异性下背痛的重要干预措施。但是,对于运动疗法通过腰椎稳定来治疗慢性非特异性下背痛的确切有效方案尚无明确报道。个体化运动方案的制定对于慢性非特异性下背痛的治疗和预后尤为重要。同一个体的肌肉质量与骨骼质量是密切相关的,影像学评估椎旁肌的质量和体积对于疾病的发现和干预具有重要意义。
文摘This work aimed at isolation, purification and study of biochemical features of cellulolytic enzymes synthesized by Trichoderma harzianum UzCF-28 strain. Strain UzCF-28 revealed a high cellulolytic activity during submerged cultivation in the liquid culture on modified Mandels nutrient medium, where wheat straw was used as a source of carbon. As a result of purification by precipitation with ammonium sulfate and further ion exchange chromatography, two isoforms of endo- 1,4-β-glucanase-EG II and EG III with molecular weight of 135 and 75 kDa respectively were revealed. The pH optimum for EG I and EG III was 4.5, while for EG II—4.7, irrespective of the applied substrates—either CMC or “Whatman filter” paper. Heating up to 40°C of EG III did not lead to its inactivation, and on the contrary, its activity increased by more than three times comparing to the initial activity of the enzyme, i.e. thermostability of EG III among tested enzymes significantly varied.
文摘背景:阿尔茨海默病患者存在严重的脑能量障碍,近年来基于酮体干预的脑能量拯救策略在阿尔茨海默病的治疗中越来越受到重视。目的:探讨β-羟基丁酸能否改善β淀粉样蛋白1-42(β-amyloid protein 1-42,Aβ_(1-42))诱导的小鼠海马神经元HT22细胞能量障碍。方法:将HT22细胞分为4组,分别为对照组、β-羟基丁酸组、Aβ_(1-42)组、Aβ_(1-42)+β-羟基丁酸组。使用相应试剂盒检测HT22细胞的存活率、ATP水平、α-酮戊二酸脱氢酶活性、Na^(+)K^(+)-ATP酶活性、线粒体膜电位及活性氧水平。结果与结论:与对照组相比,Aβ_(1-42)组HT22细胞的存活率、ATP水平、α-酮戊二酸脱氢酶活性、Na^(+)K^(+)-ATP酶活性、线粒体膜电位均显著降低(P<0.05),活性氧水平显著升高(P<0.05)。与Aβ_(1-42)组相比,Aβ_(1-42)+β-羟基丁酸组HT22细胞的存活率、ATP水平、α-酮戊二酸脱氢酶活性、Na^(+)K^(+)-ATP酶活性、线粒体膜电位均显著升高(P<0.05),活性氧水平显著降低(P<0.05)。结果表明:β-羟基丁酸提高了线粒体生物能量功能和细胞存活率,最终改善了Aβ_(1-42)诱导的HT22细胞能量障碍。