One-pot synthesis of cyclic aldol tetramer and α, β-unsaturated aldol from C3-C8 linear aldehydes using phase-transfer catalyst(PTC), quaternary ammonium, combined with sodium hydroxide as catalysts was investigat...One-pot synthesis of cyclic aldol tetramer and α, β-unsaturated aldol from C3-C8 linear aldehydes using phase-transfer catalyst(PTC), quaternary ammonium, combined with sodium hydroxide as catalysts was investigated. Butanal was subjected for detail investigations to study the effect of parameters. It was found that the selectivity of cyclic aldol tetramer depends greatly on the operating conditions of the reaction, especially the PTC/butanal molar ratio. The average selectivity of 2-hydroxy-6-propyl-l, 3, 5-triethyl-3-cyclohexene-1-carboxaldehyde(HPTECHCA) was 54.41% using tetrabutylammonium chloride combined with 14%(mass fraction) Na OH as catalysts at 60 ℃for 2 h with a PTC-to-butanal molar ratio of 0.09:1. Pentanal was more likely to generate cyclic aldol tetramer compared with other aldehydes under the optimum experimental conditions. Recovery of the PTC through water washing followed by adding enough sodium hydroxide from the washings was also demonstrated.展开更多
The reaction of α, β-epoxyketones with methoxymethylenetriphenyl- phosphorane provides a method for the preparation of α-alkylsubstituted γ-hydroxy-α, β-unsaturated aldehydes with one carbon homologation and ret...The reaction of α, β-epoxyketones with methoxymethylenetriphenyl- phosphorane provides a method for the preparation of α-alkylsubstituted γ-hydroxy-α, β-unsaturated aldehydes with one carbon homologation and retention of configuration.展开更多
Selective upgrading of C=O bonds to afford carboxylic acid is significant for the petrochemical industry and biomass utilization.Here we declared the efficient electrooxidation of biomass-derived aldehydes family over...Selective upgrading of C=O bonds to afford carboxylic acid is significant for the petrochemical industry and biomass utilization.Here we declared the efficient electrooxidation of biomass-derived aldehydes family over NiV-layered double hydroxides(LDHs) thin films.Mechanistic studies confirmed the hydroxyl active intermediate(-OH*) generated on the surface of NiV-LDHs films by employing electrochemical impedance spectroscopy and the electron paramagnetic resonance spectroscopy.By using advanced techniques,e.g.,extended X-ray absorption fine structure and high-angle annular dark-field scanning transmission electron microscopy,NiV-LDHs films with 2.6 nm could expose larger specific surface area.Taking benzaldehyde as a model,high current density of 200 mA cm^(-2)at 1.8 V vs.RHE,81.1% conversion,77.6% yield of benzoic acid and 90.8% Faradaic efficiency were reached,which was superior to most of previous studies.Theoretical DFT analysis was well matched with experimental findings and documented that NiV-LDHs had high adsorption capacity for the aldehydes to suppress the side reaction,and the aldehydes were oxidized by the electrophilic hydroxyl radicals formed on NiV-LDHs.Our findings offer a universal strategy for the robust upgrading of diverse biomass-derived platform chemicals.展开更多
Acrolein in spinal cord injury:The propensity of reactive aldehydes such as acrolein to both initiate and perpetuate tissue damage after spinal cord injury (SCI) is well established.Formed primarily from lipid peroxid...Acrolein in spinal cord injury:The propensity of reactive aldehydes such as acrolein to both initiate and perpetuate tissue damage after spinal cord injury (SCI) is well established.Formed primarily from lipid peroxidation,acrolein is known to be one of the most reactive aldehydes.Acrolein will quickly overwhelm endogenous clearance mechanisms and antioxidants,and form adductswith lipids,proteins,and DNA.展开更多
As one of the few renewable aromatic resources,the research of depolymerization of lignin into highvalue chemicals has attracted extensive attention in recent years.Catalytic wet aerobic oxidation(CWAO)is an effective...As one of the few renewable aromatic resources,the research of depolymerization of lignin into highvalue chemicals has attracted extensive attention in recent years.Catalytic wet aerobic oxidation(CWAO)is an effective technology to convert lignin like sodium lignosulfonate(SL),a lignin derivative,into aromatic aldehydes such as vanillin and syringaldehyde.However,how to improve the yield of aromatic aldehyde and conversion efficiency is still a challenge,and many operating conditions that significantly affect the yield of these aromatic compounds have rarely been investigated systematically.In this work,we adopted the stirred tank reactor(STR)for the CWAO process with nano-CuO as catalyst to achieve the conversion of SL into vanillin and syringaldehyde.The effect of operating conditions including reaction time,oxygen partial pressure,reaction temperature,SL concentration,rotational speed,catalyst amount,and NaOH concentration on the yield of single phenolic compound was systematically investigated.The results revealed that all these operating conditions exhibit a significant effect on the aromatic aldehyde yield.Therefore,they should be regulated in an optimal value to obtain high yield of these aldehydes.More importantly,the reaction kinetics of the lignin oxidation was explored.This work could provide basic data for the optimization and design of industrial operation of lignin oxidation.展开更多
A new and simple route for the synthesis of α,β-unsaturated ketones via cleavage of the C-C(O)C single bond of monoalkylated β-diketone has been described. The reaction was catalyzed by copper, a cheap transition m...A new and simple route for the synthesis of α,β-unsaturated ketones via cleavage of the C-C(O)C single bond of monoalkylated β-diketone has been described. The reaction was catalyzed by copper, a cheap transition metal in a weakly basic medium (K<sub>3</sub>PO<sub>4</sub>) at room temperature. To carry out this study, we first had to synthesize the monoalkylated β-diketones 1. Afterwards, α,β-unsaturated ketones 2 were obtained with high yields around 80%. Finally, all the products were characterized by 1H NMR, 13C NMR, and HRMS spectra. .展开更多
As an important technology in fine chemical production,the selective hydrogenation ofα,β-unsaturated aldehydes has attracted much attention in recent years.In the process ofα,β-unsaturated aldehyde hydrogenation,a...As an important technology in fine chemical production,the selective hydrogenation ofα,β-unsaturated aldehydes has attracted much attention in recent years.In the process ofα,β-unsaturated aldehyde hydrogenation,a conjugated system is formed between>C=C<and>C=O,leading to hydrogenation at both ends of the conjugated system,which competes with each other and results in more complex products.Therefore,improving the reaction selectivity is also difficult in industrial fields.Recently,many researchers have reported that surface-active sites on catalysts play a crucial role inα,β-unsaturated aldehyde hydrogenation.This review attempts to summarize recent advances in understanding the effects of surface-active sites(SASs)over metal catalysts for enhancing the process of hydrogenation.The construction strategies and roles of SASs for hydrogenation catalysts are summarized.Particular attention has been given to the adsorption configuration and transformation mechanism ofα,β-unsaturated aldehydes on catalysts,which contributes to understanding the relationship between SASs and hydrogenation activity.In addition,recent advances in metal-supported catalysts for the selective hydrogenation ofα,β-unsaturated aldehydes to understand the role of SASs in hydrogenation are briefly reviewed.Finally,the opportunities and challenges will be highlighted for the future development of the precise construction of SASs.展开更多
The technique for preparing phenol formaldehyde resin from phenolated wood (PWF) and its characters were studied and analyzed. Poplar (Populus spp.) wood meal was liquefied by phenol in the presence of sulfuric acid a...The technique for preparing phenol formaldehyde resin from phenolated wood (PWF) and its characters were studied and analyzed. Poplar (Populus spp.) wood meal was liquefied by phenol in the presence of sulfuric acid as a catalyst. After the liquefied products were cooled, alkaline catalyst and formaldehyde were added. The mixture was kept at (60?) C for 1h and then was heated to (85?) C for 1h. The influence of molar ratio of formaldehyde to phenol (F/P) was investigated. The results showed when the molar ratio of formaldehyde to phenol was over 1.8, the PWF adhesives had high bond quality, bond durability and extremely low aldehydes emissions.展开更多
Aim To synthesize the tripepide Weinreb amide Boc Asp(OBzl) β Ala Asp(OBzl) N(OMe)Me (7) as a useful precursor of aspartyl peptide aldehyde derivatives; Methods DCC, IBCF method was used for preparation of ...Aim To synthesize the tripepide Weinreb amide Boc Asp(OBzl) β Ala Asp(OBzl) N(OMe)Me (7) as a useful precursor of aspartyl peptide aldehyde derivatives; Methods DCC, IBCF method was used for preparation of Weinreb amide; N hydroxysuccinimide activated ester was used in peptide synthesis; and Boc as N protecting group of amino acid. Results Boc Asp(OBzl) N(OMe)Me (3), Boc β Ala Asp(OBzl) N(OMe)Me (5), and Boc Asp(OBzl) β Ala Asp(OBzl) N(OMe)Me (7) were synthesized successfully. Conclusion An useful precursor of tripeptide aspartyl aldehydes was synthesized.展开更多
A rapid and eco-friendly one-pot protocol for the synthesis of nitriles has been developed by treating various araldehydes bearing electron withdrawing as well as electron donating groups with hydroxylamine hydrochlor...A rapid and eco-friendly one-pot protocol for the synthesis of nitriles has been developed by treating various araldehydes bearing electron withdrawing as well as electron donating groups with hydroxylamine hydrochloride in the presence of non-toxic,non-corrosive and reusable zinc oxide(ZnO) as the catalyst under solvent-free microwave irradiation.The present approach offers the advantages of a clean reaction,simple methodology,employing readily available catalyst,short reaction duration(〈1 min),high selectivity;and high yield(90-98%).展开更多
Ferrous methanesulfonate catalysing the conversion of aromatic, heteroaromatic, unsaturated, and aliphatic aldehydes to 1,1- diacetates at room temperature under solvent-free condition has been developed. The catalyti...Ferrous methanesulfonate catalysing the conversion of aromatic, heteroaromatic, unsaturated, and aliphatic aldehydes to 1,1- diacetates at room temperature under solvent-free condition has been developed. The catalytic activity of seventeen metal methanesulfonates was compared under the same condition, ferrous methanesufonate proved to be the best. It can be easily recovered and reused for several times without distinct deterioration in catalytic activity. During the competitive protection between a ketone and an aldehyde group with Ac20, 1,1-diacetate formed exclusively with the aldehyde group. 2009 Min Wang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.展开更多
A facile, efficient and substrate-selective oxidation of aldehydes to carboxylic acids with NaClO catalyzed by β-cyclodextrin in water has been developed. A series of aldehydes which could form inclusion complex with...A facile, efficient and substrate-selective oxidation of aldehydes to carboxylic acids with NaClO catalyzed by β-cyclodextrin in water has been developed. A series of aldehydes which could form inclusion complex with β-cyclodextrin (β-CD) were oxidized selectively with excellent yields.展开更多
Aldehyde dehydrogenase 2(ALDH2) is best known for its critical detoxifying role in liver alcohol metabolism. However, ALDH2 dysfunction is also involved in a wide range of human pathophysiological situations and is as...Aldehyde dehydrogenase 2(ALDH2) is best known for its critical detoxifying role in liver alcohol metabolism. However, ALDH2 dysfunction is also involved in a wide range of human pathophysiological situations and is associated with complications such as cardiovascular diseases, diabetes mellitus, neurodegenerative diseases and aging. A growing body of research has shown that ALDH2 provides important protection against oxidative stress and the subsequent loading of toxic aldehydes such as 4-hydroxy-2-nonenal and adducts that occur in human diseases, including ischemia reperfusion injury(IRI). There is increasing evidence of its role in IRI pathophysiology in organs such as heart, brain, small intestine and kidney; however, surprisingly few studies have been carried out in the liver, where ALDH2 is found in abundance. This study reviews the role of ALDH2 in modulating the pathways involved in the pathophysiology of IRI associated with oxidative stress, autophagy and apoptosis. Special emphasis is placed on the role of ALDH2 in different organs, on therapeutic "preconditioning" strategies, and on the use of ALDH2 agonists such as Alda-1, which may become a useful therapeutic tool for preventing the deleterious effects of IRI in organ transplantation.展开更多
Sulfonated carbon as a strong and stable solid acid catalyst exhibited excellent catalytic performance in various acid-catalyzed reactions. Here, sulfonated carbon, as catalyst for oxidation reaction, was prepared via...Sulfonated carbon as a strong and stable solid acid catalyst exhibited excellent catalytic performance in various acid-catalyzed reactions. Here, sulfonated carbon, as catalyst for oxidation reaction, was prepared via the carbonization of starch followed by sulfonation with concentrated sulfuric acid. N2 physisorption, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray fluorescence and acid-base titration were used to characterize the obtained materials. The catalytic activity of sulfonated carbon was studied in the oxidation of aldehydes to carboxylic acids using 30 wt% H2O2 as oxidant. This oxidation protocol works well for various aldehydes including aromatic and aliphatic aldehydes. The sulfonated carbon can be recycled for three times without obvious loss of activity.展开更多
An efficient and environmentally benign conversion of aldehydes into the corresponding gem-dicarboxylates was realized by using hydrated ferric sulfate as a heterogeneous catalyst. In addition to its high efficiency,...An efficient and environmentally benign conversion of aldehydes into the corresponding gem-dicarboxylates was realized by using hydrated ferric sulfate as a heterogeneous catalyst. In addition to its high efficiency, the catalyst can be recovered simply and reused efficiently for at least seven times.展开更多
The sodium borohydride reduction of aldehydes and ketones to corresponding alcohols has been accomplished via the use of ionic liquids. The alcohols are easily obtained with excellent yields and the ionic liquid BMImB...The sodium borohydride reduction of aldehydes and ketones to corresponding alcohols has been accomplished via the use of ionic liquids. The alcohols are easily obtained with excellent yields and the ionic liquid BMImBF4 could be reused.展开更多
Green,mild and efficient iodination of hydroxylated aromatic aldehydes and ketones using iodine and iodic acid in the solidstate by grinding under solvent-free conditions at room temperature.This method provides sever...Green,mild and efficient iodination of hydroxylated aromatic aldehydes and ketones using iodine and iodic acid in the solidstate by grinding under solvent-free conditions at room temperature.This method provides several advantages such as environmentally friendly,short reaction times,high yields,non-hazardous and simple work-up procedure.展开更多
A new brominated phenylpropylaldehyde and its dimethyl acetal together with a new natural brominated phenol were isolated from Rhodomela confervoides. Their structrues were elucidated as 2-methyl-3-(2,3-dibromo-4,5-di...A new brominated phenylpropylaldehyde and its dimethyl acetal together with a new natural brominated phenol were isolated from Rhodomela confervoides. Their structrues were elucidated as 2-methyl-3-(2,3-dibromo-4,5-dihydroxyphenyl)propylaldehyde, 2-methyl-3-(2,3-di-bromo-4,5-dihydroxyphenyl) propylaldehyde dimethyl acetal and 3-bromo-4,5-dihydroxybenzoic acid methyl ester by spectroscopic techniques including IR, HRFABMS, ID and 2DNMR experiments.展开更多
基金Project(2013AA064102)supported by the National High-Tech Research Program of ChinaProject(11JJ6014)supported by the Hunan Provincial Natural Science Foundation of China
文摘One-pot synthesis of cyclic aldol tetramer and α, β-unsaturated aldol from C3-C8 linear aldehydes using phase-transfer catalyst(PTC), quaternary ammonium, combined with sodium hydroxide as catalysts was investigated. Butanal was subjected for detail investigations to study the effect of parameters. It was found that the selectivity of cyclic aldol tetramer depends greatly on the operating conditions of the reaction, especially the PTC/butanal molar ratio. The average selectivity of 2-hydroxy-6-propyl-l, 3, 5-triethyl-3-cyclohexene-1-carboxaldehyde(HPTECHCA) was 54.41% using tetrabutylammonium chloride combined with 14%(mass fraction) Na OH as catalysts at 60 ℃for 2 h with a PTC-to-butanal molar ratio of 0.09:1. Pentanal was more likely to generate cyclic aldol tetramer compared with other aldehydes under the optimum experimental conditions. Recovery of the PTC through water washing followed by adding enough sodium hydroxide from the washings was also demonstrated.
文摘The reaction of α, β-epoxyketones with methoxymethylenetriphenyl- phosphorane provides a method for the preparation of α-alkylsubstituted γ-hydroxy-α, β-unsaturated aldehydes with one carbon homologation and retention of configuration.
基金supported by the National Natural Science Foundation of China(22078374,21776324)the Scientific and Technological Planning Project of Guangzhou(202206010145)+2 种基金the National Ten Thousand Talent Plan,Key-Area Research and Development Program of Guangdong Province(2019B110209003)the Guangdong Basic and Applied Basic Research Foundation(2019B1515120058,2020A1515011149)the Start-up Fund for Senior Talents in Jiangsu University(21JDG060)。
文摘Selective upgrading of C=O bonds to afford carboxylic acid is significant for the petrochemical industry and biomass utilization.Here we declared the efficient electrooxidation of biomass-derived aldehydes family over NiV-layered double hydroxides(LDHs) thin films.Mechanistic studies confirmed the hydroxyl active intermediate(-OH*) generated on the surface of NiV-LDHs films by employing electrochemical impedance spectroscopy and the electron paramagnetic resonance spectroscopy.By using advanced techniques,e.g.,extended X-ray absorption fine structure and high-angle annular dark-field scanning transmission electron microscopy,NiV-LDHs films with 2.6 nm could expose larger specific surface area.Taking benzaldehyde as a model,high current density of 200 mA cm^(-2)at 1.8 V vs.RHE,81.1% conversion,77.6% yield of benzoic acid and 90.8% Faradaic efficiency were reached,which was superior to most of previous studies.Theoretical DFT analysis was well matched with experimental findings and documented that NiV-LDHs had high adsorption capacity for the aldehydes to suppress the side reaction,and the aldehydes were oxidized by the electrophilic hydroxyl radicals formed on NiV-LDHs.Our findings offer a universal strategy for the robust upgrading of diverse biomass-derived platform chemicals.
文摘Acrolein in spinal cord injury:The propensity of reactive aldehydes such as acrolein to both initiate and perpetuate tissue damage after spinal cord injury (SCI) is well established.Formed primarily from lipid peroxidation,acrolein is known to be one of the most reactive aldehydes.Acrolein will quickly overwhelm endogenous clearance mechanisms and antioxidants,and form adductswith lipids,proteins,and DNA.
基金supported by the National Key Research and Development Program of China(2019YFA0210302)the National Natural Science Foundation of China(21878009).
文摘As one of the few renewable aromatic resources,the research of depolymerization of lignin into highvalue chemicals has attracted extensive attention in recent years.Catalytic wet aerobic oxidation(CWAO)is an effective technology to convert lignin like sodium lignosulfonate(SL),a lignin derivative,into aromatic aldehydes such as vanillin and syringaldehyde.However,how to improve the yield of aromatic aldehyde and conversion efficiency is still a challenge,and many operating conditions that significantly affect the yield of these aromatic compounds have rarely been investigated systematically.In this work,we adopted the stirred tank reactor(STR)for the CWAO process with nano-CuO as catalyst to achieve the conversion of SL into vanillin and syringaldehyde.The effect of operating conditions including reaction time,oxygen partial pressure,reaction temperature,SL concentration,rotational speed,catalyst amount,and NaOH concentration on the yield of single phenolic compound was systematically investigated.The results revealed that all these operating conditions exhibit a significant effect on the aromatic aldehyde yield.Therefore,they should be regulated in an optimal value to obtain high yield of these aldehydes.More importantly,the reaction kinetics of the lignin oxidation was explored.This work could provide basic data for the optimization and design of industrial operation of lignin oxidation.
文摘A new and simple route for the synthesis of α,β-unsaturated ketones via cleavage of the C-C(O)C single bond of monoalkylated β-diketone has been described. The reaction was catalyzed by copper, a cheap transition metal in a weakly basic medium (K<sub>3</sub>PO<sub>4</sub>) at room temperature. To carry out this study, we first had to synthesize the monoalkylated β-diketones 1. Afterwards, α,β-unsaturated ketones 2 were obtained with high yields around 80%. Finally, all the products were characterized by 1H NMR, 13C NMR, and HRMS spectra. .
基金supported by the National Natural Science Foundation of China (Grant No.21968007)the Guangxi Natural Science Foundation (Grant No.2020GXNSFDA297007)+1 种基金the Opening Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology (Grant No.2023K002)Special funding for‘Guangxi Bagui Scholars’.
文摘As an important technology in fine chemical production,the selective hydrogenation ofα,β-unsaturated aldehydes has attracted much attention in recent years.In the process ofα,β-unsaturated aldehyde hydrogenation,a conjugated system is formed between>C=C<and>C=O,leading to hydrogenation at both ends of the conjugated system,which competes with each other and results in more complex products.Therefore,improving the reaction selectivity is also difficult in industrial fields.Recently,many researchers have reported that surface-active sites on catalysts play a crucial role inα,β-unsaturated aldehyde hydrogenation.This review attempts to summarize recent advances in understanding the effects of surface-active sites(SASs)over metal catalysts for enhancing the process of hydrogenation.The construction strategies and roles of SASs for hydrogenation catalysts are summarized.Particular attention has been given to the adsorption configuration and transformation mechanism ofα,β-unsaturated aldehydes on catalysts,which contributes to understanding the relationship between SASs and hydrogenation activity.In addition,recent advances in metal-supported catalysts for the selective hydrogenation ofα,β-unsaturated aldehydes to understand the role of SASs in hydrogenation are briefly reviewed.Finally,the opportunities and challenges will be highlighted for the future development of the precise construction of SASs.
文摘The technique for preparing phenol formaldehyde resin from phenolated wood (PWF) and its characters were studied and analyzed. Poplar (Populus spp.) wood meal was liquefied by phenol in the presence of sulfuric acid as a catalyst. After the liquefied products were cooled, alkaline catalyst and formaldehyde were added. The mixture was kept at (60?) C for 1h and then was heated to (85?) C for 1h. The influence of molar ratio of formaldehyde to phenol (F/P) was investigated. The results showed when the molar ratio of formaldehyde to phenol was over 1.8, the PWF adhesives had high bond quality, bond durability and extremely low aldehydes emissions.
文摘Aim To synthesize the tripepide Weinreb amide Boc Asp(OBzl) β Ala Asp(OBzl) N(OMe)Me (7) as a useful precursor of aspartyl peptide aldehyde derivatives; Methods DCC, IBCF method was used for preparation of Weinreb amide; N hydroxysuccinimide activated ester was used in peptide synthesis; and Boc as N protecting group of amino acid. Results Boc Asp(OBzl) N(OMe)Me (3), Boc β Ala Asp(OBzl) N(OMe)Me (5), and Boc Asp(OBzl) β Ala Asp(OBzl) N(OMe)Me (7) were synthesized successfully. Conclusion An useful precursor of tripeptide aspartyl aldehydes was synthesized.
文摘A rapid and eco-friendly one-pot protocol for the synthesis of nitriles has been developed by treating various araldehydes bearing electron withdrawing as well as electron donating groups with hydroxylamine hydrochloride in the presence of non-toxic,non-corrosive and reusable zinc oxide(ZnO) as the catalyst under solvent-free microwave irradiation.The present approach offers the advantages of a clean reaction,simple methodology,employing readily available catalyst,short reaction duration(〈1 min),high selectivity;and high yield(90-98%).
文摘Ferrous methanesulfonate catalysing the conversion of aromatic, heteroaromatic, unsaturated, and aliphatic aldehydes to 1,1- diacetates at room temperature under solvent-free condition has been developed. The catalytic activity of seventeen metal methanesulfonates was compared under the same condition, ferrous methanesufonate proved to be the best. It can be easily recovered and reused for several times without distinct deterioration in catalytic activity. During the competitive protection between a ketone and an aldehyde group with Ac20, 1,1-diacetate formed exclusively with the aldehyde group. 2009 Min Wang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
基金the National Natural Science Foundation of China(No.20776053)the Program for New Century Excellent Talents in University(No.NCET-06-740)for providing financial support for this project.
文摘A facile, efficient and substrate-selective oxidation of aldehydes to carboxylic acids with NaClO catalyzed by β-cyclodextrin in water has been developed. A series of aldehydes which could form inclusion complex with β-cyclodextrin (β-CD) were oxidized selectively with excellent yields.
基金supported by Instituto de Salud Carlos Ⅲ through FIS project PI 15/00110 co-funded by FEDER from Regional Development European Funds (European Union)the FOIE GRAS project,which has received funding from the European Union’s Horizon 2020 Research and Innovation programme under the Marie Sklodowska-Curie Grant (Agreement No. 722619)
文摘Aldehyde dehydrogenase 2(ALDH2) is best known for its critical detoxifying role in liver alcohol metabolism. However, ALDH2 dysfunction is also involved in a wide range of human pathophysiological situations and is associated with complications such as cardiovascular diseases, diabetes mellitus, neurodegenerative diseases and aging. A growing body of research has shown that ALDH2 provides important protection against oxidative stress and the subsequent loading of toxic aldehydes such as 4-hydroxy-2-nonenal and adducts that occur in human diseases, including ischemia reperfusion injury(IRI). There is increasing evidence of its role in IRI pathophysiology in organs such as heart, brain, small intestine and kidney; however, surprisingly few studies have been carried out in the liver, where ALDH2 is found in abundance. This study reviews the role of ALDH2 in modulating the pathways involved in the pathophysiology of IRI associated with oxidative stress, autophagy and apoptosis. Special emphasis is placed on the role of ALDH2 in different organs, on therapeutic "preconditioning" strategies, and on the use of ALDH2 agonists such as Alda-1, which may become a useful therapeutic tool for preventing the deleterious effects of IRI in organ transplantation.
基金supported by the National Nature Science Foundation of China (J1210060, 21143002)
文摘Sulfonated carbon as a strong and stable solid acid catalyst exhibited excellent catalytic performance in various acid-catalyzed reactions. Here, sulfonated carbon, as catalyst for oxidation reaction, was prepared via the carbonization of starch followed by sulfonation with concentrated sulfuric acid. N2 physisorption, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray fluorescence and acid-base titration were used to characterize the obtained materials. The catalytic activity of sulfonated carbon was studied in the oxidation of aldehydes to carboxylic acids using 30 wt% H2O2 as oxidant. This oxidation protocol works well for various aldehydes including aromatic and aliphatic aldehydes. The sulfonated carbon can be recycled for three times without obvious loss of activity.
文摘An efficient and environmentally benign conversion of aldehydes into the corresponding gem-dicarboxylates was realized by using hydrated ferric sulfate as a heterogeneous catalyst. In addition to its high efficiency, the catalyst can be recovered simply and reused efficiently for at least seven times.
文摘The sodium borohydride reduction of aldehydes and ketones to corresponding alcohols has been accomplished via the use of ionic liquids. The alcohols are easily obtained with excellent yields and the ionic liquid BMImBF4 could be reused.
文摘Green,mild and efficient iodination of hydroxylated aromatic aldehydes and ketones using iodine and iodic acid in the solidstate by grinding under solvent-free conditions at room temperature.This method provides several advantages such as environmentally friendly,short reaction times,high yields,non-hazardous and simple work-up procedure.
基金support from the NSF(Grant No.99-929-01-26)national“863”program(Grant No.2001AA620403).
文摘A new brominated phenylpropylaldehyde and its dimethyl acetal together with a new natural brominated phenol were isolated from Rhodomela confervoides. Their structrues were elucidated as 2-methyl-3-(2,3-dibromo-4,5-dihydroxyphenyl)propylaldehyde, 2-methyl-3-(2,3-di-bromo-4,5-dihydroxyphenyl) propylaldehyde dimethyl acetal and 3-bromo-4,5-dihydroxybenzoic acid methyl ester by spectroscopic techniques including IR, HRFABMS, ID and 2DNMR experiments.