The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).Whil...The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).While such DRFEs have been explored at low to middle latitudes,the aerosol impacts on pan-Arctic ecosystems and the contributions by anthropogenic and natural emission sources remain less quantified.Here,we perform regional simulations at 0.2o×0.2ousing a well-validated vegetation model(Yale Interactive terrestrial Biosphere,YIBs)in combination with multi-source of observations to quantify the impacts of aerosol DRFEs on the net primary productivity(NPP)in the pan-Arctic during 2001-19.Results show that aerosol DRFEs increase pan-Arctic NPP by 2.19 Pg C(12.8%)yr^(-1)under clear-sky conditions,in which natural and anthropogenic sources contribute to 8.9% and 3.9%,respectively.Under all-sky conditions,such DRFEs are largely dampened by cloud to only 0.26 Pg C(1.24%)yr^(-1),with contributions of 0.65% by natural and 0.59% by anthropogenic species.Natural aerosols cause a positive NPP trend of 0.022% yr^(-1)following the increased fire activities in the pan-Arctic.In contrast,anthropogenic aerosols induce a negative trend of-0.01% yr^(-1)due to reduced emissions from the middle latitudes.Such trends in aerosol DRFEs show a turning point in the year of 2007 with more positive NPP trends by natural aerosols but negative NPP trends by anthropogenic aerosols thereafter.Though affected by modeling uncertainties,this study suggests a likely increasing impact of aerosols on terrestrial ecosystems in the pan-Arctic under global warming.展开更多
High-speed solar-blind short wavelength ultraviolet radiation detectors based onκ(ε)-Ga_(2)O_(3)layers with Pt contacts were demonstrated and their properties were studied in detail.Theκ(ε)-Ga_(2)O_(3)layers were ...High-speed solar-blind short wavelength ultraviolet radiation detectors based onκ(ε)-Ga_(2)O_(3)layers with Pt contacts were demonstrated and their properties were studied in detail.Theκ(ε)-Ga_(2)O_(3)layers were deposited by the halide vapor phase epitaxy on patterned GaN templates with sapphire substrates.The spectral dependencies of the photoelectric properties of struc-tures were analyzed in the wavelength interval 200-370 nm.The maximum photo to dark current ratio,responsivity,detectiv-ity and external quantum efficiency of structures were determined as:180.86 arb.un.,3.57 A/W,1.78×10^(12) Hz^(0.5)∙cm·W^(-1) and 2193.6%,respectively,at a wavelength of 200 nm and an applied voltage of 1 V.The enhancement of the photoresponse was caused by the decrease in the Schottky barrier at the Pt/κ(ε)-Ga_(2)O_(3)interface under ultraviolet exposure.The detectors demon-strated could functionalize in self-powered mode due to built-in electric field at the Pt/κ(ε)-Ga_(2)O_(3)interface.The responsivity and external quantum efficiency of the structures at a wavelength of 254 nm and zero applied voltage were 0.9 mA/W and 0.46%,respectively.The rise and decay times in self-powered mode did not exceed 100 ms.展开更多
BACKGROUND Primary liver cancer is a malignant tumor with a high recurrence rate that significantly affects patient prognosis.Postoperative adjuvant external radiation therapy(RT)has been shown to effectively prevent ...BACKGROUND Primary liver cancer is a malignant tumor with a high recurrence rate that significantly affects patient prognosis.Postoperative adjuvant external radiation therapy(RT)has been shown to effectively prevent recurrence after liver cancer resection.However,there are multiple RT techniques available,and the differ-ential effects of these techniques in preventing postoperative liver cancer re-currence require further investigation.AIM To assess the advantages and disadvantages of various adjuvant external RT methods after liver resection based on overall survival(OS)and disease-free survival(DFS)and to determine the optimal strategy.METHODS This study involved network meta-analyses and followed the PRISMA guidelines.The data of qualified studies published before July 10,2023,were collected from PubMed,Embase,the Web of Science,and the Cochrane Library.We included relevant studies on postoperative external beam RT after liver resection that had OS and DFS as the primary endpoints.The magnitudes of the effects were determined using risk ratios with 95%confidential intervals.The results were analyzed using R software and STATA software.RESULTS A total of 12 studies,including 1265 patients with hepatocellular carcinoma(HCC)after liver resection,were included in this study.There was no significant heterogeneity in the direct paired comparisons,and there were no significant differences in the inclusion or exclusion criteria,intervention measures,or outcome indicators,meeting the assumptions of heterogeneity and transitivity.OS analysis revealed that patients who underwent stereotactic body radiotherapy(SBRT)after resection had longer OS than those who underwent intensity modulated radiotherapy(IMRT)or 3-dimensional conformal RT(3D-CRT).DFS analysis revealed that patients who underwent 3D-CRT after resection had the longest DFS.Patients who underwent IMRT after resection had longer OS than those who underwent 3D-CRT and longer DFS than those who underwent SBRT.CONCLUSION HCC patients who undergo liver cancer resection must consider distinct advantages and disadvantages when choosing between SBRT and 3D-CRT.IMRT,a RT technique that is associated with longer OS than 3D-CRT and longer DFS than SBRT,may be a preferred option.展开更多
Modern trends in beam-driven radiation sources include the interaction of Cherenkov wakefields in open-ended circular waveguides with complicated dielectric linings, with a three-layer dielectric capillary recently pr...Modern trends in beam-driven radiation sources include the interaction of Cherenkov wakefields in open-ended circular waveguides with complicated dielectric linings, with a three-layer dielectric capillary recently proposed to reduce radiation divergence being a representative example [Opt. Lett. 45 5416(2020)]. We present a rigorous approach that allows for an analytical description of the electromagnetic processes that occur when the structure is excited by a single waveguide TM mode. In other words, the corresponding canonical waveguide diffraction problem is solved in a rigorous formulation. This is a continuation of our previous papers which considered simpler cases with a homogeneous or two-layer dielectric filling. Here we use the same analytical approach based on the Wiener–Hopf–Fock technique and deal with the more complicated case of a three-layer dielectric lining. Using the obtained rigorous solution, we discuss the possibility of manipulating the far-field radiation pattern using a third layer made of a low permittivity material.展开更多
In Part I of this paper, an inequality satisfied by the vacuum energy density of the universe was derived using an indirect and heuristic procedure. The derivation is based on a proposed thought experiment, according ...In Part I of this paper, an inequality satisfied by the vacuum energy density of the universe was derived using an indirect and heuristic procedure. The derivation is based on a proposed thought experiment, according to which an electron is accelerated to a constant and relativistic speed at a distance L from a perfectly conducting plane. The charge of the electron was represented by a spherical charge distribution located within the Compton wavelength of the electron. Subsequently, the electron is incident on the perfect conductor giving rise to transition radiation. The energy associated with the transition radiation depends on the parameter L. It was shown that an inequality satisfied by the vacuum energy density will emerge when the length L is pushed to cosmological dimensions and the product of the radiated energy, and the time duration of emission is constrained by Heisenberg’s uncertainty principle. In this paper, a similar analysis is conducted with a chain of electrons oscillating sinusoidally and located above a conducting plane. In the thought experiment presented in this paper, the behavior of the energy radiated by the chain of oscillating electrons is studied in the frequency domain as a function of the length L of the chain. It is shown that when the length L is pushed to cosmological dimensions and the energy radiated within a single burst of duration of half a period of oscillation is constrained by the fact that electromagnetic energy consists of photons, an inequality satisfied by the vacuum energy density emerges as a result. The derived inequality is given by where is the vacuum energy density. This result is consistent with the measured value of the vacuum energy density, which is 5.38 × 10<sup>-10</sup> J/m. The result obtained here is in better agreement with experimental data than the one obtained in Part I of this paper with time domain radiation.展开更多
Double-cropping rice in South China continues to break the total yield record,but the yield potential of singlecropping rice is not being realized.Radiation use efficiency(RUE)has been singled out as an important dete...Double-cropping rice in South China continues to break the total yield record,but the yield potential of singlecropping rice is not being realized.Radiation use efficiency(RUE)has been singled out as an important determinant of grain yield in many cereal species.However,there is no information on whether the yield gaps in doublecropping rice involve differences in RUE.Field experiments were performed over two years to evaluate the effects of intercepted radiation(IP)and RUE on the above-ground biomass production,crop growth rate(CGR),and harvest index(HI),in four representative rice varieties,i.e.,Xiangyaxiangzhan(XYXZ),Meixiangzhan 2(MXZ2),Nanjingxiangzhan(NJXZ),and Ruanhuayoujinsi(RHYJS),during the early and late seasons of rice cultivation in South China.The results revealed that grain yield in the early season was 8.2%higher than in the late season.The yield advantage in the early season was primarily due to higher spikelets per panicle and above-ground biomass resulting from a higher RUE.The spikelets per panicle in the early season were 6.5,8.3,6.9,and 8.5%higher in XYXZ,MXZ2,NJXZ,and RHYJS,respectively,than in the late season.The higher early season grain yield was more closely related to RUE in the middle tillering stage(R^(2)=0.34),panicle initiation(R^(2)=0.16),and maturation stage(R^(2)=0.28),and the intercepted photosynthetically active radiation(IPAR)in the maturation stage(R^(2)=0.28),while the late season grain yield was more dependent on IPAR in the middle tillering stage(R^(2)=0.31)and IPAR at panicle initiation(R^(2)=0.23).The results of this study conclusively show that higher RUE contributes to the yield progress of early season rice,while the yield improvement of late season rice is attributed to higher radiation during the early reproductive stage.Rationally allocating the RUE of double-cropping rice with high RUE varieties or adjustments of the sowing period merits further study.展开更多
In this study,we put forward a radiative-convective-transportive energy balance model of a gray atmosphere to examine individual roles of the greenhouse effect of water vapor,vertical convection,and atmospheric polewa...In this study,we put forward a radiative-convective-transportive energy balance model of a gray atmosphere to examine individual roles of the greenhouse effect of water vapor,vertical convection,and atmospheric poleward energy transport as well as their combined effects for a quasi-linear relationship between the outgoing longwave radiation(OLR)and surface temperature(T_(S)).The greenhouse effect of water vapor enhances the meridional gradient of surface temperature,thereby directly contributing to a quasi-linear OLR-T_(S) relationship.The atmospheric poleward energy transport decreases the meridional gradient of surface temperature.As a result of the poleward energy transport,tropical(high-latitude)atmosphere-surface columns emit less(more)OLR than the solar energy input at their respective locations,causing a substantial reduction of the meridional gradient of the OLR.The combined effect of reducing the meridional gradients of both OLR and surface temperature by the poleward energy transport also contributes to the quasi-linear OLR-T_(S) relationship.Vertical convective energy transport reduces the meridional gradient of surface temperature without affecting the meridional gradient of OLR,thereby suppressing part of the reduction to the increasing rate of OLR with surface temperature by the greenhouse effect of water vapor and poleward energy transport.Because of the nature of the energy balance in the climate system,such a quasi-linear relationship is also a good approximation for the relationship between the annual-mean net downward solar energy flux at the top of the atmosphere and surface temperature.展开更多
Acoustic radiation force(ARF), as an important particle manipulation method, has been extensively studied in recent years. With the introduction of the concept of “acoustic tweezers”, negative acoustic radiation has...Acoustic radiation force(ARF), as an important particle manipulation method, has been extensively studied in recent years. With the introduction of the concept of “acoustic tweezers”, negative acoustic radiation has become a research hotspot. In this paper, a scheme of realizing negative ARF based on the multiple-layered spherical structure design is proposed. The specific structure and design idea are presented. Detailed theoretical calculation analysis is carried out.Numerical simulations have been performed to verify the correctness of this prediction. The conjecture that the suppression of backscattering can achieve negative ARF is verified concretely, which greatly expands the application prospect and design ideas of the ARF. This work has laid a theoretical foundation for realizing precise control of the structure.展开更多
The energy spectrum of energetic electrons is a key factor representing the dynamic variations of Earth’s Van Allen radiation belts.Increased measurements have indicated that the commonly used Maxwellian and Kappa di...The energy spectrum of energetic electrons is a key factor representing the dynamic variations of Earth’s Van Allen radiation belts.Increased measurements have indicated that the commonly used Maxwellian and Kappa distributions are inadequate for capturing the realistic spectral distributions of radiation belt electrons.Here we adopt the Kappa-type(KT)distribution as the fitting function and perform a statistical analysis to investigate the radiation belt electron flux spectra observed by the Van Allen Probes.By calculating the optimal values of the key KT distribution parameters(i.e.,κandθ2)from the observed spectral shapes,we fit the radiation belt electron fluxes at different L-shells under different geomagnetic conditions.In this manner,we obtain typical values of the KT distribution parameters,which are statistically feasible for modeling the radiation belt electron flux profiles during either geomagnetically quiet or active periods.A comparison of the KT distribution model results with those using the Maxwellian or Kappa distribution reveals the advantage of the KT distribution for studying the overall properties of the radiation belt electron spectral distribution,which has important implications for deepening the current understanding of the radiation belt electron dynamics under evolving geomagnetic conditions.展开更多
Iron(Fe)-based alloys,which have been widely used as structural materials in nuclear reactors,can significantly change their microstructure properties and macroscopic properties under high flux neutron irradiation dur...Iron(Fe)-based alloys,which have been widely used as structural materials in nuclear reactors,can significantly change their microstructure properties and macroscopic properties under high flux neutron irradiation during operation,thus,the problems associated with the safe operation of nuclear reactors have been put forward naturally.In this work,a molecular dynamics simulation approach combined with electronic effects is developed for investigating the primary radiation damage process inα-Fe.Specifically,the influence of electronic effects on the collision cascade in Fe is systematically evaluated based on two commonly used interatomic potentials for Fe.The simulation results reveal that both electronic stopping(ES)and electron-phonon coupling(EPC)can contribute to the decrease of the number of defects in the thermal spike phase.The application of ES reduces the number of residual defects after the cascade evolution,whereas EPC has a reverse effect.The introduction of electronic effects promotes the formation of the dispersive subcascade:ES significantly changes the geometry of the damaged region in the thermal spike phase,whereas EPC mainly reduces the extent of the damaged region.Furthermore,the incorporation of electronic effects effectively mitigates discrepancies in simulation outcomes when using different interatomic potentials.展开更多
The integrity of the chromosomes for two WIL2-derived lymphoblastoid cell lines (TK6 and WTK1) in the presence and absence of ionizing radiation was analyzed by Multiplex Ligation-Dependent Probe Amplification (MLPA)....The integrity of the chromosomes for two WIL2-derived lymphoblastoid cell lines (TK6 and WTK1) in the presence and absence of ionizing radiation was analyzed by Multiplex Ligation-Dependent Probe Amplification (MLPA). The TK6 cell line has the native p53 tumor-suppressor gene, whereas WTK1 cells contain a p53 mutation. Each cell line was isolated pre- and post-irradiation (2 and 3 Gy) and analyzed by MLPA. The impact of irradiation on these two cell lines was investigated using probes that target specific regions on chromosomes associated with subtelomeric regions. Results indicate that WTK1 and TK6 are impacted differently after irradiation, and that each cell line presents its own unique MLPA profile. The most notable differences are the appearance of a number of probes in the post-irradiated MLPA profile that are not present in the controls, and two unique probe signals only seen in WTK1 cells. These results build on our previous studies that indicate how different human cell lines can be affected by radiation in significantly different ways depending on the presence or absence of wild type p53.展开更多
The primary radiation damage in pure V and TiVTa concentrated solid-solution alloy(CSA)was studied using a molecular dynamics method.We have performed displacement cascade simulations to explore the generation and evo...The primary radiation damage in pure V and TiVTa concentrated solid-solution alloy(CSA)was studied using a molecular dynamics method.We have performed displacement cascade simulations to explore the generation and evolution behavior of irradiation defects.The results demonstrate that the defect accumulation and agglomeration in TiVTa CSA are significantly suppressed compared to pure V.The peak value of Frenkel pairs during cascade collisions in TiVTa CSA is much higher than that in pure V due to the lower formation energy of point defects.Meanwhile,the longer lifetime of the thermal spike relaxation and slow energy dissipation capability of TiVTa CSA can facilitate the recombination of point defects.The defect agglomeration rate in TiVTa CSA is much lower due to the lower binding energy of interstitial clusters and reduced interstitial diffusivity.Furthermore,the occurrence probability of dislocation loops in TiVTa CSA is lower than that in pure V.The reduction in primary radiation damage may enhance the radiation resistance of TiVTa CSA,and the improved radiation tolerance is primarily attributed to the relaxation stage and long-term defect evolution rather than the ballistic stage.These results can provide fundamental insights into irradiation-induced defects evolution in refractory CSAs.展开更多
The effect of ultraviolet(UV)radiation and biocide benzalkonium chloride(BKC)on fungal-induced corrosion of AA7075 induced by Aspergillus terreus(A.terreus)was deeply studied using analysis of biological activity,surf...The effect of ultraviolet(UV)radiation and biocide benzalkonium chloride(BKC)on fungal-induced corrosion of AA7075 induced by Aspergillus terreus(A.terreus)was deeply studied using analysis of biological activity,surface analysis,and electrochemical measurements.Results demonstrated that the planktonic and sessile spore concentrations decline by more than two orders of magnitude when UV radiation and BKC are combinedly used compared with the control.UV radiation can inhibit the biological activity of A.terreus and influence the stability of passive film of AA7075.Except for direct disinfection,the physical adsorption of BKC on the specimen can effectively inhibit the attachment of A.terreus.The combination of UV radiation and BKC can much more effectively inhibit the corrosion of AA,especially pitting corrosion,due to their synergistic effect.The combined application of UV radiation and BKC can be a good method to effectively inhibit fungal-induced corrosion.展开更多
In response to thermal runaway(TR)of electric vehicles,recent attention has been focused on mitigation strategies such as efficient heat dredging in battery thermal management.Thermal management with particular focus ...In response to thermal runaway(TR)of electric vehicles,recent attention has been focused on mitigation strategies such as efficient heat dredging in battery thermal management.Thermal management with particular focus on battery cooling has been becoming increasingly significant.TR usually happened when an electric vehicle is unpowered and charged.In this state,traditional active battery cooling schemes are disabled,which can easily lead to dangerous incidents due to loss of cooling ability,and advanced passive cooling strategies are therefore gaining importance.Herein,we developed an enhanced thermal radiation material,consisting of~1μm thick multilayered nano-sheet graphene film coated upon the heat dissipation surface,thereby enhancing thermal radiation in the nanoscale.The surface was characterized on the nanoscale,and tested in a battery-cooling scenario.We found that the graphene-based coating's spectral emissivity is between 91% and 95% in the mid-infrared region,and thermal experiments consequently illustrated that graphene-based radiative cooling yielded up to15.1% temperature reduction when compared to the uncoated analogue.Using the novel graphene surface to augment a heat pipe,the temperature reduction can be further enlarged to 25.6%.The new material may contribute to transportation safety,global warming mitigation and carbon neutralization.展开更多
The Myc gene is the essential oncogene in triple-negative breast cancer(TNBC).This study investigates the synergistic effects of combining Myc decoy oligodeoxynucleotides-encapsulated niosomes-selenium hybrid nanocarr...The Myc gene is the essential oncogene in triple-negative breast cancer(TNBC).This study investigates the synergistic effects of combining Myc decoy oligodeoxynucleotides-encapsulated niosomes-selenium hybrid nanocarriers with X-irradiation exposure on the MDA-MB-468 cell line.Decoy and scramble ODNs for Myc transcription factor were designed and synthesized based on promoter sequences of the Bcl2 gene.The nanocarriers were synthesized by loading Myc ODNs and selenium into chitosan(Chi-Se-DEC),which was then encapsulated in niosome-nanocarriers(NISM@Chi-Se-DEC).FT-IR,DLS,FESEM,and hemolysis tests were applied to confirm its characterization and physicochemical properties.Moreover,cellular uptake,cellular toxicity,apoptosis,cell cycle,and scratch repair assays were performed to evaluate its anticancer effects on cancer cells.All anticancer assessments were repeated under X-ray irradiation conditions(fractionated 2Gy).Physicochemical characteristics of niosomes containing SeNPs and ODNs showed that it is synthesized appropriately.It revealed that the anticancer effect of NISM@Chi-Se-DEC can be significantly improved in combination with X-ray irradiation treatment.It can be concluded that NISM@Chi-Se-DEC nanocarriers have the potential as a therapeutic agent for cancer treatment,particularly in combination with radiation therapy and in-vivo experiments are necessary to confirm the efficacy of this nano-drug.展开更多
A novel lightweight,radiation-shielding Mg-Ta-Al layered metal-matrix composite(LMC)was successful designed by doping the extremely refractory metal(Ta)into Mg sheets.These Mg-based LMCs sheets shows excellent radiati...A novel lightweight,radiation-shielding Mg-Ta-Al layered metal-matrix composite(LMC)was successful designed by doping the extremely refractory metal(Ta)into Mg sheets.These Mg-based LMCs sheets shows excellent radiation-dose shield effect,about 145 krad·a^(−1),which is about 17 times of traditional Mg alloy,while its surface density is only about 0.9 g·cm^(−2),reducing by 60%than that of pure Ta.The quantitate relationship between radiation-dose and the materials’thickness was also confirmed to the logistic function when the surface density is in the range of 0.6-1.5 g·cm^(−2).Meantime,the rolling parameters,interface microstructure and mechanical properties in both as-rolled and annealing treated samples were evaluated.The sheets possess a special dissimilar atoms diffusion transitional zone containing an obvious inter-diffusion Mg-Al interface and the unique micro-corrugated Ta-Al interface,as well as a thin Al film with a thickness of about 10μm.The special zone could reduce the stress concentration and enhance the strength of Mg-Ta-Al LMCs.The interface bonding strength reaches up to 54-76 MPa.The ultimate tensile strength(UTS)and yield strength(TYS)of the Mg-Ta-Al sheet were high to 413 MPa and 263 MPa,respectively,along with an elongation of 5.8%.The molecular dynamics(MD)analysis results show that the two interfaces exhibit different formation mechanism,the Mg-Al interface primarily depended on Mg/Al atoms diffusion basing point defects movement,while the Ta-Al interface with a micro-interlock pining shape formed by close-packed planes slipping during high temperature strain-induced deformation process.展开更多
Zirconium hydride(ZrH_(2)) is an ideal neutron moderator material. However, radiation effect significantly changes its properties, which affect its behavior and the lifespan of the reactor. The threshold energy of dis...Zirconium hydride(ZrH_(2)) is an ideal neutron moderator material. However, radiation effect significantly changes its properties, which affect its behavior and the lifespan of the reactor. The threshold energy of displacement is an important quantity of the number of radiation defects produced, which helps us to predict the evolution of radiation defects in ZrH_(2).Molecular dynamics(MD) and ab initio molecular dynamics(AIMD) are two main methods of calculating the threshold energy of displacement. The MD simulations with empirical potentials often cannot accurately depict the transitional states that lattice atoms must surpass to reach an interstitial state. Additionally, the AIMD method is unable to perform largescale calculation, which poses a computational challenge beyond the simulation range of density functional theory. Machine learning potentials are renowned for their high accuracy and efficiency, making them an increasingly preferred choice for molecular dynamics simulations. In this work, we develop an accurate potential energy model for the ZrH_(2) system by using the deep-potential(DP) method. The DP model has a high degree of agreement with first-principles calculations for the typical defect energy and mechanical properties of the ZrH_(2) system, including the basic bulk properties, formation energy of point defects, as well as diffusion behavior of hydrogen and zirconium. By integrating the DP model with Ziegler–Biersack–Littmark(ZBL) potential, we can predict the threshold energy of displacement of zirconium and hydrogen in ε-ZrH_(2).展开更多
Objective:A model of inflammatory damage was induced by radiation to investigate whether ferulic acid(FA)can reduce the inflammatory response through the Sirt1-NLRP3 inflammatory pathway.This will help discover radiat...Objective:A model of inflammatory damage was induced by radiation to investigate whether ferulic acid(FA)can reduce the inflammatory response through the Sirt1-NLRP3 inflammatory pathway.This will help discover radiation-protective drugs and elucidate the molecular mechanisms related to radiation-induced inflammatory damage.Methods:A mouse model of radiation-induced immunoinflammatory injury was established to verify the anti-inflammatory effects of FA in vivo.C57BL/6J mice were randomly divided into six groups,and 5 Gy whole-body irradiation was used for modeling.Mice were administered a gastric solvent,amifostine,or 25,50,or 100 mg/kg FA daily for 12 days,consecutively,before irradiation.The serum of mice was collected 24 hour after irradiation to observe the content of inflammatory factors interleukin(IL)-1β,IL-18,IL-6,and tumor necrosis factor(TNF)-α.The spleen and thymus tissues of mice were weighed and the organ index was calculated for pathological testing and immunofluorescence detection.Results:FA reduced the radiation-induced decrease in the spleen and thymus indices.FA significantly reduced the secretion of inflammatory factors in the serum and reversed the radiation-induced reduction in lymphocytes in the spleen and thymus of mice.FA activated Sirt1 and inhibited the expression of the NLRP3 inflammasome to alleviate the inflammatory response.Conclusions:FA reduced radiation-induced inflammation in animals,possibly by activating Sirt1 and reducing nucleotide oligomerization domain(NOD)-like receptor thermal protein domain associated protein 3(NLRP3)inflammasome expression,thereby reducing the secretion of inflammatory factors.展开更多
Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the ...Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the AMR method of radiation source signals based on two-dimensional data matrix and improved residual neural network is proposed in this paper.First,the time series of the radiation source signals are reconstructed into two-dimensional data matrix,which greatly simplifies the signal preprocessing process.Second,the depthwise convolution and large-size convolutional kernels based residual neural network(DLRNet)is proposed to improve the feature extraction capability of the AMR model.Finally,the model performs feature extraction and classification on the two-dimensional data matrix to obtain the recognition vector that represents the signal modulation type.Theoretical analysis and simulation results show that the AMR method based on two-dimensional data matrix and improved residual network can significantly improve the accuracy of the AMR method.The recognition accuracy of the proposed method maintains a high level greater than 90% even at -14 dB SNR.展开更多
In this study,to efficiently remove Pb(Ⅱ) from aqueous environments,a novel L-serine-modified polyethylene/polypropylene nonwoven fabric sorbent(NWF-serine)was fabricated through the radiation grafting of glycidyl me...In this study,to efficiently remove Pb(Ⅱ) from aqueous environments,a novel L-serine-modified polyethylene/polypropylene nonwoven fabric sorbent(NWF-serine)was fabricated through the radiation grafting of glycidyl methacrylate and subsequent L-serine modification.The effect of the absorbed dose was investigated in the range of 5–50 kGy.NWF-serine was characterized by Fourier transform infrared spectroscopy,thermogravimetric analysis,and scanning electron microscopy.Batch adsorption tests were conducted to investigate the influences of pH,adsorption time,temperature,initial concentration,and sorbent dosage on the Pb(Ⅱ) adsorption performance of NWF-serine.The results indicated that Pb(Ⅱ) adsorption onto NWF-serine was an endothermic process,following the pseudo-second-order kinetic model and Langmuir isotherm model.The saturated adsorption capacity was 198.1 mg/g.NWF-serine exhibited Pb(Ⅱ) removal rates of 99.8% for aqueous solutions with initial concentrations of 100 mg/L and 82.1% for landfill leachate containing competitive metal ions such as Cd,Cu,Ni,Mn,and Zn.Furthermore,NWF-serine maintained 86% of its Pb(Ⅱ) uptake after five use cycles.The coordination of the carboxyl and amino groups with Pb(Ⅱ) was confirmed using X-ray photoelectron spectroscopy and extended X-ray absorption fine structure analysis.展开更多
基金jointly supported by the National Key Research and Development Program of China(Grant No.2022YFE0106500)Jiangsu Science Fund for Distinguished Young Scholars(Grant No.BK20200040)。
文摘The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).While such DRFEs have been explored at low to middle latitudes,the aerosol impacts on pan-Arctic ecosystems and the contributions by anthropogenic and natural emission sources remain less quantified.Here,we perform regional simulations at 0.2o×0.2ousing a well-validated vegetation model(Yale Interactive terrestrial Biosphere,YIBs)in combination with multi-source of observations to quantify the impacts of aerosol DRFEs on the net primary productivity(NPP)in the pan-Arctic during 2001-19.Results show that aerosol DRFEs increase pan-Arctic NPP by 2.19 Pg C(12.8%)yr^(-1)under clear-sky conditions,in which natural and anthropogenic sources contribute to 8.9% and 3.9%,respectively.Under all-sky conditions,such DRFEs are largely dampened by cloud to only 0.26 Pg C(1.24%)yr^(-1),with contributions of 0.65% by natural and 0.59% by anthropogenic species.Natural aerosols cause a positive NPP trend of 0.022% yr^(-1)following the increased fire activities in the pan-Arctic.In contrast,anthropogenic aerosols induce a negative trend of-0.01% yr^(-1)due to reduced emissions from the middle latitudes.Such trends in aerosol DRFEs show a turning point in the year of 2007 with more positive NPP trends by natural aerosols but negative NPP trends by anthropogenic aerosols thereafter.Though affected by modeling uncertainties,this study suggests a likely increasing impact of aerosols on terrestrial ecosystems in the pan-Arctic under global warming.
基金Research of the photoelectric properties of theκ(ε)-Ga_(2)O_(3)films was supported by the Russian Science Foundation,grant number 20-79-10043-P.Fabrication of the ultraviolet detectors based on theκ(ε)-Ga_(2)O_(3)layers was supported by the grant under the Decree of the Government of the Rus-sian Federation No.220 of 09 April 2010(Agreement No.075-15-2022-1132 of 01 July 2022)Research of the structural prop-erties of theκ(ε)-Ga_(2)O_(3)was supported by the St.Petersburg State University,grant number 94034685.
文摘High-speed solar-blind short wavelength ultraviolet radiation detectors based onκ(ε)-Ga_(2)O_(3)layers with Pt contacts were demonstrated and their properties were studied in detail.Theκ(ε)-Ga_(2)O_(3)layers were deposited by the halide vapor phase epitaxy on patterned GaN templates with sapphire substrates.The spectral dependencies of the photoelectric properties of struc-tures were analyzed in the wavelength interval 200-370 nm.The maximum photo to dark current ratio,responsivity,detectiv-ity and external quantum efficiency of structures were determined as:180.86 arb.un.,3.57 A/W,1.78×10^(12) Hz^(0.5)∙cm·W^(-1) and 2193.6%,respectively,at a wavelength of 200 nm and an applied voltage of 1 V.The enhancement of the photoresponse was caused by the decrease in the Schottky barrier at the Pt/κ(ε)-Ga_(2)O_(3)interface under ultraviolet exposure.The detectors demon-strated could functionalize in self-powered mode due to built-in electric field at the Pt/κ(ε)-Ga_(2)O_(3)interface.The responsivity and external quantum efficiency of the structures at a wavelength of 254 nm and zero applied voltage were 0.9 mA/W and 0.46%,respectively.The rise and decay times in self-powered mode did not exceed 100 ms.
基金Supported by The Science and Technology Plan Project of Guangzhou,No.202102010171National Natural Science Foundation。
文摘BACKGROUND Primary liver cancer is a malignant tumor with a high recurrence rate that significantly affects patient prognosis.Postoperative adjuvant external radiation therapy(RT)has been shown to effectively prevent recurrence after liver cancer resection.However,there are multiple RT techniques available,and the differ-ential effects of these techniques in preventing postoperative liver cancer re-currence require further investigation.AIM To assess the advantages and disadvantages of various adjuvant external RT methods after liver resection based on overall survival(OS)and disease-free survival(DFS)and to determine the optimal strategy.METHODS This study involved network meta-analyses and followed the PRISMA guidelines.The data of qualified studies published before July 10,2023,were collected from PubMed,Embase,the Web of Science,and the Cochrane Library.We included relevant studies on postoperative external beam RT after liver resection that had OS and DFS as the primary endpoints.The magnitudes of the effects were determined using risk ratios with 95%confidential intervals.The results were analyzed using R software and STATA software.RESULTS A total of 12 studies,including 1265 patients with hepatocellular carcinoma(HCC)after liver resection,were included in this study.There was no significant heterogeneity in the direct paired comparisons,and there were no significant differences in the inclusion or exclusion criteria,intervention measures,or outcome indicators,meeting the assumptions of heterogeneity and transitivity.OS analysis revealed that patients who underwent stereotactic body radiotherapy(SBRT)after resection had longer OS than those who underwent intensity modulated radiotherapy(IMRT)or 3-dimensional conformal RT(3D-CRT).DFS analysis revealed that patients who underwent 3D-CRT after resection had the longest DFS.Patients who underwent IMRT after resection had longer OS than those who underwent 3D-CRT and longer DFS than those who underwent SBRT.CONCLUSION HCC patients who undergo liver cancer resection must consider distinct advantages and disadvantages when choosing between SBRT and 3D-CRT.IMRT,a RT technique that is associated with longer OS than 3D-CRT and longer DFS than SBRT,may be a preferred option.
基金supported by the Russian Science Foundation(Grant No.18-72-10137)。
文摘Modern trends in beam-driven radiation sources include the interaction of Cherenkov wakefields in open-ended circular waveguides with complicated dielectric linings, with a three-layer dielectric capillary recently proposed to reduce radiation divergence being a representative example [Opt. Lett. 45 5416(2020)]. We present a rigorous approach that allows for an analytical description of the electromagnetic processes that occur when the structure is excited by a single waveguide TM mode. In other words, the corresponding canonical waveguide diffraction problem is solved in a rigorous formulation. This is a continuation of our previous papers which considered simpler cases with a homogeneous or two-layer dielectric filling. Here we use the same analytical approach based on the Wiener–Hopf–Fock technique and deal with the more complicated case of a three-layer dielectric lining. Using the obtained rigorous solution, we discuss the possibility of manipulating the far-field radiation pattern using a third layer made of a low permittivity material.
文摘In Part I of this paper, an inequality satisfied by the vacuum energy density of the universe was derived using an indirect and heuristic procedure. The derivation is based on a proposed thought experiment, according to which an electron is accelerated to a constant and relativistic speed at a distance L from a perfectly conducting plane. The charge of the electron was represented by a spherical charge distribution located within the Compton wavelength of the electron. Subsequently, the electron is incident on the perfect conductor giving rise to transition radiation. The energy associated with the transition radiation depends on the parameter L. It was shown that an inequality satisfied by the vacuum energy density will emerge when the length L is pushed to cosmological dimensions and the product of the radiated energy, and the time duration of emission is constrained by Heisenberg’s uncertainty principle. In this paper, a similar analysis is conducted with a chain of electrons oscillating sinusoidally and located above a conducting plane. In the thought experiment presented in this paper, the behavior of the energy radiated by the chain of oscillating electrons is studied in the frequency domain as a function of the length L of the chain. It is shown that when the length L is pushed to cosmological dimensions and the energy radiated within a single burst of duration of half a period of oscillation is constrained by the fact that electromagnetic energy consists of photons, an inequality satisfied by the vacuum energy density emerges as a result. The derived inequality is given by where is the vacuum energy density. This result is consistent with the measured value of the vacuum energy density, which is 5.38 × 10<sup>-10</sup> J/m. The result obtained here is in better agreement with experimental data than the one obtained in Part I of this paper with time domain radiation.
基金funded by the National Natural Science Foundation of China(31971843)the Modern Agroindustrial Technology System of Guangdong Province,China(2021KJ105)the Guangzhou Science and Technology Project,China(202103000075 and 202102100008)。
文摘Double-cropping rice in South China continues to break the total yield record,but the yield potential of singlecropping rice is not being realized.Radiation use efficiency(RUE)has been singled out as an important determinant of grain yield in many cereal species.However,there is no information on whether the yield gaps in doublecropping rice involve differences in RUE.Field experiments were performed over two years to evaluate the effects of intercepted radiation(IP)and RUE on the above-ground biomass production,crop growth rate(CGR),and harvest index(HI),in four representative rice varieties,i.e.,Xiangyaxiangzhan(XYXZ),Meixiangzhan 2(MXZ2),Nanjingxiangzhan(NJXZ),and Ruanhuayoujinsi(RHYJS),during the early and late seasons of rice cultivation in South China.The results revealed that grain yield in the early season was 8.2%higher than in the late season.The yield advantage in the early season was primarily due to higher spikelets per panicle and above-ground biomass resulting from a higher RUE.The spikelets per panicle in the early season were 6.5,8.3,6.9,and 8.5%higher in XYXZ,MXZ2,NJXZ,and RHYJS,respectively,than in the late season.The higher early season grain yield was more closely related to RUE in the middle tillering stage(R^(2)=0.34),panicle initiation(R^(2)=0.16),and maturation stage(R^(2)=0.28),and the intercepted photosynthetically active radiation(IPAR)in the maturation stage(R^(2)=0.28),while the late season grain yield was more dependent on IPAR in the middle tillering stage(R^(2)=0.31)and IPAR at panicle initiation(R^(2)=0.23).The results of this study conclusively show that higher RUE contributes to the yield progress of early season rice,while the yield improvement of late season rice is attributed to higher radiation during the early reproductive stage.Rationally allocating the RUE of double-cropping rice with high RUE varieties or adjustments of the sowing period merits further study.
基金part supported by grants from the National Natural Science Foundation of China(Grant Nos.42222502 and 42075028)grants from the National Science Foundation(AGS-2032542 and AGS-2202875)。
文摘In this study,we put forward a radiative-convective-transportive energy balance model of a gray atmosphere to examine individual roles of the greenhouse effect of water vapor,vertical convection,and atmospheric poleward energy transport as well as their combined effects for a quasi-linear relationship between the outgoing longwave radiation(OLR)and surface temperature(T_(S)).The greenhouse effect of water vapor enhances the meridional gradient of surface temperature,thereby directly contributing to a quasi-linear OLR-T_(S) relationship.The atmospheric poleward energy transport decreases the meridional gradient of surface temperature.As a result of the poleward energy transport,tropical(high-latitude)atmosphere-surface columns emit less(more)OLR than the solar energy input at their respective locations,causing a substantial reduction of the meridional gradient of the OLR.The combined effect of reducing the meridional gradients of both OLR and surface temperature by the poleward energy transport also contributes to the quasi-linear OLR-T_(S) relationship.Vertical convective energy transport reduces the meridional gradient of surface temperature without affecting the meridional gradient of OLR,thereby suppressing part of the reduction to the increasing rate of OLR with surface temperature by the greenhouse effect of water vapor and poleward energy transport.Because of the nature of the energy balance in the climate system,such a quasi-linear relationship is also a good approximation for the relationship between the annual-mean net downward solar energy flux at the top of the atmosphere and surface temperature.
基金Project supported by the National Key Research and Development Program of China (Grant No.2020YFA0211400)the State Key Program of the National Natural Science Foundation of China (Grant No.11834008)+3 种基金the National Natural Science Foundation of China (Grant Nos.12174192 and 12204119)the Fund from the State Key Laboratory of Acoustics,Chinese Academy of Sciences (Grant No.SKLA202210)the Fund from the Key Laboratory of Underwater Acoustic Environment,Chinese Academy of Sciences (Grant No.SSHJ-KFKT-1701)the Science and Technology Foundation of Guizhou Province,China (Grant No.ZK[2023]249)。
文摘Acoustic radiation force(ARF), as an important particle manipulation method, has been extensively studied in recent years. With the introduction of the concept of “acoustic tweezers”, negative acoustic radiation has become a research hotspot. In this paper, a scheme of realizing negative ARF based on the multiple-layered spherical structure design is proposed. The specific structure and design idea are presented. Detailed theoretical calculation analysis is carried out.Numerical simulations have been performed to verify the correctness of this prediction. The conjecture that the suppression of backscattering can achieve negative ARF is verified concretely, which greatly expands the application prospect and design ideas of the ARF. This work has laid a theoretical foundation for realizing precise control of the structure.
基金the National Natural Science Foundation of China(Grant Nos.42188101,42025404,41974186,42174188,and 42204160)the National Key R&D Program of China(Grant No.2022YFF0503700)+2 种基金the B-type Strategic Priority Program of the Chinese Academy of Sciences(Grant No.XDB41000000)the Fundamental Research Funds for the Central Universities(Grant Nos.2042022kf1016 and 2042023kf1025)the China Postdoctoral Science Foundation(Grant No.2022M722447)。
文摘The energy spectrum of energetic electrons is a key factor representing the dynamic variations of Earth’s Van Allen radiation belts.Increased measurements have indicated that the commonly used Maxwellian and Kappa distributions are inadequate for capturing the realistic spectral distributions of radiation belt electrons.Here we adopt the Kappa-type(KT)distribution as the fitting function and perform a statistical analysis to investigate the radiation belt electron flux spectra observed by the Van Allen Probes.By calculating the optimal values of the key KT distribution parameters(i.e.,κandθ2)from the observed spectral shapes,we fit the radiation belt electron fluxes at different L-shells under different geomagnetic conditions.In this manner,we obtain typical values of the KT distribution parameters,which are statistically feasible for modeling the radiation belt electron flux profiles during either geomagnetically quiet or active periods.A comparison of the KT distribution model results with those using the Maxwellian or Kappa distribution reveals the advantage of the KT distribution for studying the overall properties of the radiation belt electron spectral distribution,which has important implications for deepening the current understanding of the radiation belt electron dynamics under evolving geomagnetic conditions.
基金Project supported by the National MCF Energy Research and Development Program of China(Grant Nos.2022YFE03200200 and 2018YFE0308101)the National Natural Science Foundation of China(Grant No.12105194)the Natural Science Foundation of Sichuan Province,China(Grant Nos.2022NSFSC1265 and 2022NSFSC1251).
文摘Iron(Fe)-based alloys,which have been widely used as structural materials in nuclear reactors,can significantly change their microstructure properties and macroscopic properties under high flux neutron irradiation during operation,thus,the problems associated with the safe operation of nuclear reactors have been put forward naturally.In this work,a molecular dynamics simulation approach combined with electronic effects is developed for investigating the primary radiation damage process inα-Fe.Specifically,the influence of electronic effects on the collision cascade in Fe is systematically evaluated based on two commonly used interatomic potentials for Fe.The simulation results reveal that both electronic stopping(ES)and electron-phonon coupling(EPC)can contribute to the decrease of the number of defects in the thermal spike phase.The application of ES reduces the number of residual defects after the cascade evolution,whereas EPC has a reverse effect.The introduction of electronic effects promotes the formation of the dispersive subcascade:ES significantly changes the geometry of the damaged region in the thermal spike phase,whereas EPC mainly reduces the extent of the damaged region.Furthermore,the incorporation of electronic effects effectively mitigates discrepancies in simulation outcomes when using different interatomic potentials.
文摘The integrity of the chromosomes for two WIL2-derived lymphoblastoid cell lines (TK6 and WTK1) in the presence and absence of ionizing radiation was analyzed by Multiplex Ligation-Dependent Probe Amplification (MLPA). The TK6 cell line has the native p53 tumor-suppressor gene, whereas WTK1 cells contain a p53 mutation. Each cell line was isolated pre- and post-irradiation (2 and 3 Gy) and analyzed by MLPA. The impact of irradiation on these two cell lines was investigated using probes that target specific regions on chromosomes associated with subtelomeric regions. Results indicate that WTK1 and TK6 are impacted differently after irradiation, and that each cell line presents its own unique MLPA profile. The most notable differences are the appearance of a number of probes in the post-irradiated MLPA profile that are not present in the controls, and two unique probe signals only seen in WTK1 cells. These results build on our previous studies that indicate how different human cell lines can be affected by radiation in significantly different ways depending on the presence or absence of wild type p53.
基金Project supported by the Dean’s Fund of China Institute of Atomic Energy(Grant No.219256)the CNNC Science Fund for Talented Young Scholars.
文摘The primary radiation damage in pure V and TiVTa concentrated solid-solution alloy(CSA)was studied using a molecular dynamics method.We have performed displacement cascade simulations to explore the generation and evolution behavior of irradiation defects.The results demonstrate that the defect accumulation and agglomeration in TiVTa CSA are significantly suppressed compared to pure V.The peak value of Frenkel pairs during cascade collisions in TiVTa CSA is much higher than that in pure V due to the lower formation energy of point defects.Meanwhile,the longer lifetime of the thermal spike relaxation and slow energy dissipation capability of TiVTa CSA can facilitate the recombination of point defects.The defect agglomeration rate in TiVTa CSA is much lower due to the lower binding energy of interstitial clusters and reduced interstitial diffusivity.Furthermore,the occurrence probability of dislocation loops in TiVTa CSA is lower than that in pure V.The reduction in primary radiation damage may enhance the radiation resistance of TiVTa CSA,and the improved radiation tolerance is primarily attributed to the relaxation stage and long-term defect evolution rather than the ballistic stage.These results can provide fundamental insights into irradiation-induced defects evolution in refractory CSAs.
基金supported by the Guangdong Basic and Applied Basic Research Foundation,China(No.2023A1515012146)the National Natural Science Foundation of China(No.52271083)+1 种基金the Fundamental Research Funds for the Central Universities,China(No.22qntd0801)the Shanghai Engineering Technology Research Centre of Deep Offshore Material,China(No.19DZ2253100)。
文摘The effect of ultraviolet(UV)radiation and biocide benzalkonium chloride(BKC)on fungal-induced corrosion of AA7075 induced by Aspergillus terreus(A.terreus)was deeply studied using analysis of biological activity,surface analysis,and electrochemical measurements.Results demonstrated that the planktonic and sessile spore concentrations decline by more than two orders of magnitude when UV radiation and BKC are combinedly used compared with the control.UV radiation can inhibit the biological activity of A.terreus and influence the stability of passive film of AA7075.Except for direct disinfection,the physical adsorption of BKC on the specimen can effectively inhibit the attachment of A.terreus.The combination of UV radiation and BKC can much more effectively inhibit the corrosion of AA,especially pitting corrosion,due to their synergistic effect.The combined application of UV radiation and BKC can be a good method to effectively inhibit fungal-induced corrosion.
基金supported by the National Natural Science Foundation of China(no.52106114)Beijing Natural Science Foundation(no.3234061)Hong Kong Scholars Program(no.XJ2022027)。
文摘In response to thermal runaway(TR)of electric vehicles,recent attention has been focused on mitigation strategies such as efficient heat dredging in battery thermal management.Thermal management with particular focus on battery cooling has been becoming increasingly significant.TR usually happened when an electric vehicle is unpowered and charged.In this state,traditional active battery cooling schemes are disabled,which can easily lead to dangerous incidents due to loss of cooling ability,and advanced passive cooling strategies are therefore gaining importance.Herein,we developed an enhanced thermal radiation material,consisting of~1μm thick multilayered nano-sheet graphene film coated upon the heat dissipation surface,thereby enhancing thermal radiation in the nanoscale.The surface was characterized on the nanoscale,and tested in a battery-cooling scenario.We found that the graphene-based coating's spectral emissivity is between 91% and 95% in the mid-infrared region,and thermal experiments consequently illustrated that graphene-based radiative cooling yielded up to15.1% temperature reduction when compared to the uncoated analogue.Using the novel graphene surface to augment a heat pipe,the temperature reduction can be further enlarged to 25.6%.The new material may contribute to transportation safety,global warming mitigation and carbon neutralization.
基金supported by Zanjan University of Medical Sciences,Zanjan,Iran(Grant Number:A-12-1244-16&Ethical Code:IR.ZUMS.REC.1399.316).
文摘The Myc gene is the essential oncogene in triple-negative breast cancer(TNBC).This study investigates the synergistic effects of combining Myc decoy oligodeoxynucleotides-encapsulated niosomes-selenium hybrid nanocarriers with X-irradiation exposure on the MDA-MB-468 cell line.Decoy and scramble ODNs for Myc transcription factor were designed and synthesized based on promoter sequences of the Bcl2 gene.The nanocarriers were synthesized by loading Myc ODNs and selenium into chitosan(Chi-Se-DEC),which was then encapsulated in niosome-nanocarriers(NISM@Chi-Se-DEC).FT-IR,DLS,FESEM,and hemolysis tests were applied to confirm its characterization and physicochemical properties.Moreover,cellular uptake,cellular toxicity,apoptosis,cell cycle,and scratch repair assays were performed to evaluate its anticancer effects on cancer cells.All anticancer assessments were repeated under X-ray irradiation conditions(fractionated 2Gy).Physicochemical characteristics of niosomes containing SeNPs and ODNs showed that it is synthesized appropriately.It revealed that the anticancer effect of NISM@Chi-Se-DEC can be significantly improved in combination with X-ray irradiation treatment.It can be concluded that NISM@Chi-Se-DEC nanocarriers have the potential as a therapeutic agent for cancer treatment,particularly in combination with radiation therapy and in-vivo experiments are necessary to confirm the efficacy of this nano-drug.
基金supported by the National Natural Science Foundation of China(grant no.52192603,52275308).
文摘A novel lightweight,radiation-shielding Mg-Ta-Al layered metal-matrix composite(LMC)was successful designed by doping the extremely refractory metal(Ta)into Mg sheets.These Mg-based LMCs sheets shows excellent radiation-dose shield effect,about 145 krad·a^(−1),which is about 17 times of traditional Mg alloy,while its surface density is only about 0.9 g·cm^(−2),reducing by 60%than that of pure Ta.The quantitate relationship between radiation-dose and the materials’thickness was also confirmed to the logistic function when the surface density is in the range of 0.6-1.5 g·cm^(−2).Meantime,the rolling parameters,interface microstructure and mechanical properties in both as-rolled and annealing treated samples were evaluated.The sheets possess a special dissimilar atoms diffusion transitional zone containing an obvious inter-diffusion Mg-Al interface and the unique micro-corrugated Ta-Al interface,as well as a thin Al film with a thickness of about 10μm.The special zone could reduce the stress concentration and enhance the strength of Mg-Ta-Al LMCs.The interface bonding strength reaches up to 54-76 MPa.The ultimate tensile strength(UTS)and yield strength(TYS)of the Mg-Ta-Al sheet were high to 413 MPa and 263 MPa,respectively,along with an elongation of 5.8%.The molecular dynamics(MD)analysis results show that the two interfaces exhibit different formation mechanism,the Mg-Al interface primarily depended on Mg/Al atoms diffusion basing point defects movement,while the Ta-Al interface with a micro-interlock pining shape formed by close-packed planes slipping during high temperature strain-induced deformation process.
基金Project supported by the Joint Fund of the National Natural Science Foundation of China–“Ye Qisun”Science Fund(Grant No.U2341251)。
文摘Zirconium hydride(ZrH_(2)) is an ideal neutron moderator material. However, radiation effect significantly changes its properties, which affect its behavior and the lifespan of the reactor. The threshold energy of displacement is an important quantity of the number of radiation defects produced, which helps us to predict the evolution of radiation defects in ZrH_(2).Molecular dynamics(MD) and ab initio molecular dynamics(AIMD) are two main methods of calculating the threshold energy of displacement. The MD simulations with empirical potentials often cannot accurately depict the transitional states that lattice atoms must surpass to reach an interstitial state. Additionally, the AIMD method is unable to perform largescale calculation, which poses a computational challenge beyond the simulation range of density functional theory. Machine learning potentials are renowned for their high accuracy and efficiency, making them an increasingly preferred choice for molecular dynamics simulations. In this work, we develop an accurate potential energy model for the ZrH_(2) system by using the deep-potential(DP) method. The DP model has a high degree of agreement with first-principles calculations for the typical defect energy and mechanical properties of the ZrH_(2) system, including the basic bulk properties, formation energy of point defects, as well as diffusion behavior of hydrogen and zirconium. By integrating the DP model with Ziegler–Biersack–Littmark(ZBL) potential, we can predict the threshold energy of displacement of zirconium and hydrogen in ε-ZrH_(2).
基金funded by the National Key Research and Development Program(2022YFC3500303)Innovation Team and Talents Cultivation Program of the National Administration of Traditional Chinese Medicine(ZYYCXTD-C-202009)National Natural Science Foundation of China(81873063).
文摘Objective:A model of inflammatory damage was induced by radiation to investigate whether ferulic acid(FA)can reduce the inflammatory response through the Sirt1-NLRP3 inflammatory pathway.This will help discover radiation-protective drugs and elucidate the molecular mechanisms related to radiation-induced inflammatory damage.Methods:A mouse model of radiation-induced immunoinflammatory injury was established to verify the anti-inflammatory effects of FA in vivo.C57BL/6J mice were randomly divided into six groups,and 5 Gy whole-body irradiation was used for modeling.Mice were administered a gastric solvent,amifostine,or 25,50,or 100 mg/kg FA daily for 12 days,consecutively,before irradiation.The serum of mice was collected 24 hour after irradiation to observe the content of inflammatory factors interleukin(IL)-1β,IL-18,IL-6,and tumor necrosis factor(TNF)-α.The spleen and thymus tissues of mice were weighed and the organ index was calculated for pathological testing and immunofluorescence detection.Results:FA reduced the radiation-induced decrease in the spleen and thymus indices.FA significantly reduced the secretion of inflammatory factors in the serum and reversed the radiation-induced reduction in lymphocytes in the spleen and thymus of mice.FA activated Sirt1 and inhibited the expression of the NLRP3 inflammasome to alleviate the inflammatory response.Conclusions:FA reduced radiation-induced inflammation in animals,possibly by activating Sirt1 and reducing nucleotide oligomerization domain(NOD)-like receptor thermal protein domain associated protein 3(NLRP3)inflammasome expression,thereby reducing the secretion of inflammatory factors.
基金National Natural Science Foundation of China under Grant No.61973037China Postdoctoral Science Foundation under Grant No.2022M720419。
文摘Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the AMR method of radiation source signals based on two-dimensional data matrix and improved residual neural network is proposed in this paper.First,the time series of the radiation source signals are reconstructed into two-dimensional data matrix,which greatly simplifies the signal preprocessing process.Second,the depthwise convolution and large-size convolutional kernels based residual neural network(DLRNet)is proposed to improve the feature extraction capability of the AMR model.Finally,the model performs feature extraction and classification on the two-dimensional data matrix to obtain the recognition vector that represents the signal modulation type.Theoretical analysis and simulation results show that the AMR method based on two-dimensional data matrix and improved residual network can significantly improve the accuracy of the AMR method.The recognition accuracy of the proposed method maintains a high level greater than 90% even at -14 dB SNR.
基金supported by the National Natural Science Foundation of China(Nos.11605275 and 11675247)。
文摘In this study,to efficiently remove Pb(Ⅱ) from aqueous environments,a novel L-serine-modified polyethylene/polypropylene nonwoven fabric sorbent(NWF-serine)was fabricated through the radiation grafting of glycidyl methacrylate and subsequent L-serine modification.The effect of the absorbed dose was investigated in the range of 5–50 kGy.NWF-serine was characterized by Fourier transform infrared spectroscopy,thermogravimetric analysis,and scanning electron microscopy.Batch adsorption tests were conducted to investigate the influences of pH,adsorption time,temperature,initial concentration,and sorbent dosage on the Pb(Ⅱ) adsorption performance of NWF-serine.The results indicated that Pb(Ⅱ) adsorption onto NWF-serine was an endothermic process,following the pseudo-second-order kinetic model and Langmuir isotherm model.The saturated adsorption capacity was 198.1 mg/g.NWF-serine exhibited Pb(Ⅱ) removal rates of 99.8% for aqueous solutions with initial concentrations of 100 mg/L and 82.1% for landfill leachate containing competitive metal ions such as Cd,Cu,Ni,Mn,and Zn.Furthermore,NWF-serine maintained 86% of its Pb(Ⅱ) uptake after five use cycles.The coordination of the carboxyl and amino groups with Pb(Ⅱ) was confirmed using X-ray photoelectron spectroscopy and extended X-ray absorption fine structure analysis.