Cometabolic degradation is currently an effective and extensively way to remove high molecular weight polycyclic aromatic hydrocarbons(HMW-PAHs).Unfortunately,due to low bio-accessibility and high biotoxicity,the come...Cometabolic degradation is currently an effective and extensively way to remove high molecular weight polycyclic aromatic hydrocarbons(HMW-PAHs).Unfortunately,due to low bio-accessibility and high biotoxicity,the cometabolic degradation rate of HMW-PAHs is limited.Glycine-β-cyclodextrin(GCD)was obtained through amino modification ofβ-cyclodextrin(BCD)and added to cometabolic system of phenanthrene(PHE)and pyrene(PYR)to assist PYR biodegradation.Results show that the addition of GCD(100 mg/L)effectively improved the removal rate of PYR(20 mg/L)by 42.3%.GCD appeared to increase the bio-accessibility and reduce the biotoxicity of PHE and PYR,and then promoted the growth of Pseudomonas stutzeri DJP1 and stimulated the elevation of dehydrogenase(DHA)and catechol 12 dioxygenase(C12O)activities.The phthalate metabolic pathway was accelerated,which improved the cometabolic degradation.This study provided a new reference for the cometabolic degradation of HMW-PAHs.展开更多
Bio-based cyclodextrins(CDs)are a common research object in supramolecular chemistry.The special cavity structure of CDs can form supramolecular self-assemblies such as vesicles and microcrystals through weak interact...Bio-based cyclodextrins(CDs)are a common research object in supramolecular chemistry.The special cavity structure of CDs can form supramolecular self-assemblies such as vesicles and microcrystals through weak interaction with guest molecules.The different forms of supramolecular self-assemblies can be transformed into each other under certain conditions.The regulation of supramolecular self-assembly is not only helpful to understand the self-assembly principle,but also beneficial to its application.In the present study,the self-assembly behavior of epoxy-β-cyclodextrin(EP-β-CD)and mixed anionic and cationic surfactant system(sodium dodecyl sulfate/dodecyltrimethylammonium bromide,SDS/DTAB)in aqueous solution was studied.Morphological and particle size characterization found that the SDS/DTAB@EP-β-CD complex,as the basic building unit,self-assembled into worm-like micelles at lower temperatures and vesicles at higher temperatures.Nuclear magnetic resonance(NMR)and Fourier transform infrared spectroscopy(FT-IR)analysis revealed that the driving force for the formation of vesicles and worm-like micelles was the hydrogen bonds between EP-β-CD molecules,while water molecules played an important role in promoting vesicle formation between SDS/DTAB@EP-β-CD units.Herein,the mechanism of the morphologic transformation of SDS/DTAB@EP-β-CD supramolecular aggregates induced by temperature was elucidated by exploring the self-assembly process,which may provide an excellent basis for the development of delivery carriers.展开更多
In this study, the adsorption effect of β-cyclodextrin modified biochar (BC) on phenanthrene (PHE) in contaminated soil was investigated, aiming to provide an efficient and environmentally friendly remediation strate...In this study, the adsorption effect of β-cyclodextrin modified biochar (BC) on phenanthrene (PHE) in contaminated soil was investigated, aiming to provide an efficient and environmentally friendly remediation strategy for Polycyclic Aromatic Hydrocarbons (PAHs) contaminated soil. Through kinetic and isotherm analysis, β-CDBC-CA showed excellent phenanthrene adsorption performance, and the adsorption effect increased with the increase of time and was affected by temperature. The results show that β-CDBC-CA can not only effectively adsorb phenanthrene in soil, but also serve as a surfactant to help desorption phenanthrene adsorbed by soil organic matter and improve the efficiency of microbial degradation. The experimental data showed that the Elovich model could describe the adsorption behavior of β-CDBC-CA on phenanthrene well, while Langmuir and Freundlich models performed better in fitting parameters, revealing the adsorption mechanism of phenanthrene in contaminated soil by β-cyclodextrin-modified biochar. In addition, temperature has a significant effect on the adsorption capacity of β-CDBC-CA, and its application in soil remediation can be optimized by adjusting temperature. This study not only provides new materials and technical means for soil remediation but also provides important data support for an in-depth understanding of the environmental behavior of PAHs. By citing relevant research results, this study further improves the control and understanding of environmental risks of PAHs, which is of great significance for the protection of ecological environment and human health.展开更多
In this paper, biochar (BC) was used as raw material, activated by deionizing aqueous solution, NaCl solution, CA solution and HCl solution respectively. Epichlorohydrin (EPI) was used as crosslinking agent, and β-cy...In this paper, biochar (BC) was used as raw material, activated by deionizing aqueous solution, NaCl solution, CA solution and HCl solution respectively. Epichlorohydrin (EPI) was used as crosslinking agent, and β-cyclodextrin (β-CD) was used to modify biochar (BC). The prepared modified biochar materials were labeled with β-CDBC, β-CDBC-Na, β-CDBC-CA and β-CDBC-H, respectively. The infrared spectrum, X-ray diffractometer, scanning electron microscope and specific surface area of the four modified materials were tested. The results showed that the C-O stretching vibration peak at 1020 cm<sup>−</sup><sup>1</sup> of the modified materials was slightly offset compared with that of biochar. The characteristic absorption peaks of XRD pattern decrease obviously at 2θ = 26.7˚ and 29.5˚. It can be obviously observed on the electron microscope image that the surface is loaded or formed clathrates, and BET data and graphs also show that the specific surface area of the modified biochar is larger. Therefore, β-cyclodextrin successfully modified biochar and formed clathrates on the surface of biochar or was loaded in the pore structure of biochar, especially β-CDBC-CA achieved better modification effect. Because biochar and β-cyclodextrin raw materials are cheap, easy to prepare and green, and less prone to secondary pollution, it has a good advantage in environmental governance.展开更多
Nineβ‐cyclodextrin derivatives containing an amino group were synthesized via nucleophilic sub‐stitution from mono(6‐O‐p‐tolylsulfonyl)‐β‐cyclodextrin and used in asymmetric biomimetic Mi‐chael addition re...Nineβ‐cyclodextrin derivatives containing an amino group were synthesized via nucleophilic sub‐stitution from mono(6‐O‐p‐tolylsulfonyl)‐β‐cyclodextrin and used in asymmetric biomimetic Mi‐chael addition reactions in water at room temperature. The mechanism responsible for the moder‐ate activity and enantioselectivity of the β‐cyclodextrin derivatives was explored using nuclear magnetic resonance spectroscopy, namely 2D 1H rotating‐frame overhauser effect spectroscopy (ROESY), ultraviolet absorption spectroscopy, and quantum chemical calculations, which provide a useful technique for investigating the formation of inclusion complexes. The effects of the pH of the reaction medium, theβ‐cyclodextrin derivative dosage, the structure of the modifying amino group, and various substrates on the yield and enantioselectivity were investigated. The results indicated that these factors had an important effect on the enantiomeric excess (ee) in the reaction system. Experiments using a competitor for inclusion complex formation showed that a hydrophobic cavity is necessary for enantioselective Michael addition. A comparison of the reactions using 4‐nitro‐β‐nitrostyrene and 2‐nitro‐β‐nitrostyrene showed that steric hindrance improved the enan‐tioselectivity. This was verified by the optimized geometries obtained from quantum chemical cal‐culations. An ee of 71%was obtained in the asymmetric Michael addition of cyclohexanone and 2‐nitro‐β‐nitrostyrene, using (S)‐2‐aminomethylpyrrolidine‐modified β‐CD as the catalyst, in an aqueous buffer solution, i.e., CH3COONa‐HCl (pH 7.5).展开更多
Aim To prepare and characterize the QURC-HP-β-CD inclusion complexes and investigate the thermodynamic parameters of the process. Methods QURC-HP-β-CD inclusion complexes were prepared by the grinding method. The eq...Aim To prepare and characterize the QURC-HP-β-CD inclusion complexes and investigate the thermodynamic parameters of the process. Methods QURC-HP-β-CD inclusion complexes were prepared by the grinding method. The equilibrium inclusion constants and thermodynamic parameters were determinated by phase solubility analysis. Dissolution tests were performed to study the dissolution rate of inclusion complexes. The formation of inclusion complexes was confirmed by differential scanning calorimetry ( DSC), infrared spectroscopy (IR) , powder X-ray diffractometry (PXRD) and scanning electron microscopy (SEM). Results The aqueous solubility of quercetin was greatly increased ( about 37 folds) by inclusion technique, and the initial dissolution rate was markedly improved (10 folds) in the first 5 min. The results of DSC and SEM photographs showed that quercetin crystal disappeared in inclusion complexes, which indicated the formation of new phase. FT-IR spectra showed that the carbonyl quercetin crystal grinding method. absorption band of quercetin was shifted. PXRD showed that the diffraction peak of disappeared. Conclusion QURC-HP-β-CD inclusion complexes are produced by the The solubility of quercetin is improved by the inclusion technique.展开更多
基金Supported by the National Natural Science Foundation of China(No.51979255)。
文摘Cometabolic degradation is currently an effective and extensively way to remove high molecular weight polycyclic aromatic hydrocarbons(HMW-PAHs).Unfortunately,due to low bio-accessibility and high biotoxicity,the cometabolic degradation rate of HMW-PAHs is limited.Glycine-β-cyclodextrin(GCD)was obtained through amino modification ofβ-cyclodextrin(BCD)and added to cometabolic system of phenanthrene(PHE)and pyrene(PYR)to assist PYR biodegradation.Results show that the addition of GCD(100 mg/L)effectively improved the removal rate of PYR(20 mg/L)by 42.3%.GCD appeared to increase the bio-accessibility and reduce the biotoxicity of PHE and PYR,and then promoted the growth of Pseudomonas stutzeri DJP1 and stimulated the elevation of dehydrogenase(DHA)and catechol 12 dioxygenase(C12O)activities.The phthalate metabolic pathway was accelerated,which improved the cometabolic degradation.This study provided a new reference for the cometabolic degradation of HMW-PAHs.
基金China Postdoctoral Science Foundation(2020M681125)National Natural Science Foundation of China(32272254,31901618)Collaborative Innovation Center of Fragrance Flavour and Cosmetics.
文摘Bio-based cyclodextrins(CDs)are a common research object in supramolecular chemistry.The special cavity structure of CDs can form supramolecular self-assemblies such as vesicles and microcrystals through weak interaction with guest molecules.The different forms of supramolecular self-assemblies can be transformed into each other under certain conditions.The regulation of supramolecular self-assembly is not only helpful to understand the self-assembly principle,but also beneficial to its application.In the present study,the self-assembly behavior of epoxy-β-cyclodextrin(EP-β-CD)and mixed anionic and cationic surfactant system(sodium dodecyl sulfate/dodecyltrimethylammonium bromide,SDS/DTAB)in aqueous solution was studied.Morphological and particle size characterization found that the SDS/DTAB@EP-β-CD complex,as the basic building unit,self-assembled into worm-like micelles at lower temperatures and vesicles at higher temperatures.Nuclear magnetic resonance(NMR)and Fourier transform infrared spectroscopy(FT-IR)analysis revealed that the driving force for the formation of vesicles and worm-like micelles was the hydrogen bonds between EP-β-CD molecules,while water molecules played an important role in promoting vesicle formation between SDS/DTAB@EP-β-CD units.Herein,the mechanism of the morphologic transformation of SDS/DTAB@EP-β-CD supramolecular aggregates induced by temperature was elucidated by exploring the self-assembly process,which may provide an excellent basis for the development of delivery carriers.
文摘In this study, the adsorption effect of β-cyclodextrin modified biochar (BC) on phenanthrene (PHE) in contaminated soil was investigated, aiming to provide an efficient and environmentally friendly remediation strategy for Polycyclic Aromatic Hydrocarbons (PAHs) contaminated soil. Through kinetic and isotherm analysis, β-CDBC-CA showed excellent phenanthrene adsorption performance, and the adsorption effect increased with the increase of time and was affected by temperature. The results show that β-CDBC-CA can not only effectively adsorb phenanthrene in soil, but also serve as a surfactant to help desorption phenanthrene adsorbed by soil organic matter and improve the efficiency of microbial degradation. The experimental data showed that the Elovich model could describe the adsorption behavior of β-CDBC-CA on phenanthrene well, while Langmuir and Freundlich models performed better in fitting parameters, revealing the adsorption mechanism of phenanthrene in contaminated soil by β-cyclodextrin-modified biochar. In addition, temperature has a significant effect on the adsorption capacity of β-CDBC-CA, and its application in soil remediation can be optimized by adjusting temperature. This study not only provides new materials and technical means for soil remediation but also provides important data support for an in-depth understanding of the environmental behavior of PAHs. By citing relevant research results, this study further improves the control and understanding of environmental risks of PAHs, which is of great significance for the protection of ecological environment and human health.
文摘In this paper, biochar (BC) was used as raw material, activated by deionizing aqueous solution, NaCl solution, CA solution and HCl solution respectively. Epichlorohydrin (EPI) was used as crosslinking agent, and β-cyclodextrin (β-CD) was used to modify biochar (BC). The prepared modified biochar materials were labeled with β-CDBC, β-CDBC-Na, β-CDBC-CA and β-CDBC-H, respectively. The infrared spectrum, X-ray diffractometer, scanning electron microscope and specific surface area of the four modified materials were tested. The results showed that the C-O stretching vibration peak at 1020 cm<sup>−</sup><sup>1</sup> of the modified materials was slightly offset compared with that of biochar. The characteristic absorption peaks of XRD pattern decrease obviously at 2θ = 26.7˚ and 29.5˚. It can be obviously observed on the electron microscope image that the surface is loaded or formed clathrates, and BET data and graphs also show that the specific surface area of the modified biochar is larger. Therefore, β-cyclodextrin successfully modified biochar and formed clathrates on the surface of biochar or was loaded in the pore structure of biochar, especially β-CDBC-CA achieved better modification effect. Because biochar and β-cyclodextrin raw materials are cheap, easy to prepare and green, and less prone to secondary pollution, it has a good advantage in environmental governance.
基金supported by the National Natural Science Foundation of China (21425627,21376279)~~
文摘Nineβ‐cyclodextrin derivatives containing an amino group were synthesized via nucleophilic sub‐stitution from mono(6‐O‐p‐tolylsulfonyl)‐β‐cyclodextrin and used in asymmetric biomimetic Mi‐chael addition reactions in water at room temperature. The mechanism responsible for the moder‐ate activity and enantioselectivity of the β‐cyclodextrin derivatives was explored using nuclear magnetic resonance spectroscopy, namely 2D 1H rotating‐frame overhauser effect spectroscopy (ROESY), ultraviolet absorption spectroscopy, and quantum chemical calculations, which provide a useful technique for investigating the formation of inclusion complexes. The effects of the pH of the reaction medium, theβ‐cyclodextrin derivative dosage, the structure of the modifying amino group, and various substrates on the yield and enantioselectivity were investigated. The results indicated that these factors had an important effect on the enantiomeric excess (ee) in the reaction system. Experiments using a competitor for inclusion complex formation showed that a hydrophobic cavity is necessary for enantioselective Michael addition. A comparison of the reactions using 4‐nitro‐β‐nitrostyrene and 2‐nitro‐β‐nitrostyrene showed that steric hindrance improved the enan‐tioselectivity. This was verified by the optimized geometries obtained from quantum chemical cal‐culations. An ee of 71%was obtained in the asymmetric Michael addition of cyclohexanone and 2‐nitro‐β‐nitrostyrene, using (S)‐2‐aminomethylpyrrolidine‐modified β‐CD as the catalyst, in an aqueous buffer solution, i.e., CH3COONa‐HCl (pH 7.5).
文摘Aim To prepare and characterize the QURC-HP-β-CD inclusion complexes and investigate the thermodynamic parameters of the process. Methods QURC-HP-β-CD inclusion complexes were prepared by the grinding method. The equilibrium inclusion constants and thermodynamic parameters were determinated by phase solubility analysis. Dissolution tests were performed to study the dissolution rate of inclusion complexes. The formation of inclusion complexes was confirmed by differential scanning calorimetry ( DSC), infrared spectroscopy (IR) , powder X-ray diffractometry (PXRD) and scanning electron microscopy (SEM). Results The aqueous solubility of quercetin was greatly increased ( about 37 folds) by inclusion technique, and the initial dissolution rate was markedly improved (10 folds) in the first 5 min. The results of DSC and SEM photographs showed that quercetin crystal disappeared in inclusion complexes, which indicated the formation of new phase. FT-IR spectra showed that the carbonyl quercetin crystal grinding method. absorption band of quercetin was shifted. PXRD showed that the diffraction peak of disappeared. Conclusion QURC-HP-β-CD inclusion complexes are produced by the The solubility of quercetin is improved by the inclusion technique.