The effects of trace Ag element on the precipitation behaviors and mechanical properties of the Mg−7.5Gd−1.5Y−0.4Zr(wt.%)alloy by means of tensile test,X-ray diffractometry,scanning electron microscopy,electron backsc...The effects of trace Ag element on the precipitation behaviors and mechanical properties of the Mg−7.5Gd−1.5Y−0.4Zr(wt.%)alloy by means of tensile test,X-ray diffractometry,scanning electron microscopy,electron backscattered diffractometry,and scanning transmission electron microscopy.There is an unusual texture(á0001ñ//extrusion direction)in the extruded Mg−Gd−Y−Zr alloys containing 0.5 wt.%Ag.During the aging periods at 225℃,the addition of the trace Ag does not form new precipitates,just accelerates aging kinetics,and refinesβ′precipitates,thereby increasing the number density of theβ′precipitates by Ag-clusters.Moreover,the Mg−Gd−Y−Zr alloy containing 0.5 wt.%Ag shows the most excellent synergy of strength and plasticity(408 MPa of ultimate tensile strength,265 MPa of yield strength,and 12.9%of elongation to failure)after peak-aging.展开更多
基金financial supports from the National Natural Science Foundation of China (Nos. 51574291, 51874367)。
文摘The effects of trace Ag element on the precipitation behaviors and mechanical properties of the Mg−7.5Gd−1.5Y−0.4Zr(wt.%)alloy by means of tensile test,X-ray diffractometry,scanning electron microscopy,electron backscattered diffractometry,and scanning transmission electron microscopy.There is an unusual texture(á0001ñ//extrusion direction)in the extruded Mg−Gd−Y−Zr alloys containing 0.5 wt.%Ag.During the aging periods at 225℃,the addition of the trace Ag does not form new precipitates,just accelerates aging kinetics,and refinesβ′precipitates,thereby increasing the number density of theβ′precipitates by Ag-clusters.Moreover,the Mg−Gd−Y−Zr alloy containing 0.5 wt.%Ag shows the most excellent synergy of strength and plasticity(408 MPa of ultimate tensile strength,265 MPa of yield strength,and 12.9%of elongation to failure)after peak-aging.