Four new chiral 1,2,3,4-tetrahydroisoquinoline-derived β-amino alcohols were synthesized from L-DOPA in good yields. The structures of the target compounds were confirmed by ^1H NMR, ^13C NMR and MS.
We report the highly efficient conversion of readily available biomass-derived polyols with amines to valuable furfurylamines orβ-amino alcohols compounds using ruthenium catalysis.The reaction outcome is readily tun...We report the highly efficient conversion of readily available biomass-derived polyols with amines to valuable furfurylamines orβ-amino alcohols compounds using ruthenium catalysis.The reaction outcome is readily tuned by the simple addition of 4Åmolecular sieves(furfurylamines vs.β-amino alcohols)with high chemo-selectivity.The proposed reaction mechanism involves ruthenium-catalyzed hydrogen borrowing for the reduction of the imine intermediate and C–C bond cleavage of polyols via a retro-aldol process.A series of arylamines was suc-cessfully transformed into the desired products with moderate to good yields.展开更多
The chemical transformation of natural oils provides alternatives to limited fossil fuels and produces compounds with added value for the chemical industries.The selective deoxygenation of natural oils to diesel-range...The chemical transformation of natural oils provides alternatives to limited fossil fuels and produces compounds with added value for the chemical industries.The selective deoxygenation of natural oils to diesel-ranged hydrocarbons,bio-jet fuels,or fatty alcohols with controllable selectivity is especially attractive in natural oil feedstock biorefineries.This review presents recent progress in catalytic deoxygenation of natural oils or related model compounds(e.g.,fatty acids)to renewable liquid fuels(green diesel and bio-jet fuels)and valuable fatty alcohols(unsaturated and saturated fatty alcohols).Besides,it discusses and compares the existing and potential strategies to control the product selectivity over heterogeneous catalysts.Most research conducted and reviewed has only addressed the production of one category;therefore,a new integrative vision exploring how to direct the process toward fuel and/or chemicals is urgently needed.Thus,work conducted to date addressing the development of new catalysts and studying the influence of the reaction parameters(e.g.,temperature,time and hydrogen pressure)is summarized and critically discussed from a green and sustainable perspective using efficiency indicators(e.g.,yields,selectivity,turnover frequencies and catalysts lifetime).Special attention has been given to the chemical transformations occurring to identify key descriptors to tune the selectivity toward target products by manipulating the reaction conditions and the structures of the catalysts.Finally,the challenges and future research goals to develop novel and holistic natural oil biorefineries are proposed.As a result,this critical review provides the readership with appropriate information to selectively control the transformation of natural oils into either biofuels and/or value-added chemicals.This new flexible vision can help pave the wave to suit the present and future market needs.展开更多
Traditional conversion of alcohols into carbonyl compounds exists a few drawbacks such as harsh reaction conditions,production of large amounts of hazardous wastes,and poor selectivity.The newly emerging conversion ap...Traditional conversion of alcohols into carbonyl compounds exists a few drawbacks such as harsh reaction conditions,production of large amounts of hazardous wastes,and poor selectivity.The newly emerging conversion approaches via photo-,electro-,and photoelectro-catalysis to oxidize alcohols into high value-added corresponding carbonyl compounds as well as the possible simultaneous production of clean fuel hydrogen(H_(2))under mild conditions are promising to substitute the traditional approach to form greener and sustainable reaction systems and thus have aroused tremendous investigations.In this review,the state-of-the-art photocatalytic,electrocatalytic,and photoelectrocatalytic strategies for selective oxidation of different types of alcohols(aromatic and aliphatic alcohols,single alcohol,and polyols,etc.)as well as the simultaneous production of H_(2) in certain systems are discussed.The design of photocatalysts,electrocatalysts,and photoelectrocatalysts as well as reaction mechanism is summarized and discussed in detail.In the end,current challenges and future research directions are proposed.It is expected that this review will not only deepen the understanding of environmentally friendly catalytic systems for alcohol conversion as well as H_(2) production,but also enlighten significance and inspirations for the follow-up study of selective oxidation of various types of organic molecules to value-added chemicals.展开更多
The regioselective ring-opening of epoxides with aniline and p-chlorop niline catalyzed by copper(Ⅱ) triflate provides the corresponding β-amino alcohols in excellent yields.
Coprinus comatus polysaccharide(CCP)has significant hepatoprotective effect.To explore hepatoprotective mechanism of CCP,the study analyzed preventive effect of CCP on acute alcoholic liver injury in mice by histopath...Coprinus comatus polysaccharide(CCP)has significant hepatoprotective effect.To explore hepatoprotective mechanism of CCP,the study analyzed preventive effect of CCP on acute alcoholic liver injury in mice by histopathological examination and biochemical analysis.Simultaneously,hepatoprotective mechanism was also analyzed in conjunction with metabolomics and proliferation of gut microbiota.The results showed that CCP significantly decreased alanine aminotransferase(ALT),aspartate aminotransferase(AST)and triglyceride(TG)levels in serum of alcoholic liver disease(ALD)mice.Histopathological examination showed that CCP can significantly improve liver damage.Metabolomics results showed that there were significant differences in the level of metabolites in liver tissue of control group,ALD group and CCP group,including taurine,xanthosine,fumaric acid and arachidonic acid,among others.Metabolites pathways analysis showed that hepatoprotective effect of CCP was related to energy metabolism,biosynthesis of unsaturated fatty acids,amino acids metabolism and lipid metabolism.Additionally,CCP inhibited an increase in the number of Clostridium perfringens,Enterobacteriaceae and Enterococcus,and a decrease in the number of Lactobacillus and Bifidobacterium in the gut of ALD mice.All these findings suggested that CCP treatment reversed the phenotype of ethanol-induced liver injury and the associated metabolites pathways.展开更多
Hydrogel-based tissue-engineered skin has attracted increased attention due to its potential to restore the structural integrity and functionality of skin.However,the mechanical properties of hydrogel scaffolds and na...Hydrogel-based tissue-engineered skin has attracted increased attention due to its potential to restore the structural integrity and functionality of skin.However,the mechanical properties of hydrogel scaffolds and natural skin are substantially different.Here,we developed a polyvinyl alcohol(PVA)/acrylamide based interpenetrating network(IPN)hydrogel that was surface modified with polydopamine(PDA)and termed Dopa-gel.The Dopa-gel exhibited mechanical properties similar to native skin tissue and a superior ability to modulate paracrine functions.Furthermore,a tough scaffold with tensile resistance was fabricated using this hydrogel by three-dimensional printing.The results showed that the interpenetration of PVA,alginate,and polyacrylamide networks notably enhanced the mechanical properties of the hydrogel.Surface modification with PDA endowed the hydrogels with increased secretion of immunomodulatory and proangiogenic factors.In an in vivo model,Dopa-gel treatment accelerated wound closure,increased vascularization,and promoted a shift in macrophages from a proinflammatory M1 phenotype to a prohealing and anti-inflammatory M2 phenotype within the wound area.Mechanistically,the focal adhesion kinase(FAK)/extracellular signal-related kinase(ERK)signaling pathway may mediate the promotion of skin defect healing by increasing paracrine secretion via the Dopa-gel.Additionally,proangiogenic factors can be induced through Rho-associated kinase-2(ROCK-2)/vascular endothelial growth factor(VEGF)-mediated paracrine secretion under tensile stress conditions.Taken together,these findings suggest that the multifunctional Dopa-gel,which has good mechanical properties similar to those of native skin tissue and enhanced immunomodulatory and angiogenic properties,is a promising scaffold for skin tissue regeneration.展开更多
Rational design and construction of highly efficient nonprecious electrocatalysts for oxygen reduction and alcohols oxidation reactions(ORR,AOR)are extremely vital for the development of direct oxidation alkaline fuel...Rational design and construction of highly efficient nonprecious electrocatalysts for oxygen reduction and alcohols oxidation reactions(ORR,AOR)are extremely vital for the development of direct oxidation alkaline fuel cells,metal-air batteries,and water electrolysis system involving hydrogen and value-added organic products generation,but they remain a great challenge.Herein,a bifunctional electrocatalyst is prepared by anchoring CuS/NiS_(2)nanoparticles with abundant heterointerfaces and sulfur vacancies on graphene(Cu_(1)Ni_(2)-S/G)for ORR and AOR.Benefiting from the synergistic effects between strong interfacial coupling and regulation of the sulfur vacancies,Cu_(1)Ni_(2)-S/G achieves dramatically enhanced ORR activity with long term stability.Meanwhile,when ethanol is utilized as an oxidant for AOR,an ultralow potential(1.37 V)at a current density of 10 mA cm-2 is achieved,simultaneously delivering a high Faradaic efficiency of 96%for ethyl acetate production.Cu_(1)Ni_(2)-S/G also exhibits catalytic activity for other alcohols electrooxidation process,indicating its multifunctionality.This work not only highlights a viable strategy for tailoring catalytic activity through the synergetic combination of interfacial and vacancies engineering,but also opens up new avenues for the construction of a self-driven biomass electrocatalysis system for the generation of value-added organic products and hydrogen under ambient conditions.展开更多
Excessive fusel alcohol contents will cause the beer to produce off-flavors and cause dizziness and headaches.Reducing the contents of fusel alcohols in beer is very important to people's health.The excessive fuse...Excessive fusel alcohol contents will cause the beer to produce off-flavors and cause dizziness and headaches.Reducing the contents of fusel alcohols in beer is very important to people's health.The excessive fusel alcohol contents in beer is a common problem in the industry.How to control the contents of fusel alcohols in a reasonable range is of great significance for improving beer quality.After one round of ultraviolet(UV)and one round of multifunctional plasma mutagenesis system(MPMS)mutagenesis,the yeast strains with lower fusel oil yield and more stablility could be screened.According to the relationship between the fusel alcohol Harris metabolic pathway of brewer's yeast and lactic acid metabolism,excellent strains were obtained by triple screening with lactic acid medium,calcium carbonate medium and 2,3,5-triphenyl tetrazolium chloride upper medium.The content of fusel alcohol in the finished beer fermentation test of screened strain Z43 was 52.1±0.142 mg•L^(-1),which was 43%lower than that of the starting strain,and other fermentation properties remained unchanged.After eight passages,it was verified that the strain was stable and heritable.These results showed that strain Z43 presented promising characteristics for use in the production of beer with a potentially low contents of fusel alcohols.展开更多
The electrochemical reduction of CO_(2)(CO_(2)ER)into the renewable and sustainable green fuels,such as low-carbon alcohols,is one of several workable strategies.CO_(2)ER can be combined with renewable electricity to ...The electrochemical reduction of CO_(2)(CO_(2)ER)into the renewable and sustainable green fuels,such as low-carbon alcohols,is one of several workable strategies.CO_(2)ER can be combined with renewable electricity to transform intermittent energy sources(such as wind,hydro,and solar)into a fuel that can be stored until it is ready to be used.The intrinsic characteristics of the employed catalyst have a significant and substantial effect on the efficiency of CO_(2)ER and the ensuing economic viability.The paradigmatic multicarbon alcohol catalysts should increase the concentration of*CO in the reaction environment,stabilize the key intermediate products during the reaction,and facilitate the C-C coupling interaction.Since graphene has a large surface area and exceptional conductivity,it has been used as a support for active phases(nanoparticles or nanosheets).It is possible for graphene to enhance charge transport and accelerate CO_(2)conversion through its electronic and structural coupling effects.At the interface,a synergy can be produced that improves CO_(2)ER by increasing*CO adsorption,intermediate binding,and stability.This article focuses on recent advancements in graphene-based catalysts that promote CO_(2)ER to alcohols.Likewise,this paper also describes and discusses the key role graphene plays in catalyzing CO_(2)ER into alcohols.Finally,we hope to provide future ideas for the design of graphene-based electrocatalysts.展开更多
The easily prepared and recoverable chiral N-sulfonylated fl-amino alcohol 2 in combination with Ti(OPr-i)4 was found to be an effective chiral catalyst for the enantioselective addition of alkynylzinc to ketones, w...The easily prepared and recoverable chiral N-sulfonylated fl-amino alcohol 2 in combination with Ti(OPr-i)4 was found to be an effective chiral catalyst for the enantioselective addition of alkynylzinc to ketones, which gave the useful products, i.e. chiral tertiary propargyl alcohols, with the ee up to 92%.展开更多
A series of optically active N-protected 1,2-amino alcohols were synthesized via the reduction of the corresponding a-aminoketones starting from the readily available L-amino acids.
The fruit of Morinda citrifolia L., commonly known as noni, has an extensive history of use as a food and traditional medicine around the world. Adding value to Morinda citrifolia L. products, particularly the fruit, ...The fruit of Morinda citrifolia L., commonly known as noni, has an extensive history of use as a food and traditional medicine around the world. Adding value to Morinda citrifolia L. products, particularly the fruit, could be one way of building resilience in vulnerable farming households. The aim of this study was to determine the secondary metabolite and mineral composition of noni juice obtained by fermenting the fruit of Morinda citrifolia L. Fruits were collected in August 2022 from the local field in Thiès region, West of Senegal. Extraction yields were determined and the secondary metabolites were determined using conventional analytical methods. Calcium, magnesium, iron, sodium and potassium were determined by atomic absorption spectrophotometer coupled with a CCD detector. The results show that an average fruit mass (503.2 ± 110.96 g) consists of 171.44 ± 50.01 g pulp and 34.06 ± 10.35 g seeds. The traditional extraction yield of noni juice is 16.46% after three weeks of fermentation. The contents of total polyphenols, flavonoids and tannins obtained in noni are 608.97 ± 4.53 mg EAG/100mL, 7.78 ± 0.01 mg EQ/100mL and 0.191 ± 0.01 mg EC/100mL respectively. The ethanol content of noni varies from 3.57 to 5.23 mL/100mL during extraction. Noni has a high calcium content with a concentration of 383.79 ± 33.23 mg/L. This is followed by a good concentration of magnesium, potassium and sodium, at 278.47 ± 26.30, 187.43 ± 10.7 and 155.95 ± 28.66 mg/L respectively. Noni also has an iron content of 202.15 ± 0.05 mg/L.展开更多
Objective: Utilizing Mendelian Randomization, this study employs Single Nucleotide Polymorphisms (SNPs) as instrumental variables to explore the causal relationships between bibulosity, smoking, and Primary Open Angle...Objective: Utilizing Mendelian Randomization, this study employs Single Nucleotide Polymorphisms (SNPs) as instrumental variables to explore the causal relationships between bibulosity, smoking, and Primary Open Angle Glaucoma (POAG). Methods: GWAS data for bibulosity, smoking, and POAG were obtained from the Social Science Genetic Association Consortium website and the IEU OpenGWAS Project website, respectively. Using a P-value threshold of −8, a linkage disequilibrium coefficient (r2) of 0.001, and a linkage disequilibrium region width of 10,000 kb, the data were aggregated, resulting in 6 SNPs for bibulosity and 253 SNPs for smoking. Three regression models, MR-Egger, Weighted Median Estimator (WME), and Random-Effects Inverse-Variance Weighted (IVW) were applied to analyze the causal impact of bibulosity and smoking on POAG. Results: The GWAS data for alcohol consumption and smoking were derived from European populations, while the GWAS data for Primary Open-Angle Glaucoma (POAG) were sourced from East Asian populations, with no gender restrictions. Analysis using three different regression models revealed that neither excessive alcohol consumption nor smoking significantly increased the risk of developing POAG. Specifically, the odds ratios with 95% confidence intervals for the alcohol consumption group were 0.854 (0.597 - 1.221) in MR-Egger regression, 0.922 (0.691 - 1.231) in WME regression, and 0.944 (0.711 - 1.252) in IVW regression. For the smoking group, the odds ratios were 1.146 (0.546 - 2.406) in MR-Egger regression, 0.850 (0.653 - 1.111) in WME regression, and 0.939 (0.780 - 1.131) in IVW regression. Given the significant heterogeneity in the SNPs associated with smoking, the focus was primarily on the results from the IVW regression model. Conclusion: Alcohol consumption and smoking are not significant risk factors for the development of POAG.展开更多
BACKGROUND Oxidative stress is closely associated with hypertensive outcomes.The oxidative balance score(OBS)measures oxidative stress exposure from dietary and lifestyle elements.The objective of this study was to in...BACKGROUND Oxidative stress is closely associated with hypertensive outcomes.The oxidative balance score(OBS)measures oxidative stress exposure from dietary and lifestyle elements.The objective of this study was to investigate the association between OBS and mortality in hypertensive patients.METHODS This study included 7823 hypertensive patients from the National Health and Nutrition Examination Survey(NHA-NES)1999-2014.Several models,including Cox regression,restricted cubic splines(RCS),Kaplan-Meier survival analysis,subgroup,and sensitivity analyses,were exploited to investigate the relationship between OBS and the risk of mortality.RESULTS Controlling for all potential confounders,a significantly inverse association was observed between elevated OBS and all-cause[hazard ratio(HR)=0.90,95%CI:0.85-0.95]and cardiovascular mortality(HR=0.85,95%CI:0.75-0.95).With adjustment for covariates,significant associations between lifestyle OBS and mortality risks diminished,whereas associations between dietary OBS and these mortality risks remained robust(all-cause mortality:HR=0.91,95%CI:0.86-0.96;cardiovascular mortality:HR=0.85,95%CI:0.76-0.96).RCS demonstrated a linear relationship between OBS and all-cause and cardiovascular mortality risk(P_(nonlinear)=0.088 and P_(nonlinear)=0.447,respectively).Kaplan-Meier curves demonstrated that the mortality rate was lower with a high OBS(P<0.001).The consistency of the association was demonstrated in subgroup and sensitivity analyses.RCS after stratification showed that among current drinkers,those with higher OBS had a lower risk of mortality compared with former or never drinkers.CONCLUSIONS In hypertensive individuals,there was a negative association between OBS and all-cause and cardiovascular mortality.Encouraging hypertensive individuals,especially those currently drinking,to maintain high levels of OBS may be beneficial in improving their prognosis.展开更多
The millimeter-scale capsules with controllable morphology,ultra-low permeability and excellent mechanical stability were fabricated by millifluidics.Viscosity of inner phase was adjusted to control the morphology and...The millimeter-scale capsules with controllable morphology,ultra-low permeability and excellent mechanical stability were fabricated by millifluidics.Viscosity of inner phase was adjusted to control the morphology and properties of the capsules.In detail,as the concentration of polyvinyl alcohol(PVA)increased from 0 to 8% in the inner phase of the capsules,the diameter of capsules decreased from 3.33 ± 0.01mm to 2.97 ± 0.01 mm,the shell thickness of capsules decreased from 0.183 ± 0.004 mm to 0.155 ± 0.003 mm.While the capsules had round shape and high sphericity.Notably,the capsules with 2% PVA in the inner phase had remarkably decreased water permeability and good morphological stability.Specifically,the end-time of water losing of the capsules was up to 49 days,while the dehydrated capsules maintained spherical appearance,and crushing force of the capsules was up to 13.73 ± 0.79 N,which ensured stability during processing and transportation.This research provides a new strategy for stable encapsulation of small molecules.展开更多
Sea cucumber saponins have attracted more attention in recent years due to biological activities.It is a popular practice to soak sea cucumber in Baijiu at home and being applied to industrial manufacturing in China.H...Sea cucumber saponins have attracted more attention in recent years due to biological activities.It is a popular practice to soak sea cucumber in Baijiu at home and being applied to industrial manufacturing in China.However,knowledge of the effect of alcohol on the absorption and metabolism of sea cucumber saponins is limited.The effects of alcohol on digestion,absorption and metabolism of sea cucumber saponins in BALB/c mice were investigated after gavage and tail intravenous injection.The results showed that the content of saponins in serum and liver was significantly higher under the influence of alcohol than that in the control group after oral administration.Alcohol promoted the absorption of sea cucumber saponins prototype as well as inhibited the process of saponins being transformed into deglycositic metabolites in the small intestine.Moreover,sea cucumber saponins remained in circulation for a long time and alcohol slowed down the clearance of sea cucumber saponins under the influence of alcohol after intravenous injection.This confirmed the feasibility of marinating sea cucumber in Baijiu to improve the efficacy of saponins and provides an important theoretical basis for the utilization of sea cucumber and the development of sea cucumber liquor.展开更多
This review delves into the detrimental impact of alcohol consumption on internal organs and reproductive health,elucidating the underlying mechanisms involving the Toll-like receptor 4(TLR4)/Nuclear factor kappa ligh...This review delves into the detrimental impact of alcohol consumption on internal organs and reproductive health,elucidating the underlying mechanisms involving the Toll-like receptor 4(TLR4)/Nuclear factor kappa light chain enhancer of activated B cells(NF-kB)pathway and the Cytochrome P4502E1(CYP2E1)/reactive oxygen spe-cies(ROS)/nuclear factor erythroid 2-related factor 2(Nrf2)pathways.The TLR4/NF-kB pathway,crucial for inflammatory and immune responses,triggers the production of pro-inflammatory agents and type-1 interferon,disrupting the balance between inflammatory and antioxidant responses when tissues are chronically exposed to al-cohol.Alcohol-induced dysbiosis in gut microbes heightens gut wall permeability to pathogen-associated molecular patterns(PAMPs),leading to liver cell infection and subsequent inflammation.Concurrently,CYP2E1-mediated alcohol metabolism gen-erates ROS,causing oxidative stress and damaging cells,lipids,proteins,and deoxy-ribonucleic acid(DNA).To counteract this inflammatory imbalance,Nrf2 regulates gene expression,inhibiting inflammatory progression and promoting antioxidant re-sponses.Excessive alcohol intake results in elevated liver enzymes(ADH,CYP2E1,and catalase),ROS,NADH,acetaldehyde,and acetate,leading to damage in vital organs such as the heart,brain,and lungs.Moreover,alcohol negatively affects reproduc-tive health by inhibiting the hypothalamic-pituitary-gonadal axis,causing infertility in both men and women.These findings underscore the profound health concerns associated with alcohol-induced damage,emphasizing the need for public awareness regarding the intricate interplay between immune responses and the multi-organ im-pacts of alcohol consumption.展开更多
The interactions between lignin oligomers and solvents determine the behaviors of lignin oligomers self-assembling into uniform lignin nanoparticles(LNPs).Herein,several alcohol solvents,which readily interact with th...The interactions between lignin oligomers and solvents determine the behaviors of lignin oligomers self-assembling into uniform lignin nanoparticles(LNPs).Herein,several alcohol solvents,which readily interact with the lignin oligomers,were adopted to study their effects during solvent shifting process for LNPs’production.The lignin oligomers with widely distributed molecular weight and abundant guaiacyl units were extracted from wood waste(mainly consists of pine wood),exerting outstanding self-assembly capability.Uniform and spherical LNPs were generated in H_(2)O-n-propanol cosolvent,whereas irregular LNPs were obtained in H_(2)O-methanol cosolvent.The unsatisfactory self-assembly performance of the lignin oligomers in H_(2)O-methanol cosolvent could be attributed to two aspects.On one hand,for the initial dissolution state,the distinguishing Hansen solubility parameter and polarity between methanol solvent and lignin oligomers resulted in the poor dispersion of the lignin oligomers.On the other hand,strong hydrogen bonds between methanol solvent and lignin oligomers during solvent shifting process,hindered the interactions among the lignin oligomers for self-assembly.展开更多
Background:There are substantial regional differences in drinking alcohol in Russia,both at the population and individual levels.However,the causes of these differences have not been studied yet.Objective:The goal of ...Background:There are substantial regional differences in drinking alcohol in Russia,both at the population and individual levels.However,the causes of these differences have not been studied yet.Objective:The goal of our study was to examine the effect of regional living conditions on individual alcohol consumption by the population of Russia.Methods:For the analysis,we used data from a cross-sectional epidemiological study conducted in 2013-2014.The final analytical sample included 18,130 people aged 25-64 years.We conducted the interviews face to face,based on which any drinking in the last year,as well as alcohol abuse,were considered as a response.Alcohol abuse was recorded when the respondent consumed 5.75 or more grams of pure ethanol per day(75th percentile of average daily alcohol consumption among alcohol drinkers).The assessment of the regional living conditions was accomplished via integral indexing,which was previously performed based on publicly available data for 2010-2014.Associations were assessed using generalized scoring equations with unchanging standard errors.The associations were expressed by odds ratios(OR)and 95%confidence intervals(C).Results:Deterioration of social conditions and increase in demographic depression in the region of residence increased the odds of any drinking(OR 1.51,95%CI:1.33 to 1.72,P<0.001 and OR 1.22,95%CI:1.05 to 1.41,P=0.oo9,respectively).The odds of alcohol abuse increased with the deterioration of social living conditions and the growth of the industrial development in the region:OR 1.35,95%CI:1.14 to 1.59,P<0.001 and OR 1.16,95%CI:1.05 to 1.28,P=0.002,respectively.Conclusion:Our analysis allowed assessing the impact of the regional living conditions on individual drinking alcohol in the population of Russia.展开更多
文摘Four new chiral 1,2,3,4-tetrahydroisoquinoline-derived β-amino alcohols were synthesized from L-DOPA in good yields. The structures of the target compounds were confirmed by ^1H NMR, ^13C NMR and MS.
基金support from the National Natural Science Foundation of China(NSFC,Nos.21633013,22022204).
文摘We report the highly efficient conversion of readily available biomass-derived polyols with amines to valuable furfurylamines orβ-amino alcohols compounds using ruthenium catalysis.The reaction outcome is readily tuned by the simple addition of 4Åmolecular sieves(furfurylamines vs.β-amino alcohols)with high chemo-selectivity.The proposed reaction mechanism involves ruthenium-catalyzed hydrogen borrowing for the reduction of the imine intermediate and C–C bond cleavage of polyols via a retro-aldol process.A series of arylamines was suc-cessfully transformed into the desired products with moderate to good yields.
基金financially supported by the National Natural Science Foundation of China (No.21536007)the 111 Project (B17030)+1 种基金support from China Scholarship Council (CSC No.202006240156)the Spanish Ministry of Science,Innovation and Universities for the Juan de la Cierva (JdC)fellowships (Grant Numbers FJCI-2016-30847 and IJC2018-037110-I)awarded.
文摘The chemical transformation of natural oils provides alternatives to limited fossil fuels and produces compounds with added value for the chemical industries.The selective deoxygenation of natural oils to diesel-ranged hydrocarbons,bio-jet fuels,or fatty alcohols with controllable selectivity is especially attractive in natural oil feedstock biorefineries.This review presents recent progress in catalytic deoxygenation of natural oils or related model compounds(e.g.,fatty acids)to renewable liquid fuels(green diesel and bio-jet fuels)and valuable fatty alcohols(unsaturated and saturated fatty alcohols).Besides,it discusses and compares the existing and potential strategies to control the product selectivity over heterogeneous catalysts.Most research conducted and reviewed has only addressed the production of one category;therefore,a new integrative vision exploring how to direct the process toward fuel and/or chemicals is urgently needed.Thus,work conducted to date addressing the development of new catalysts and studying the influence of the reaction parameters(e.g.,temperature,time and hydrogen pressure)is summarized and critically discussed from a green and sustainable perspective using efficiency indicators(e.g.,yields,selectivity,turnover frequencies and catalysts lifetime).Special attention has been given to the chemical transformations occurring to identify key descriptors to tune the selectivity toward target products by manipulating the reaction conditions and the structures of the catalysts.Finally,the challenges and future research goals to develop novel and holistic natural oil biorefineries are proposed.As a result,this critical review provides the readership with appropriate information to selectively control the transformation of natural oils into either biofuels and/or value-added chemicals.This new flexible vision can help pave the wave to suit the present and future market needs.
基金support from the National Natural Science Foundation of China(21976054,22176054)the Fundamental Research Funds for the Central Universities(2020MS036,FRF-TP-20-005A3)+1 种基金the Fundamental Research Funds for the Central Universities and the Youth Teacher International Exchange&Growth Program(QNXM20220026)MOE Key Laboratory of Resources and Environmental System Optimization,College of Environmental Science and Engineering,North China Electric Power University(KLRE-KF202201)。
文摘Traditional conversion of alcohols into carbonyl compounds exists a few drawbacks such as harsh reaction conditions,production of large amounts of hazardous wastes,and poor selectivity.The newly emerging conversion approaches via photo-,electro-,and photoelectro-catalysis to oxidize alcohols into high value-added corresponding carbonyl compounds as well as the possible simultaneous production of clean fuel hydrogen(H_(2))under mild conditions are promising to substitute the traditional approach to form greener and sustainable reaction systems and thus have aroused tremendous investigations.In this review,the state-of-the-art photocatalytic,electrocatalytic,and photoelectrocatalytic strategies for selective oxidation of different types of alcohols(aromatic and aliphatic alcohols,single alcohol,and polyols,etc.)as well as the simultaneous production of H_(2) in certain systems are discussed.The design of photocatalysts,electrocatalysts,and photoelectrocatalysts as well as reaction mechanism is summarized and discussed in detail.In the end,current challenges and future research directions are proposed.It is expected that this review will not only deepen the understanding of environmentally friendly catalytic systems for alcohol conversion as well as H_(2) production,but also enlighten significance and inspirations for the follow-up study of selective oxidation of various types of organic molecules to value-added chemicals.
基金Project (No. 29790127) supported by the National Natural Science Foundation of China
文摘The regioselective ring-opening of epoxides with aniline and p-chlorop niline catalyzed by copper(Ⅱ) triflate provides the corresponding β-amino alcohols in excellent yields.
基金The current project is funded by Shandong Provincial Natural Science Foundation,China(ZR2020MH370)Major Science and Technology Innovation in Shandong Province(2017CXGC1307)Ji’nan Science and Technology Project(201303055)。
文摘Coprinus comatus polysaccharide(CCP)has significant hepatoprotective effect.To explore hepatoprotective mechanism of CCP,the study analyzed preventive effect of CCP on acute alcoholic liver injury in mice by histopathological examination and biochemical analysis.Simultaneously,hepatoprotective mechanism was also analyzed in conjunction with metabolomics and proliferation of gut microbiota.The results showed that CCP significantly decreased alanine aminotransferase(ALT),aspartate aminotransferase(AST)and triglyceride(TG)levels in serum of alcoholic liver disease(ALD)mice.Histopathological examination showed that CCP can significantly improve liver damage.Metabolomics results showed that there were significant differences in the level of metabolites in liver tissue of control group,ALD group and CCP group,including taurine,xanthosine,fumaric acid and arachidonic acid,among others.Metabolites pathways analysis showed that hepatoprotective effect of CCP was related to energy metabolism,biosynthesis of unsaturated fatty acids,amino acids metabolism and lipid metabolism.Additionally,CCP inhibited an increase in the number of Clostridium perfringens,Enterobacteriaceae and Enterococcus,and a decrease in the number of Lactobacillus and Bifidobacterium in the gut of ALD mice.All these findings suggested that CCP treatment reversed the phenotype of ethanol-induced liver injury and the associated metabolites pathways.
基金supported by the National Natural Science Foundation of China(32271413 and 32271408)the National Basic Research Program of China(2021YFA1201404)+2 种基金the Natural Science Foundation of Jiangsu Province(BK20232023)the Science Program of Jiangsu Province Administration for Market Regulation(KJ2024010)the Jiangsu Provincial Key Medical Center Foundation,and the Jiangsu Provincial Medical Outstanding Talent Foundation.
文摘Hydrogel-based tissue-engineered skin has attracted increased attention due to its potential to restore the structural integrity and functionality of skin.However,the mechanical properties of hydrogel scaffolds and natural skin are substantially different.Here,we developed a polyvinyl alcohol(PVA)/acrylamide based interpenetrating network(IPN)hydrogel that was surface modified with polydopamine(PDA)and termed Dopa-gel.The Dopa-gel exhibited mechanical properties similar to native skin tissue and a superior ability to modulate paracrine functions.Furthermore,a tough scaffold with tensile resistance was fabricated using this hydrogel by three-dimensional printing.The results showed that the interpenetration of PVA,alginate,and polyacrylamide networks notably enhanced the mechanical properties of the hydrogel.Surface modification with PDA endowed the hydrogels with increased secretion of immunomodulatory and proangiogenic factors.In an in vivo model,Dopa-gel treatment accelerated wound closure,increased vascularization,and promoted a shift in macrophages from a proinflammatory M1 phenotype to a prohealing and anti-inflammatory M2 phenotype within the wound area.Mechanistically,the focal adhesion kinase(FAK)/extracellular signal-related kinase(ERK)signaling pathway may mediate the promotion of skin defect healing by increasing paracrine secretion via the Dopa-gel.Additionally,proangiogenic factors can be induced through Rho-associated kinase-2(ROCK-2)/vascular endothelial growth factor(VEGF)-mediated paracrine secretion under tensile stress conditions.Taken together,these findings suggest that the multifunctional Dopa-gel,which has good mechanical properties similar to those of native skin tissue and enhanced immunomodulatory and angiogenic properties,is a promising scaffold for skin tissue regeneration.
基金supported by the National Key Research and Development Program of China(2020YFA0715000)the National Natural Science Foundation of China(52127816)+2 种基金Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory(XHT2020-003)the China Postdoctoral Science Foundation(2021 M692490)the Fundamental Research Funds for the Central Universities(WUT:2020III029,2020IVA100).
文摘Rational design and construction of highly efficient nonprecious electrocatalysts for oxygen reduction and alcohols oxidation reactions(ORR,AOR)are extremely vital for the development of direct oxidation alkaline fuel cells,metal-air batteries,and water electrolysis system involving hydrogen and value-added organic products generation,but they remain a great challenge.Herein,a bifunctional electrocatalyst is prepared by anchoring CuS/NiS_(2)nanoparticles with abundant heterointerfaces and sulfur vacancies on graphene(Cu_(1)Ni_(2)-S/G)for ORR and AOR.Benefiting from the synergistic effects between strong interfacial coupling and regulation of the sulfur vacancies,Cu_(1)Ni_(2)-S/G achieves dramatically enhanced ORR activity with long term stability.Meanwhile,when ethanol is utilized as an oxidant for AOR,an ultralow potential(1.37 V)at a current density of 10 mA cm-2 is achieved,simultaneously delivering a high Faradaic efficiency of 96%for ethyl acetate production.Cu_(1)Ni_(2)-S/G also exhibits catalytic activity for other alcohols electrooxidation process,indicating its multifunctionality.This work not only highlights a viable strategy for tailoring catalytic activity through the synergetic combination of interfacial and vacancies engineering,but also opens up new avenues for the construction of a self-driven biomass electrocatalysis system for the generation of value-added organic products and hydrogen under ambient conditions.
基金Supported by Heilongjiang Natural Science Foundation Joint Guide Project(LH2019C022)。
文摘Excessive fusel alcohol contents will cause the beer to produce off-flavors and cause dizziness and headaches.Reducing the contents of fusel alcohols in beer is very important to people's health.The excessive fusel alcohol contents in beer is a common problem in the industry.How to control the contents of fusel alcohols in a reasonable range is of great significance for improving beer quality.After one round of ultraviolet(UV)and one round of multifunctional plasma mutagenesis system(MPMS)mutagenesis,the yeast strains with lower fusel oil yield and more stablility could be screened.According to the relationship between the fusel alcohol Harris metabolic pathway of brewer's yeast and lactic acid metabolism,excellent strains were obtained by triple screening with lactic acid medium,calcium carbonate medium and 2,3,5-triphenyl tetrazolium chloride upper medium.The content of fusel alcohol in the finished beer fermentation test of screened strain Z43 was 52.1±0.142 mg•L^(-1),which was 43%lower than that of the starting strain,and other fermentation properties remained unchanged.After eight passages,it was verified that the strain was stable and heritable.These results showed that strain Z43 presented promising characteristics for use in the production of beer with a potentially low contents of fusel alcohols.
文摘The electrochemical reduction of CO_(2)(CO_(2)ER)into the renewable and sustainable green fuels,such as low-carbon alcohols,is one of several workable strategies.CO_(2)ER can be combined with renewable electricity to transform intermittent energy sources(such as wind,hydro,and solar)into a fuel that can be stored until it is ready to be used.The intrinsic characteristics of the employed catalyst have a significant and substantial effect on the efficiency of CO_(2)ER and the ensuing economic viability.The paradigmatic multicarbon alcohol catalysts should increase the concentration of*CO in the reaction environment,stabilize the key intermediate products during the reaction,and facilitate the C-C coupling interaction.Since graphene has a large surface area and exceptional conductivity,it has been used as a support for active phases(nanoparticles or nanosheets).It is possible for graphene to enhance charge transport and accelerate CO_(2)conversion through its electronic and structural coupling effects.At the interface,a synergy can be produced that improves CO_(2)ER by increasing*CO adsorption,intermediate binding,and stability.This article focuses on recent advancements in graphene-based catalysts that promote CO_(2)ER to alcohols.Likewise,this paper also describes and discusses the key role graphene plays in catalyzing CO_(2)ER into alcohols.Finally,we hope to provide future ideas for the design of graphene-based electrocatalysts.
基金Project supported by the National Natural Science Foundation of China (Nos. 29925205, 30271488, 20021001 and 203900501).
文摘The easily prepared and recoverable chiral N-sulfonylated fl-amino alcohol 2 in combination with Ti(OPr-i)4 was found to be an effective chiral catalyst for the enantioselective addition of alkynylzinc to ketones, which gave the useful products, i.e. chiral tertiary propargyl alcohols, with the ee up to 92%.
基金the National Natural Science Foundation of China(No.20002002 and No.20272025)Ph.D.programs Foundation of Ministry of Education of China for generous financial support of our program.
文摘A series of optically active N-protected 1,2-amino alcohols were synthesized via the reduction of the corresponding a-aminoketones starting from the readily available L-amino acids.
文摘The fruit of Morinda citrifolia L., commonly known as noni, has an extensive history of use as a food and traditional medicine around the world. Adding value to Morinda citrifolia L. products, particularly the fruit, could be one way of building resilience in vulnerable farming households. The aim of this study was to determine the secondary metabolite and mineral composition of noni juice obtained by fermenting the fruit of Morinda citrifolia L. Fruits were collected in August 2022 from the local field in Thiès region, West of Senegal. Extraction yields were determined and the secondary metabolites were determined using conventional analytical methods. Calcium, magnesium, iron, sodium and potassium were determined by atomic absorption spectrophotometer coupled with a CCD detector. The results show that an average fruit mass (503.2 ± 110.96 g) consists of 171.44 ± 50.01 g pulp and 34.06 ± 10.35 g seeds. The traditional extraction yield of noni juice is 16.46% after three weeks of fermentation. The contents of total polyphenols, flavonoids and tannins obtained in noni are 608.97 ± 4.53 mg EAG/100mL, 7.78 ± 0.01 mg EQ/100mL and 0.191 ± 0.01 mg EC/100mL respectively. The ethanol content of noni varies from 3.57 to 5.23 mL/100mL during extraction. Noni has a high calcium content with a concentration of 383.79 ± 33.23 mg/L. This is followed by a good concentration of magnesium, potassium and sodium, at 278.47 ± 26.30, 187.43 ± 10.7 and 155.95 ± 28.66 mg/L respectively. Noni also has an iron content of 202.15 ± 0.05 mg/L.
文摘Objective: Utilizing Mendelian Randomization, this study employs Single Nucleotide Polymorphisms (SNPs) as instrumental variables to explore the causal relationships between bibulosity, smoking, and Primary Open Angle Glaucoma (POAG). Methods: GWAS data for bibulosity, smoking, and POAG were obtained from the Social Science Genetic Association Consortium website and the IEU OpenGWAS Project website, respectively. Using a P-value threshold of −8, a linkage disequilibrium coefficient (r2) of 0.001, and a linkage disequilibrium region width of 10,000 kb, the data were aggregated, resulting in 6 SNPs for bibulosity and 253 SNPs for smoking. Three regression models, MR-Egger, Weighted Median Estimator (WME), and Random-Effects Inverse-Variance Weighted (IVW) were applied to analyze the causal impact of bibulosity and smoking on POAG. Results: The GWAS data for alcohol consumption and smoking were derived from European populations, while the GWAS data for Primary Open-Angle Glaucoma (POAG) were sourced from East Asian populations, with no gender restrictions. Analysis using three different regression models revealed that neither excessive alcohol consumption nor smoking significantly increased the risk of developing POAG. Specifically, the odds ratios with 95% confidence intervals for the alcohol consumption group were 0.854 (0.597 - 1.221) in MR-Egger regression, 0.922 (0.691 - 1.231) in WME regression, and 0.944 (0.711 - 1.252) in IVW regression. For the smoking group, the odds ratios were 1.146 (0.546 - 2.406) in MR-Egger regression, 0.850 (0.653 - 1.111) in WME regression, and 0.939 (0.780 - 1.131) in IVW regression. Given the significant heterogeneity in the SNPs associated with smoking, the focus was primarily on the results from the IVW regression model. Conclusion: Alcohol consumption and smoking are not significant risk factors for the development of POAG.
基金supported by the National Natural Science Foundation of China(No.81960074)the Natural Science Foundation-Outstanding Youth Fund Project of Jiangxi Province(No.20232ACB216006)。
文摘BACKGROUND Oxidative stress is closely associated with hypertensive outcomes.The oxidative balance score(OBS)measures oxidative stress exposure from dietary and lifestyle elements.The objective of this study was to investigate the association between OBS and mortality in hypertensive patients.METHODS This study included 7823 hypertensive patients from the National Health and Nutrition Examination Survey(NHA-NES)1999-2014.Several models,including Cox regression,restricted cubic splines(RCS),Kaplan-Meier survival analysis,subgroup,and sensitivity analyses,were exploited to investigate the relationship between OBS and the risk of mortality.RESULTS Controlling for all potential confounders,a significantly inverse association was observed between elevated OBS and all-cause[hazard ratio(HR)=0.90,95%CI:0.85-0.95]and cardiovascular mortality(HR=0.85,95%CI:0.75-0.95).With adjustment for covariates,significant associations between lifestyle OBS and mortality risks diminished,whereas associations between dietary OBS and these mortality risks remained robust(all-cause mortality:HR=0.91,95%CI:0.86-0.96;cardiovascular mortality:HR=0.85,95%CI:0.76-0.96).RCS demonstrated a linear relationship between OBS and all-cause and cardiovascular mortality risk(P_(nonlinear)=0.088 and P_(nonlinear)=0.447,respectively).Kaplan-Meier curves demonstrated that the mortality rate was lower with a high OBS(P<0.001).The consistency of the association was demonstrated in subgroup and sensitivity analyses.RCS after stratification showed that among current drinkers,those with higher OBS had a lower risk of mortality compared with former or never drinkers.CONCLUSIONS In hypertensive individuals,there was a negative association between OBS and all-cause and cardiovascular mortality.Encouraging hypertensive individuals,especially those currently drinking,to maintain high levels of OBS may be beneficial in improving their prognosis.
文摘The millimeter-scale capsules with controllable morphology,ultra-low permeability and excellent mechanical stability were fabricated by millifluidics.Viscosity of inner phase was adjusted to control the morphology and properties of the capsules.In detail,as the concentration of polyvinyl alcohol(PVA)increased from 0 to 8% in the inner phase of the capsules,the diameter of capsules decreased from 3.33 ± 0.01mm to 2.97 ± 0.01 mm,the shell thickness of capsules decreased from 0.183 ± 0.004 mm to 0.155 ± 0.003 mm.While the capsules had round shape and high sphericity.Notably,the capsules with 2% PVA in the inner phase had remarkably decreased water permeability and good morphological stability.Specifically,the end-time of water losing of the capsules was up to 49 days,while the dehydrated capsules maintained spherical appearance,and crushing force of the capsules was up to 13.73 ± 0.79 N,which ensured stability during processing and transportation.This research provides a new strategy for stable encapsulation of small molecules.
文摘Sea cucumber saponins have attracted more attention in recent years due to biological activities.It is a popular practice to soak sea cucumber in Baijiu at home and being applied to industrial manufacturing in China.However,knowledge of the effect of alcohol on the absorption and metabolism of sea cucumber saponins is limited.The effects of alcohol on digestion,absorption and metabolism of sea cucumber saponins in BALB/c mice were investigated after gavage and tail intravenous injection.The results showed that the content of saponins in serum and liver was significantly higher under the influence of alcohol than that in the control group after oral administration.Alcohol promoted the absorption of sea cucumber saponins prototype as well as inhibited the process of saponins being transformed into deglycositic metabolites in the small intestine.Moreover,sea cucumber saponins remained in circulation for a long time and alcohol slowed down the clearance of sea cucumber saponins under the influence of alcohol after intravenous injection.This confirmed the feasibility of marinating sea cucumber in Baijiu to improve the efficacy of saponins and provides an important theoretical basis for the utilization of sea cucumber and the development of sea cucumber liquor.
文摘This review delves into the detrimental impact of alcohol consumption on internal organs and reproductive health,elucidating the underlying mechanisms involving the Toll-like receptor 4(TLR4)/Nuclear factor kappa light chain enhancer of activated B cells(NF-kB)pathway and the Cytochrome P4502E1(CYP2E1)/reactive oxygen spe-cies(ROS)/nuclear factor erythroid 2-related factor 2(Nrf2)pathways.The TLR4/NF-kB pathway,crucial for inflammatory and immune responses,triggers the production of pro-inflammatory agents and type-1 interferon,disrupting the balance between inflammatory and antioxidant responses when tissues are chronically exposed to al-cohol.Alcohol-induced dysbiosis in gut microbes heightens gut wall permeability to pathogen-associated molecular patterns(PAMPs),leading to liver cell infection and subsequent inflammation.Concurrently,CYP2E1-mediated alcohol metabolism gen-erates ROS,causing oxidative stress and damaging cells,lipids,proteins,and deoxy-ribonucleic acid(DNA).To counteract this inflammatory imbalance,Nrf2 regulates gene expression,inhibiting inflammatory progression and promoting antioxidant re-sponses.Excessive alcohol intake results in elevated liver enzymes(ADH,CYP2E1,and catalase),ROS,NADH,acetaldehyde,and acetate,leading to damage in vital organs such as the heart,brain,and lungs.Moreover,alcohol negatively affects reproduc-tive health by inhibiting the hypothalamic-pituitary-gonadal axis,causing infertility in both men and women.These findings underscore the profound health concerns associated with alcohol-induced damage,emphasizing the need for public awareness regarding the intricate interplay between immune responses and the multi-organ im-pacts of alcohol consumption.
基金supported by the National Natural Science Foundation of China(22078211)the China Postdoctoral Science Foundation(2022M721115).
文摘The interactions between lignin oligomers and solvents determine the behaviors of lignin oligomers self-assembling into uniform lignin nanoparticles(LNPs).Herein,several alcohol solvents,which readily interact with the lignin oligomers,were adopted to study their effects during solvent shifting process for LNPs’production.The lignin oligomers with widely distributed molecular weight and abundant guaiacyl units were extracted from wood waste(mainly consists of pine wood),exerting outstanding self-assembly capability.Uniform and spherical LNPs were generated in H_(2)O-n-propanol cosolvent,whereas irregular LNPs were obtained in H_(2)O-methanol cosolvent.The unsatisfactory self-assembly performance of the lignin oligomers in H_(2)O-methanol cosolvent could be attributed to two aspects.On one hand,for the initial dissolution state,the distinguishing Hansen solubility parameter and polarity between methanol solvent and lignin oligomers resulted in the poor dispersion of the lignin oligomers.On the other hand,strong hydrogen bonds between methanol solvent and lignin oligomers during solvent shifting process,hindered the interactions among the lignin oligomers for self-assembly.
基金supported by National Medical Research Center for Therapy and Preventive Medicine(Moscow,Russia).
文摘Background:There are substantial regional differences in drinking alcohol in Russia,both at the population and individual levels.However,the causes of these differences have not been studied yet.Objective:The goal of our study was to examine the effect of regional living conditions on individual alcohol consumption by the population of Russia.Methods:For the analysis,we used data from a cross-sectional epidemiological study conducted in 2013-2014.The final analytical sample included 18,130 people aged 25-64 years.We conducted the interviews face to face,based on which any drinking in the last year,as well as alcohol abuse,were considered as a response.Alcohol abuse was recorded when the respondent consumed 5.75 or more grams of pure ethanol per day(75th percentile of average daily alcohol consumption among alcohol drinkers).The assessment of the regional living conditions was accomplished via integral indexing,which was previously performed based on publicly available data for 2010-2014.Associations were assessed using generalized scoring equations with unchanging standard errors.The associations were expressed by odds ratios(OR)and 95%confidence intervals(C).Results:Deterioration of social conditions and increase in demographic depression in the region of residence increased the odds of any drinking(OR 1.51,95%CI:1.33 to 1.72,P<0.001 and OR 1.22,95%CI:1.05 to 1.41,P=0.oo9,respectively).The odds of alcohol abuse increased with the deterioration of social living conditions and the growth of the industrial development in the region:OR 1.35,95%CI:1.14 to 1.59,P<0.001 and OR 1.16,95%CI:1.05 to 1.28,P=0.002,respectively.Conclusion:Our analysis allowed assessing the impact of the regional living conditions on individual drinking alcohol in the population of Russia.