Alzheimer's disease is pathologically defined by accumulation of extracellular amyloid-β(Aβ). Approximately 25 mutations in β-amyloid precursor protein(APP) are pathogenic and cause autosomal dominant Alzheimer...Alzheimer's disease is pathologically defined by accumulation of extracellular amyloid-β(Aβ). Approximately 25 mutations in β-amyloid precursor protein(APP) are pathogenic and cause autosomal dominant Alzheimer's disease. To date, the mechanism underlying the effect of APP mutation on Aβ generation is unclear. Therefore, investigating the mechanism of APP mutation on Alzheimer's disease may help understanding of disease pathogenesis. Thus, APP mutations(A673T, A673 V, E682 K, E693 G, and E693Q) were transiently co-transfected into human embryonic kidney cells. Western blot assay was used to detect expression levels of APP, beta-secretase 1, and presenilin 1 in cells. Enzyme-linked immunosorbent assay was performed to determine Aβ_(1–40) and Aβ_(1–42) levels. Liquid chromatography-tandem mass chromatography was used to examine VVIAT, FLF, ITL, VIV, IAT, VIT, TVI, and VVIA peptide levels. Immunofluorescence staining was performed to measure APP and early endosome antigen 1 immunoreactivity. Our results show that the protective A673 T mutation decreases Aβ_(42)/Aβ_(40) rate by downregulating IAT and upregulating VVIA levels. Pathogenic A673 V, E682 K, and E693 Q mutations promote Aβ_(42)/Aβ_(40) rate by increasing levels of CTF99, Aβ_(42), Aβ_(40), and IAT, and decreasing VVIA levels. Pathogenic E693 G mutation shows no significant change in Aβ_(42)/Aβ_(40) ratio because of inhibition of γ-secretase activity. APP mutations can change location from the cell surface to early endosomes. Our findings confirm that certain APP mutations accelerate Aβ generation by affecting the long Aβ cleavage pathway and increasing Aβ_(42/40) rate, thereby resulting in Alzheimer's disease.展开更多
Previous studies have reported that non-human primates and rodents exposed to lead during brain development may become dependent on the deposition of pre-determined β-amyloid protein (Aβ),and exhibit upregulation ...Previous studies have reported that non-human primates and rodents exposed to lead during brain development may become dependent on the deposition of pre-determined β-amyloid protein (Aβ),and exhibit upregulation of β-site amyloid precursor protein expression in old age.However,further evidence is required to elucidate the precise relationship and molecular mechanisms underlying the effects of early lead exposure on excessive Aβ production in adult mammals.The present study investigated the effects of lead exposure on expression of β-amyloid precursor protein cleavage enzyme-1 (BACE-1) in the rat retina and the production of Aβ in early development,using the retina as a window for studying Alzheimer's disease.Adult rats were intraocularly injected with different doses of lead acetate (10μmol/L,100μmol/L,1 mmol/L,10 mmol/L and 100 mmol/L).The results revealed that retinal lead concentration,BACE-1 and its cleavage products β-C-terminal fragment and retina Aβ1-40 were all significantly increased in almost all of the lead exposure groups 48 hours later in a dose-dependent manner.The only exception was the 10μmol/L group.The distribution of BACE-1 in the retina did not exhibit obvious changes,and no distinctive increase in the activation of retinal microglia was apparent.Similarly,retinal synaptophysin expression did not exhibit any clear changes.These data suggest that lead exposure can result in the upregulation of retinal neuron BACE-1 expression in the early period of development and further increase the overproduction of Aβ1-40 in the retina.Our results provided novel insight into the molecular mechanisms underlying environmentally-induced Alzheimer's disease.展开更多
Alzheimer’s disease is a neurological disorder marked by the accumulation of amyloid beta(Aβ)aggregates,resulting from mutations in the amyloid precursor protein.The enzymeβ-secretase,also known asβ-site amyloid p...Alzheimer’s disease is a neurological disorder marked by the accumulation of amyloid beta(Aβ)aggregates,resulting from mutations in the amyloid precursor protein.The enzymeβ-secretase,also known asβ-site amyloid precursor protein cleaving enzyme 1(BACE1),plays a crucial role in generating Aβpeptides.With no targeted therapy available for Alzheimer’s disease,inhibiting BACE1 aspartic protease has emerged as a primary treatment target.Since 1999,compounds demonstrating potential binding to the BACE1 receptor have advanced to human trials.Structural optimization of synthetically derived compounds,coupled with computational approaches,has offered valuable insights for developing highly selective leads with drug-like properties.This review highlights pivotal studies on the design and development of BACE1 inhibitors as anti-Alzheimer’s disease agents.It summarizes computational methods employed in facilitating drug discovery for potential BACE1 inhibitors and provides an update on their clinical status,indicating future directions for novel BACE1 inhibitors.The promising clinical results of Elenbecestat(E-2609)catalyze the development of effective,selective BACE1 inhibitors in the future.展开更多
BACKGROUND: The pharmacological actions of Panax notoginseng saponins (PNS) lie in removing free radicals, anti-inflammation and anti-oxygenation. It can also improve memory and behavior in rat models of Alzheime...BACKGROUND: The pharmacological actions of Panax notoginseng saponins (PNS) lie in removing free radicals, anti-inflammation and anti-oxygenation. It can also improve memory and behavior in rat models of Alzheimer's disease. OBJECTIVE: Using the Morris water maze, immunohistochemistry, real-time PCR and RT-PCR, this study aimed to measure improvement in spatial learning, memory, expression of amyloid precursor protein (App) and β -amyloid (A β ), to investigate the mechanism of action of PNS in the treatment of AD in the senescence accelerated mouse-prone 8 (SAMP8) and compare the effects with huperzine A. DESIGN, TIME AND SETTING: A completely randomized grouping design, controlled animal experiment was performed in the Center for Research & Development of New Drugs, Guangxi Traditional Chinese Medical University from July 2005 to April 2007. MATERIALS: Sixty male SAMP8 mice, aged 3 months, purchased from Tianjin Chinese Traditional Medical University of China, were divided into four groups: PNS high-dosage group, PNS low-dosage group, huperzine A group and control group. PNS was provided by Weihe Pharmaceutical Co., Ltd. (batch No.: Z53021485, Yuxi, Yunan Province, China). Huperzine A was provided by Zhenyuan Pharmaceutical Co., Ltd. (batch No.: 20040801, Zhejiang, China). METHODS: The high-dosage group and low-dosage group were treated with 93.50 and 23.38 mg/kg PNS respectively per day and the huperzine A group was treated with 0.038 6 mg/kg huperzine A per day, all by intragastric administration, for 8 consecutive weeks. The same volume of double distilled water was given to the control group. MAIN OUTCOME MEASURES: After drug administration, learning and memory abilities were assessed by place navigation and spatial probe tests. The recording indices consisted of escape latency (time-to-platform), and the percentage of swimming time spent in each quadrant. The number of A β 1-40, A β 1-42 and App immunopositive neurons in the brains of SAMP8 mice was analyzed by immunohistochemistry. The mRNA content ofApp, tau, acetylcholinesterase, and synaptophysin (Syp) was tested by real time PCR and RT-PCR. RESULTS: The PCR results show that PNS can downregulate the expression of the App gene and upregulate the expression of the Syp gene in the parietal cortex and hippocampus of SAMP8 mice. The therapeutic effects of the PNS high-dosage group were greater than those of the PNS low-dosage group and the huperzine A group (P 〈 0.05). The results of the Morris water maze and immunohistochemistry indicated that PNS can improve the capacity for spatial learning and memory in SAMP8 mice, and reduce the content of A β 1-40, A β 1-42 and expression of App in the brains of SAMP8 mice. The therapeutic effects of the PNS high-dosage group were greater than that of the PNS low-dosage group and the huperzine A group (P 〈 0.05). CONCLUSION: These results support the hypothesis that PNS plays a therapeutic and protective role on the pathological lesions and learning dysfunction of Alzheimer's disease. The therapeutic effects of PNS for Alzheimer's disease are possibly achieved through downregulating the expression of the App gene and upregulating the expression of the Syp gene. The therapeutic effects of PNS are dose-dependent and are greater than the effect of huperzine A.展开更多
The pathological implication of amyloid precursor protein(APP)in Alzheimer’s disease has been widely documented due to its involvement in the generation of amyloid-β peptide.However,the physiological functions of AP...The pathological implication of amyloid precursor protein(APP)in Alzheimer’s disease has been widely documented due to its involvement in the generation of amyloid-β peptide.However,the physiological functions of APP are still poorly understood.APP is considered a multimodal protein due to its role in a wide variety of processes,both in the embryo and in the adult brain.Specifically,APP seems to play a key role in the proliferation,differentiation and maturation of neural stem cells.In addition,APP can be processed through two canonical processing pathways,generating different functionally active fragments:soluble APP-α,soluble APP-β,amyloid-β peptide and the APP intracellular C-terminal domain.These fragments also appear to modulate various functions in neural stem cells,including the processes of proliferation,neurogenesis,gliogenesis or cell death.However,the molecular mechanisms involved in these effects are still unclear.In this review,we summarize the physiological functions of APP and its main proteolytic derivatives in neural stem cells,as well as the possible signaling pathways that could be implicated in these effects.The knowledge of these functions and signaling pathways involved in the onset or during the development of Alzheimer’s disease is essential to advance the understanding of the pathogenesis of Alzheimer’s disease,and in the search for potential therapeutic targets.展开更多
BACKGROUND: During onset and development of Alzheimer's disease, β-amyloid (Aβ) precursor protein (APP), β-site amyloid precursor protein cleaving enzyme (BACE), and β-amyloid are key genes and proteins in...BACKGROUND: During onset and development of Alzheimer's disease, β-amyloid (Aβ) precursor protein (APP), β-site amyloid precursor protein cleaving enzyme (BACE), and β-amyloid are key genes and proteins in the Aβ pathway, and over-expression of these genes can lead to Aβ deposit/on in the brain. OBJECTIVE: To observe the influence of Longyanshen polysaccharides on expression of BACE, APP, and Aβ in the senescence-accelerated mouse prone/8 (SAMP8) brain, and to compare these effects with huperzine A treatment. DESIGN, TIME AND SETTING: A randomized, controlled, neurobiochemical experiment was performed at the Department of Pharmacology and Scientific Experimental Center of Guangxi Medical University from September 2005 to January 2008. MATERIALS: Longyanshen polysaccharfdes powder was extracted from the dried slices of the medicinal plant Longyanshen. The active component, Longyanshen polysaccharides, was provided by the Department of Pharmacology, Guangxi Medical University; huperzine A was purchased from Yuzhong Drug Manufactory, China. METHODS: Healthy SAMP8 mice were used to establish a model of Alzheimer's disease. A total of 50 SAMP8 mice were randomly assigned to 5 groups (n = 10): SAMP8, huperzine A, low-, middle-, and high-dose polysaccharides. In addition, 10 senescence-accelerated mouse resistant 1 (SAMR1) mice were selected as normal controls. SAMP8 and SAMR1 mice were administered 30 mL/kg normal saline; the huperzine A group was administered 0.02 mg/kg huperzine A; the low-, middle-, and high-dose polysaccharides groups were respectively administered 45, 90, and 180 mg/kg Longyanshen polysaccharides. Each group was treated by intragastric administration, once per day, for 50 consecutive days. MAIN OUTCOME MEASURES: One hour after the final administration, immunohistochemical analysis was used to determine Aβ expression in the cortex and hippocampus of SAMP8 mice. Reverse-transcription polymerase chain reaction was used to determine mRNA levels of BACE and APP in SAMP8 brain tissue. RESULTS: Compared with the SAMR1 group, Aβ expression in the cerebral cortex and hippocampus, as well as expression of BACE, APP mRNA in the brain was significantly increased in the SAMP8 group (P 〈 0.05-0.01). Compared with the SAMP8 group, Aβ expression, as well as BACE and APP mRNA expression, were significantly decreased in the cerebral cortex and hippocampus of huperzine A and low-, middle-, and high-dose polysaccharides groups (P 〈 0.05-0.01). In particular, the effect of high-dose polysaccharides was the most significant (P 〈 0.05-0.01 ). CONCLUSION: Longyanshen polysaccharides reduced or inhibited over-expression of BACE, APP, and Aβ in SAMP8 mice in a dose-dependent manner, and the effect was not worse than huperzine A.展开更多
Objective To investigate the impact of sub-chronic Aluminium-maltolate [Al(mal)s] exposure on the catabolism of amyloid precursor protein (APP) in rats. Methods Forty adult male Sprague-Dawley (SD) rats were ran...Objective To investigate the impact of sub-chronic Aluminium-maltolate [Al(mal)s] exposure on the catabolism of amyloid precursor protein (APP) in rats. Methods Forty adult male Sprague-Dawley (SD) rats were randomly divided into five groups: the control group, the maltolate group (7.56 mg/kg BW), and the Al(mal)s groups (0.27, 0.54, and 1.08 mg/kg BW, respectively). Control rats were administered with 0.9% normal saline through intraperitoneal (i.p.) injection. Maltolate and Al(mal)s were administered to the rats also through i.p. injections. Administration was conducted daily for two months. Rat neural behavior was examined using open field tests (OFT). And the protein expressions and their mRNAs transcription related with APP catabolism were studied using enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (RT-PCR). Results The expressions of APP, 13-site APP cleaving enzyme 1 (BACEI) and presenilin-1 (PSi) proteins and their mRNAs transcription increased gradually with the increase of Al(mal)3 doses (P〈0.05). The enzyme activity of BACEI in the 0.54 and 1.08 mg/kg Al(mal)s groups increased significantly (P〈0.05). The expression of 8-amyloid protein (AS) 1-40 gradually decreased while the protein expression of A81-42 increased gradually with the increase of Al(mal)s doses (P〈0.05). Conclusion Result from our study suggested that one of the possible mechanisms that Al(mal)s can cause neurotoxicity is that Al(mal)s can increase the generation of A81-42 by facilitating the expressions of APP, β-, and γ-secretase.展开更多
Summary: Over-expression of APP and Swedish mutation could cause some familial early onset AD. In this study, a primary screening was conducted of effective small interference RNAs (siRNAs) targeted wild type APP ...Summary: Over-expression of APP and Swedish mutation could cause some familial early onset AD. In this study, a primary screening was conducted of effective small interference RNAs (siRNAs) targeted wild type APP (APPwt) and Swedish mutant APP (APPswe). One siRNA targeting APPwt and the other siRNA targeting APPswe were designed, All these siRNAs were endogenously expressed by siRNAs expressing plasmids, COS-7 cells were transiently co-transfected with APP-GFP recombinant plasmids and siRNA expression vector, The silencing effect of each siRNA was quantitatively assessed by the level of expression of green fluorescent protein (GFP). It was found that the siRNAs silenced APPwt and APPswe to different degrees, siRNA directed against APPswe was more effective in suppressing the expression of fusion gene of APPswe than that of APPwt. The silencing effect of siRNA directed against APPswe indicating allele-specific silencing property of the siRNAs. Therefore, siRNAs directed against APP play an important role both in the therapeutic study of Alzheimer disease and functional exploration ofAPP gene.展开更多
Pharmacological studies reveal APP and Aβ have interactions with glutamate and calcium, cytokines, copper/zinc chelators, secretases and presenilins, nicotinic receptors, acetycholinesterase, neurotrophins, non-stero...Pharmacological studies reveal APP and Aβ have interactions with glutamate and calcium, cytokines, copper/zinc chelators, secretases and presenilins, nicotinic receptors, acetycholinesterase, neurotrophins, non-steroidal anti-inflame-matory drugs, monoclonal antibodies to Aβ, protease inhibitors, oestrogen, homocysteine, immediate early genes such as c-fos or c-jun and cholesterol. These functional and pharmacological observations highlight the need for greater understanding of APP and Aβ in brain function and have implications for clinical trials.展开更多
Targeting early steps in amyloid-beta production:Alzheimer’s disease(AD)has a long history as the"amyloid deposit"disorder.Many disorders are now known to be caused by proteinβ-sheet misfolding and aggregation...Targeting early steps in amyloid-beta production:Alzheimer’s disease(AD)has a long history as the"amyloid deposit"disorder.Many disorders are now known to be caused by proteinβ-sheet misfolding and aggregation(e.g.,Parkinson’s disease:α-synuclein;Huntington’s disease:Huntingtin;展开更多
Alzheimer's disease(AD)is the most common cause of senile dementia.It is characterized by the formation of plaques mainly composed of the amyloid-beta peptide(Aβ).Diverse lines of evidence support the notion tha...Alzheimer's disease(AD)is the most common cause of senile dementia.It is characterized by the formation of plaques mainly composed of the amyloid-beta peptide(Aβ).Diverse lines of evidence support the notion that accumulation of Aβis a primary cause of AD pathogenesis(Huang and Mucke,2012).Amyloid precusor protein(APP)processing is dependent on its subcelluar trafficking pathway:Aβis derived from APP by proteolyric processing.展开更多
基金funded by the National Natural Science Foundation of China,No.81671268(to HQ)partially supported by a grant from the Ministry of Science and Technology of China,No.2013YQ03059514(to HQ)a grant from Key Laboratory for Neurodegenerative Disease of Ministry of Education of China,No.2015SJBX05(to HQ),2015SJZS01(to HQ)
文摘Alzheimer's disease is pathologically defined by accumulation of extracellular amyloid-β(Aβ). Approximately 25 mutations in β-amyloid precursor protein(APP) are pathogenic and cause autosomal dominant Alzheimer's disease. To date, the mechanism underlying the effect of APP mutation on Aβ generation is unclear. Therefore, investigating the mechanism of APP mutation on Alzheimer's disease may help understanding of disease pathogenesis. Thus, APP mutations(A673T, A673 V, E682 K, E693 G, and E693Q) were transiently co-transfected into human embryonic kidney cells. Western blot assay was used to detect expression levels of APP, beta-secretase 1, and presenilin 1 in cells. Enzyme-linked immunosorbent assay was performed to determine Aβ_(1–40) and Aβ_(1–42) levels. Liquid chromatography-tandem mass chromatography was used to examine VVIAT, FLF, ITL, VIV, IAT, VIT, TVI, and VVIA peptide levels. Immunofluorescence staining was performed to measure APP and early endosome antigen 1 immunoreactivity. Our results show that the protective A673 T mutation decreases Aβ_(42)/Aβ_(40) rate by downregulating IAT and upregulating VVIA levels. Pathogenic A673 V, E682 K, and E693 Q mutations promote Aβ_(42)/Aβ_(40) rate by increasing levels of CTF99, Aβ_(42), Aβ_(40), and IAT, and decreasing VVIA levels. Pathogenic E693 G mutation shows no significant change in Aβ_(42)/Aβ_(40) ratio because of inhibition of γ-secretase activity. APP mutations can change location from the cell surface to early endosomes. Our findings confirm that certain APP mutations accelerate Aβ generation by affecting the long Aβ cleavage pathway and increasing Aβ_(42/40) rate, thereby resulting in Alzheimer's disease.
基金the National Natural Science Foundation of China,No.30900773the National University Basic Research Foundation of China,No.2010QZZD022
文摘Previous studies have reported that non-human primates and rodents exposed to lead during brain development may become dependent on the deposition of pre-determined β-amyloid protein (Aβ),and exhibit upregulation of β-site amyloid precursor protein expression in old age.However,further evidence is required to elucidate the precise relationship and molecular mechanisms underlying the effects of early lead exposure on excessive Aβ production in adult mammals.The present study investigated the effects of lead exposure on expression of β-amyloid precursor protein cleavage enzyme-1 (BACE-1) in the rat retina and the production of Aβ in early development,using the retina as a window for studying Alzheimer's disease.Adult rats were intraocularly injected with different doses of lead acetate (10μmol/L,100μmol/L,1 mmol/L,10 mmol/L and 100 mmol/L).The results revealed that retinal lead concentration,BACE-1 and its cleavage products β-C-terminal fragment and retina Aβ1-40 were all significantly increased in almost all of the lead exposure groups 48 hours later in a dose-dependent manner.The only exception was the 10μmol/L group.The distribution of BACE-1 in the retina did not exhibit obvious changes,and no distinctive increase in the activation of retinal microglia was apparent.Similarly,retinal synaptophysin expression did not exhibit any clear changes.These data suggest that lead exposure can result in the upregulation of retinal neuron BACE-1 expression in the early period of development and further increase the overproduction of Aβ1-40 in the retina.Our results provided novel insight into the molecular mechanisms underlying environmentally-induced Alzheimer's disease.
文摘Alzheimer’s disease is a neurological disorder marked by the accumulation of amyloid beta(Aβ)aggregates,resulting from mutations in the amyloid precursor protein.The enzymeβ-secretase,also known asβ-site amyloid precursor protein cleaving enzyme 1(BACE1),plays a crucial role in generating Aβpeptides.With no targeted therapy available for Alzheimer’s disease,inhibiting BACE1 aspartic protease has emerged as a primary treatment target.Since 1999,compounds demonstrating potential binding to the BACE1 receptor have advanced to human trials.Structural optimization of synthetically derived compounds,coupled with computational approaches,has offered valuable insights for developing highly selective leads with drug-like properties.This review highlights pivotal studies on the design and development of BACE1 inhibitors as anti-Alzheimer’s disease agents.It summarizes computational methods employed in facilitating drug discovery for potential BACE1 inhibitors and provides an update on their clinical status,indicating future directions for novel BACE1 inhibitors.The promising clinical results of Elenbecestat(E-2609)catalyze the development of effective,selective BACE1 inhibitors in the future.
基金the National Natural Science Foundation of China, No: 30560189
文摘BACKGROUND: The pharmacological actions of Panax notoginseng saponins (PNS) lie in removing free radicals, anti-inflammation and anti-oxygenation. It can also improve memory and behavior in rat models of Alzheimer's disease. OBJECTIVE: Using the Morris water maze, immunohistochemistry, real-time PCR and RT-PCR, this study aimed to measure improvement in spatial learning, memory, expression of amyloid precursor protein (App) and β -amyloid (A β ), to investigate the mechanism of action of PNS in the treatment of AD in the senescence accelerated mouse-prone 8 (SAMP8) and compare the effects with huperzine A. DESIGN, TIME AND SETTING: A completely randomized grouping design, controlled animal experiment was performed in the Center for Research & Development of New Drugs, Guangxi Traditional Chinese Medical University from July 2005 to April 2007. MATERIALS: Sixty male SAMP8 mice, aged 3 months, purchased from Tianjin Chinese Traditional Medical University of China, were divided into four groups: PNS high-dosage group, PNS low-dosage group, huperzine A group and control group. PNS was provided by Weihe Pharmaceutical Co., Ltd. (batch No.: Z53021485, Yuxi, Yunan Province, China). Huperzine A was provided by Zhenyuan Pharmaceutical Co., Ltd. (batch No.: 20040801, Zhejiang, China). METHODS: The high-dosage group and low-dosage group were treated with 93.50 and 23.38 mg/kg PNS respectively per day and the huperzine A group was treated with 0.038 6 mg/kg huperzine A per day, all by intragastric administration, for 8 consecutive weeks. The same volume of double distilled water was given to the control group. MAIN OUTCOME MEASURES: After drug administration, learning and memory abilities were assessed by place navigation and spatial probe tests. The recording indices consisted of escape latency (time-to-platform), and the percentage of swimming time spent in each quadrant. The number of A β 1-40, A β 1-42 and App immunopositive neurons in the brains of SAMP8 mice was analyzed by immunohistochemistry. The mRNA content ofApp, tau, acetylcholinesterase, and synaptophysin (Syp) was tested by real time PCR and RT-PCR. RESULTS: The PCR results show that PNS can downregulate the expression of the App gene and upregulate the expression of the Syp gene in the parietal cortex and hippocampus of SAMP8 mice. The therapeutic effects of the PNS high-dosage group were greater than those of the PNS low-dosage group and the huperzine A group (P 〈 0.05). The results of the Morris water maze and immunohistochemistry indicated that PNS can improve the capacity for spatial learning and memory in SAMP8 mice, and reduce the content of A β 1-40, A β 1-42 and expression of App in the brains of SAMP8 mice. The therapeutic effects of the PNS high-dosage group were greater than that of the PNS low-dosage group and the huperzine A group (P 〈 0.05). CONCLUSION: These results support the hypothesis that PNS plays a therapeutic and protective role on the pathological lesions and learning dysfunction of Alzheimer's disease. The therapeutic effects of PNS for Alzheimer's disease are possibly achieved through downregulating the expression of the App gene and upregulating the expression of the Syp gene. The therapeutic effects of PNS are dose-dependent and are greater than the effect of huperzine A.
基金supported by grants from the Ministerio de Ciencia e Innovación-Instituto de Salud Carlos Ⅲ(PI-10/00291 and MPY1412/09)Ministerio de Economía y Competitividad(SAF2015-71140-R)+2 种基金Comunidad de Madrid(Neurostem-Comunidad de Madrid consortium S2010/BMD-2336)supported by grants from Plan de Empleo Juvenil-Ministerio de Economía y Competitividad
文摘The pathological implication of amyloid precursor protein(APP)in Alzheimer’s disease has been widely documented due to its involvement in the generation of amyloid-β peptide.However,the physiological functions of APP are still poorly understood.APP is considered a multimodal protein due to its role in a wide variety of processes,both in the embryo and in the adult brain.Specifically,APP seems to play a key role in the proliferation,differentiation and maturation of neural stem cells.In addition,APP can be processed through two canonical processing pathways,generating different functionally active fragments:soluble APP-α,soluble APP-β,amyloid-β peptide and the APP intracellular C-terminal domain.These fragments also appear to modulate various functions in neural stem cells,including the processes of proliferation,neurogenesis,gliogenesis or cell death.However,the molecular mechanisms involved in these effects are still unclear.In this review,we summarize the physiological functions of APP and its main proteolytic derivatives in neural stem cells,as well as the possible signaling pathways that could be implicated in these effects.The knowledge of these functions and signaling pathways involved in the onset or during the development of Alzheimer’s disease is essential to advance the understanding of the pathogenesis of Alzheimer’s disease,and in the search for potential therapeutic targets.
基金Supported by:Guangxi Scientific Research and Technological Development Program,No.0630002-2ADoctoral Research and Innovation Program of Guangxi Graduate Education,No, 2007105981007D10
文摘BACKGROUND: During onset and development of Alzheimer's disease, β-amyloid (Aβ) precursor protein (APP), β-site amyloid precursor protein cleaving enzyme (BACE), and β-amyloid are key genes and proteins in the Aβ pathway, and over-expression of these genes can lead to Aβ deposit/on in the brain. OBJECTIVE: To observe the influence of Longyanshen polysaccharides on expression of BACE, APP, and Aβ in the senescence-accelerated mouse prone/8 (SAMP8) brain, and to compare these effects with huperzine A treatment. DESIGN, TIME AND SETTING: A randomized, controlled, neurobiochemical experiment was performed at the Department of Pharmacology and Scientific Experimental Center of Guangxi Medical University from September 2005 to January 2008. MATERIALS: Longyanshen polysaccharfdes powder was extracted from the dried slices of the medicinal plant Longyanshen. The active component, Longyanshen polysaccharides, was provided by the Department of Pharmacology, Guangxi Medical University; huperzine A was purchased from Yuzhong Drug Manufactory, China. METHODS: Healthy SAMP8 mice were used to establish a model of Alzheimer's disease. A total of 50 SAMP8 mice were randomly assigned to 5 groups (n = 10): SAMP8, huperzine A, low-, middle-, and high-dose polysaccharides. In addition, 10 senescence-accelerated mouse resistant 1 (SAMR1) mice were selected as normal controls. SAMP8 and SAMR1 mice were administered 30 mL/kg normal saline; the huperzine A group was administered 0.02 mg/kg huperzine A; the low-, middle-, and high-dose polysaccharides groups were respectively administered 45, 90, and 180 mg/kg Longyanshen polysaccharides. Each group was treated by intragastric administration, once per day, for 50 consecutive days. MAIN OUTCOME MEASURES: One hour after the final administration, immunohistochemical analysis was used to determine Aβ expression in the cortex and hippocampus of SAMP8 mice. Reverse-transcription polymerase chain reaction was used to determine mRNA levels of BACE and APP in SAMP8 brain tissue. RESULTS: Compared with the SAMR1 group, Aβ expression in the cerebral cortex and hippocampus, as well as expression of BACE, APP mRNA in the brain was significantly increased in the SAMP8 group (P 〈 0.05-0.01). Compared with the SAMP8 group, Aβ expression, as well as BACE and APP mRNA expression, were significantly decreased in the cerebral cortex and hippocampus of huperzine A and low-, middle-, and high-dose polysaccharides groups (P 〈 0.05-0.01). In particular, the effect of high-dose polysaccharides was the most significant (P 〈 0.05-0.01 ). CONCLUSION: Longyanshen polysaccharides reduced or inhibited over-expression of BACE, APP, and Aβ in SAMP8 mice in a dose-dependent manner, and the effect was not worse than huperzine A.
基金supported by the National Natural Science Foundation of China (30972512)the Graduate Innovation Fund of Academic Degree Committee Office of the Shanxi Provincial Government (20093014)+1 种基金Doctor Start-up Fund from Shanxi Medical University (B03201209)the College Students Innovation Fund of Shanxi Medical University (2010-25)
文摘Objective To investigate the impact of sub-chronic Aluminium-maltolate [Al(mal)s] exposure on the catabolism of amyloid precursor protein (APP) in rats. Methods Forty adult male Sprague-Dawley (SD) rats were randomly divided into five groups: the control group, the maltolate group (7.56 mg/kg BW), and the Al(mal)s groups (0.27, 0.54, and 1.08 mg/kg BW, respectively). Control rats were administered with 0.9% normal saline through intraperitoneal (i.p.) injection. Maltolate and Al(mal)s were administered to the rats also through i.p. injections. Administration was conducted daily for two months. Rat neural behavior was examined using open field tests (OFT). And the protein expressions and their mRNAs transcription related with APP catabolism were studied using enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (RT-PCR). Results The expressions of APP, 13-site APP cleaving enzyme 1 (BACEI) and presenilin-1 (PSi) proteins and their mRNAs transcription increased gradually with the increase of Al(mal)3 doses (P〈0.05). The enzyme activity of BACEI in the 0.54 and 1.08 mg/kg Al(mal)s groups increased significantly (P〈0.05). The expression of 8-amyloid protein (AS) 1-40 gradually decreased while the protein expression of A81-42 increased gradually with the increase of Al(mal)s doses (P〈0.05). Conclusion Result from our study suggested that one of the possible mechanisms that Al(mal)s can cause neurotoxicity is that Al(mal)s can increase the generation of A81-42 by facilitating the expressions of APP, β-, and γ-secretase.
文摘Summary: Over-expression of APP and Swedish mutation could cause some familial early onset AD. In this study, a primary screening was conducted of effective small interference RNAs (siRNAs) targeted wild type APP (APPwt) and Swedish mutant APP (APPswe). One siRNA targeting APPwt and the other siRNA targeting APPswe were designed, All these siRNAs were endogenously expressed by siRNAs expressing plasmids, COS-7 cells were transiently co-transfected with APP-GFP recombinant plasmids and siRNA expression vector, The silencing effect of each siRNA was quantitatively assessed by the level of expression of green fluorescent protein (GFP). It was found that the siRNAs silenced APPwt and APPswe to different degrees, siRNA directed against APPswe was more effective in suppressing the expression of fusion gene of APPswe than that of APPwt. The silencing effect of siRNA directed against APPswe indicating allele-specific silencing property of the siRNAs. Therefore, siRNAs directed against APP play an important role both in the therapeutic study of Alzheimer disease and functional exploration ofAPP gene.
文摘Pharmacological studies reveal APP and Aβ have interactions with glutamate and calcium, cytokines, copper/zinc chelators, secretases and presenilins, nicotinic receptors, acetycholinesterase, neurotrophins, non-steroidal anti-inflame-matory drugs, monoclonal antibodies to Aβ, protease inhibitors, oestrogen, homocysteine, immediate early genes such as c-fos or c-jun and cholesterol. These functional and pharmacological observations highlight the need for greater understanding of APP and Aβ in brain function and have implications for clinical trials.
文摘Targeting early steps in amyloid-beta production:Alzheimer’s disease(AD)has a long history as the"amyloid deposit"disorder.Many disorders are now known to be caused by proteinβ-sheet misfolding and aggregation(e.g.,Parkinson’s disease:α-synuclein;Huntington’s disease:Huntingtin;
文摘Alzheimer's disease(AD)is the most common cause of senile dementia.It is characterized by the formation of plaques mainly composed of the amyloid-beta peptide(Aβ).Diverse lines of evidence support the notion that accumulation of Aβis a primary cause of AD pathogenesis(Huang and Mucke,2012).Amyloid precusor protein(APP)processing is dependent on its subcelluar trafficking pathway:Aβis derived from APP by proteolyric processing.