期刊文献+
共找到932篇文章
< 1 2 47 >
每页显示 20 50 100
Mutations of beta-amyloid precursor protein alter the consequence of Alzheimer's disease pathogenesis 被引量:8
1
作者 Nuo-Min Li Ke-Fu Liu +3 位作者 Yun-Jie Qiu Huan-Huan Zhang Hiroshi Nakanishi Hong Qing 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第4期658-665,共8页
Alzheimer's disease is pathologically defined by accumulation of extracellular amyloid-β(Aβ). Approximately 25 mutations in β-amyloid precursor protein(APP) are pathogenic and cause autosomal dominant Alzheimer... Alzheimer's disease is pathologically defined by accumulation of extracellular amyloid-β(Aβ). Approximately 25 mutations in β-amyloid precursor protein(APP) are pathogenic and cause autosomal dominant Alzheimer's disease. To date, the mechanism underlying the effect of APP mutation on Aβ generation is unclear. Therefore, investigating the mechanism of APP mutation on Alzheimer's disease may help understanding of disease pathogenesis. Thus, APP mutations(A673T, A673 V, E682 K, E693 G, and E693Q) were transiently co-transfected into human embryonic kidney cells. Western blot assay was used to detect expression levels of APP, beta-secretase 1, and presenilin 1 in cells. Enzyme-linked immunosorbent assay was performed to determine Aβ_(1–40) and Aβ_(1–42) levels. Liquid chromatography-tandem mass chromatography was used to examine VVIAT, FLF, ITL, VIV, IAT, VIT, TVI, and VVIA peptide levels. Immunofluorescence staining was performed to measure APP and early endosome antigen 1 immunoreactivity. Our results show that the protective A673 T mutation decreases Aβ_(42)/Aβ_(40) rate by downregulating IAT and upregulating VVIA levels. Pathogenic A673 V, E682 K, and E693 Q mutations promote Aβ_(42)/Aβ_(40) rate by increasing levels of CTF99, Aβ_(42), Aβ_(40), and IAT, and decreasing VVIA levels. Pathogenic E693 G mutation shows no significant change in Aβ_(42)/Aβ_(40) ratio because of inhibition of γ-secretase activity. APP mutations can change location from the cell surface to early endosomes. Our findings confirm that certain APP mutations accelerate Aβ generation by affecting the long Aβ cleavage pathway and increasing Aβ_(42/40) rate, thereby resulting in Alzheimer's disease. 展开更多
关键词 nerve REGENERATION Alzheimer’s disease β-amyloid precursor protein amyloidβ APP MUTATIONS liquid chromatography-tandem mass CHROMATOGRAPHY cellular localization long neural REGENERATION
下载PDF
Beta-amyloid precursor protein cleavage enzyme-1 expression in adult rat retinal neurons in the early period after lead exposure 被引量:3
2
作者 Jufang Huang Kai Huang +3 位作者 Lei Shang Hui Wang Xiaoxin Yan Kun Xiong 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第14期1045-1051,共7页
Previous studies have reported that non-human primates and rodents exposed to lead during brain development may become dependent on the deposition of pre-determined β-amyloid protein (Aβ),and exhibit upregulation ... Previous studies have reported that non-human primates and rodents exposed to lead during brain development may become dependent on the deposition of pre-determined β-amyloid protein (Aβ),and exhibit upregulation of β-site amyloid precursor protein expression in old age.However,further evidence is required to elucidate the precise relationship and molecular mechanisms underlying the effects of early lead exposure on excessive Aβ production in adult mammals.The present study investigated the effects of lead exposure on expression of β-amyloid precursor protein cleavage enzyme-1 (BACE-1) in the rat retina and the production of Aβ in early development,using the retina as a window for studying Alzheimer's disease.Adult rats were intraocularly injected with different doses of lead acetate (10μmol/L,100μmol/L,1 mmol/L,10 mmol/L and 100 mmol/L).The results revealed that retinal lead concentration,BACE-1 and its cleavage products β-C-terminal fragment and retina Aβ1-40 were all significantly increased in almost all of the lead exposure groups 48 hours later in a dose-dependent manner.The only exception was the 10μmol/L group.The distribution of BACE-1 in the retina did not exhibit obvious changes,and no distinctive increase in the activation of retinal microglia was apparent.Similarly,retinal synaptophysin expression did not exhibit any clear changes.These data suggest that lead exposure can result in the upregulation of retinal neuron BACE-1 expression in the early period of development and further increase the overproduction of Aβ1-40 in the retina.Our results provided novel insight into the molecular mechanisms underlying environmentally-induced Alzheimer's disease. 展开更多
关键词 lead exposure β-amyloid precursor protein cleavage enzyme-1 β-amyloid RETINA adult Sprague-Dawley rats neural regeneration
下载PDF
miR-15b-5p targeting amyloid precursor protein is involved in the anti-amyloid eflect of curcumin in swAPP695-HEK293 cells 被引量:3
3
作者 Hong-Ying Liu Xian Fu +4 位作者 You-Fu Li Xian-Liang Li Zhen-Yu Ma Ying Zhang Qing-Chun Gao 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第9期1603-1609,共7页
Curcumin exerts a neuroprotective effect on Alzheimer’s disease;however,it is not known whether microRNAs are involved in this protective effect.This study was conducted using swAPP695-HEK293 cells as an Alzheimer’s... Curcumin exerts a neuroprotective effect on Alzheimer’s disease;however,it is not known whether microRNAs are involved in this protective effect.This study was conducted using swAPP695-HEK293 cells as an Alzheimer’s disease cell model.swAPP695-HEK293 cells were treated with 0,0.5,1,2,5,and 10μM curcumin for 24 hours.The changes in miR-15b-5p,miR-19a-3p,miR-195-5p,miR-101-3p,miR-216b-5p,miR-16-5p and miR-185-5p expression were assessed by real-time quantitative polymerase chain reaction.The mRNA and protein levels of amyloid precursor protein,amyloid-β40 and amyloid-β42 were evaluated by quantitative real-time polymerase chain reaction,western blot assays and enzyme-linked immunosorbent assays.swAPP695-HEK293 cells were transfected with miR-15b-5p mimic,or treated with 1μM curcumin 24 hours before miR-15b-5p inhibitor transfection.The effects of curcumin on amyloid precursor protein,amyloid-β40 and amyloid-β42 levels were evaluated by western blot assays and enzyme-linked immunosorbent assay.Luciferase assays were used to analyze the interaction between miR-15b-5p and the 3′-untranslated region of amyloid precursor protein.The results show that amyloid precursor protein and amyloid-βexpression were enhanced in swAPP695-HEK293 cells compared with HEK293 parental cells.Curcumin suppressed the expression of amyloid precursor protein and amyloid-βand up-regulated the expression of miR-15b-5p in swAPP695-HEK293 cells.In addition,we found a negative association of miR-15b-5p expression with amyloid precursor protein and amyloid-βlevels in the curcumin-treated cells.Luciferase assays revealed that miR-15b-5p impaired the luciferase activity of the plasmid harboring the 3′-untranslated region of amyloid precursor protein.These findings indicate that curcumin down-regulates the expression of amyloid precursor protein and amyloid-βin swAPP695-HEK293 cells,which was partially mediated by miR-15b-5p via targeting of the 3′-untranslated region of amyloid precursor protein. 展开更多
关键词 nerve REGENERATION Alzheimer’s disease natural plant drug CURCUMINOIDS miRNAs AMYLOID precursor protein amyloid-β 3′-untranslated region LUCIFERASE assays neurons neural REGENERATION
下载PDF
Inhibition of beta-site amyloid precursor protein-cleaving enzyme and beta-amyloid precursor protein genes in SK-N-SH cells
4
作者 Suqin Gao Lin Sun +4 位作者 Enji Han Hongshun Qi Jinbo Feng Shunliang Xu Wen Xia 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第6期418-425,共8页
BACKGROUND: Previous studies have demonstrated that Piper futokadsura stem selectively inhibits expression of amyloid precursor protein (APP) at the mRNA level. In addition, the piperlonguminine (A) and dihydropi... BACKGROUND: Previous studies have demonstrated that Piper futokadsura stem selectively inhibits expression of amyloid precursor protein (APP) at the mRNA level. In addition, the piperlonguminine (A) and dihydropiperlonguminine (B) components (1 : 0.8), which can be separated from Futokadsura stem, selectively inhibit expression of the APP at mRNA and protein levels. OBJECTIVE: Based on previous findings, the present study investigated the effects of β-site amyloid precursor protein cleaving enzyme (BACE1) and APP genes on the production of β-amyloid peptide 42 (Aβ42) in human neuroblastoma cells (SK-N-SH cells) using small interfering RNAs (siRNAs) and A/B components separated from Futokadsura stem, respectively. DESIGN, TIME AND SETTING: A gene interference-based randomized, controlled, in vitro experiment was performed at the Key Laboratory of Cardiovascular Remodeling and Function Research, Ministries of Education and Public Health, and Institute of Pharmacologic Research, School of Pharmaceutical Science & Department of Biochemistry, School of Medicine, Shandong University between July 2006 and December 2007. MATERIALS: SK-N-SH cells were provided by Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China; mouse anti-human BACE1 monoclonal antibody was purchased from R&D Systems, USA; mouse anti-human APP monoclonal antibody was purchased from Cell Signaling Technology, USA; and horseradish peroxidase (HRP)-conjugated goat anti-mouse IgG was provided by Sigma, USA. METHODS: The human BACE1 cDNA sequence was obtained from NCBI website (www.ncbi.nlm.nih.gov/sites/entrez). Three pairs of siRNAs, specific to human BACE1 gene, were synthesized through the use of Silencer pre-designed siRNA specification, and were transfected into SK-N-SH cells with siPORT NeoFX transfection agent to compare the effects of different concentrations of siRNAs (10-50 nmol/L) on SK-N-SH cells. Futokadsura stem was separated and purified with chemical methods, and the crystal was composed of A/B components, with an A to B ratio of 1:0.8. The A/B (1 : 0.8) components were added to the SK-N-SH cells at different concentrations (13.13, 6.56, and 3.28 mg/mL). MAIN OUTCOME MEASURES: Using RT-PCR and Western blot methods, BACE1 and APP expression at mRNA and protein levels was detected in SK-N-SH cells following treatment with different siRNAs and concentrations of Futokadsura stem-separated A/B components, respectively. Altered Aβ42 secretion by SK-N-SH cells was determined by ELISA. RESULTS: BACE1 mRNA and protein levels were significantly suppressed by 40 and 50 nmol/L siRNAs at 48 hours post-transfection. A/B components (1 : 0.8), which were separated from Futokadsura stem, selectively inhibited mRNA and protein expression of APP in SK-N-SH cells. Aβ42 secretion by SK-N-SH cells was significantly decreased following treatment with siRNAs or A/B components. CONCLUSION: Inhibition of BACE1 and APP genes by various materials and methods efficiently decreased production of Aβ42. 展开更多
关键词 Alzheimer's disease β-site amyloJd precursor protein cleaving enzyme amyloid precursor protein small interfering RNA PIPERLONGUMININE dihydropiperlonguminine Futokadsura stem
下载PDF
Effects of long-term estrogen replacement therapy on beta-amyloid precursor protein and mRNA expression in ovariectomized rat hippocampus
5
作者 Bo Jiang Eryuan Liao +2 位作者 Liming Tan Ruchun Dai Zhijie Xiao 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第1期48-52,共5页
BACKGROUND: In vitro cultures of neural stem cells have shown that estrogen can regulate beta-amyloid precursor protein (β-APP) metabolism and reduce amyloid-beta production. OBJECTIVE: To investigate the effects... BACKGROUND: In vitro cultures of neural stem cells have shown that estrogen can regulate beta-amyloid precursor protein (β-APP) metabolism and reduce amyloid-beta production. OBJECTIVE: To investigate the effects of long-term oral administration of compound nylestriol or low-dose 17beta-estradiol on β-APP and mRNA expression in the hippocampus of ovariectomized (OVX) rats. DESIGN, TIME AND SETTING: This randomized and controlled experiment was performed at the Animal Laboratory and Laboratory of Endocrine and Metabolic Disease, Xiangya Second Hospital of Central South University between April 2003 and May 2004. MATERIALS: According to body mass, 50 six-month-old female Sprague-Dawley rats were randomly divided into five groups (n = 10 per group): normal control, sham operation, OVX model, 17beta-estradiol (Sigma, USA), and compound nylestriol tablet (Laboratory of Endocrine and Metabolic Disease, Xiangya Second Hospital of Central South University) groups. METHODS: Rats in OVX plus 17beta-estradiol and OVX plus compound nylestriol tablet groups underwent ovariectomy. On the second day after surgery, rats were intragastrically given 17beta-estradiol (100 μg/kg), once per day or compound nylestriol tablet (0.5 mg/kg) and levonorgestrel (0.15 mg/kg) every 2 days. MAIN OUTCOME MEASURES: β-APP expression in the hippocampus of OVX rats was determined using immunohistochemistry (SABC method) and β-APP mRNA expression was analyzed by in situ hybridization. The results were quantitatively analyzed using cell counting and average optical density. RESULTS: The number and optical density of β-APP-positive neurons in every subregion of the hippocampus of OVX rats was dramatically increased compared with normal and sham operation groups following 35 weeks of administration (P 〈 0.05). Levels of β-APP were decreased following oral administration of compound nylestriol or 17beta-estradiol. In situ hybridization showed that long-term estrogen deficiency and oral administration of compound nylestriol or 17beta-estradiol did not alter the number of β-APP mRNA-positive neurons. CONCLUSION: The results show that long-term estrogen deficiency results in an increase of expression of β-APP though no changes in the expression of β-APP mRNA are detected. Replacement of estrogen with low-dose 17 beta-estradiol or compound nylestriol tablet inhibits the expression of β-APP in the hippocampus to the same extent. 展开更多
关键词 ovariectomized rats compound nylestriol tablet 17beta-estradiol cerebral hippocampus beta-amyloid precursor protein
下载PDF
Regulator of G protein signaling 6 mediates exercise-induced recovery of hippocampal neurogenesis,learning,and memory in a mouse model of Alzheimer’s disease
6
作者 Mackenzie M.Spicer Jianqi Yang +5 位作者 Daniel Fu Alison N.DeVore Marisol Lauffer Nilufer S.Atasoy Deniz Atasoy Rory A.Fisher 《Neural Regeneration Research》 SCIE CAS 2025年第10期2969-2981,共13页
Hippocampal neuronal loss causes cognitive dysfunction in Alzheimer’s disease.Adult hippocampal neurogenesis is reduced in patients with Alzheimer’s disease.Exercise stimulates adult hippocampal neurogenesis in rode... Hippocampal neuronal loss causes cognitive dysfunction in Alzheimer’s disease.Adult hippocampal neurogenesis is reduced in patients with Alzheimer’s disease.Exercise stimulates adult hippocampal neurogenesis in rodents and improves memory and slows cognitive decline in patients with Alzheimer’s disease.However,the molecular pathways for exercise-induced adult hippocampal neurogenesis and improved cognition in Alzheimer’s disease are poorly understood.Recently,regulator of G protein signaling 6(RGS6)was identified as the mediator of voluntary running-induced adult hippocampal neurogenesis in mice.Here,we generated novel RGS6fl/fl;APP_(SWE) mice and used retroviral approaches to examine the impact of RGS6 deletion from dentate gyrus neuronal progenitor cells on voluntary running-induced adult hippocampal neurogenesis and cognition in an amyloid-based Alzheimer’s disease mouse model.We found that voluntary running in APP_(SWE) mice restored their hippocampal cognitive impairments to that of control mice.This cognitive rescue was abolished by RGS6 deletion in dentate gyrus neuronal progenitor cells,which also abolished running-mediated increases in adult hippocampal neurogenesis.Adult hippocampal neurogenesis was reduced in sedentary APP_(SWE) mice versus control mice,with basal adult hippocampal neurogenesis reduced by RGS6 deletion in dentate gyrus neural precursor cells.RGS6 was expressed in neurons within the dentate gyrus of patients with Alzheimer’s disease with significant loss of these RGS6-expressing neurons.Thus,RGS6 mediated voluntary running-induced rescue of impaired cognition and adult hippocampal neurogenesis in APP_(SWE) mice,identifying RGS6 in dentate gyrus neural precursor cells as a possible therapeutic target in Alzheimer’s disease. 展开更多
关键词 adult hippocampal neurogenesis Alzheimer’s disease dentate gyrus EXERCISE learning/memory neural precursor cells regulator of G protein signaling 6(RGS6)
下载PDF
Observation of amyloid precursor protein cleavage and Aβ generation in living cells by using multiphoton laser scanning microscopy
7
作者 李晓晴 张苏明 +1 位作者 杨华静 张智红 《Neuroscience Bulletin》 SCIE CAS CSCD 2007年第5期256-262,共7页
Objective To investigate the proteolytic mechanism of amyloid precursor protein (APP) and to explore amyloidbeta (Aβ) generation in living neurons. Methods DNA fragments were amplified by PCR or synthesized. The ... Objective To investigate the proteolytic mechanism of amyloid precursor protein (APP) and to explore amyloidbeta (Aβ) generation in living neurons. Methods DNA fragments were amplified by PCR or synthesized. The four fragments, CFP, 54bp, YFP and C99 were ligated into pcDNA3.0 vector to construct the recombinant plasmids pcDNA3.0-CFP-54bp- YFP and pcDNA3.0-CFP-54bp-YFP-C99. The SH-SY5Y cells were transiently transfected with pcDNA3.0-CFP-54bp-YFP or pcDNA3.0-CFP-54bp-YFP-C99. The expression of fusion gene was examined under a multiphoton laser scanning microscope. Fluorescence resonance energy transfer (FRET) was used to measure the β cleavage and γ cleavage of APE Aβ generation was confirmed by immunocytochemistry and multiphoton laser scanning microscopy. Cell viability was tested by MTT assay at different time points. Results (1) The double restriction endonuclease digestion and sequencing analysis confirmed the authenticity of the recombinant plasmids pcDNA3.0-CFP-54bp-YFP and pcDNA3.0-CFP-54bp- YFP-C99. (2) Blue and yellow fluorescences were detected in the transfected cells. (3) FRET occurred in pcDNA3.0-CFP- 54bp-YFP-transfected cells but not in pcDNA3.0-CFP-54bp-YFP-C99-transfected cells. (4) Aβ was produced in the pcDNA3.0- CFP-54bp-YFP-C99 transfected cells. (5) Aβ-deposition was widespread in the cell. (6) Cell viability decreased along with the intracellular Aβ deposition. Conclusion C99 is important for the APP β cleavage. Aβ may be generated and deposited in cells at the early stage of Alzheimer's disease. Intracellular Aβ accumulation brings deleterious effects on cells. 展开更多
关键词 amyloid precursor protein amyloid beta protein beta-cleavage fluorescence resonance energy transfer
下载PDF
Effect of Panax notoginseng saponins on the expression of beta-amyloid protein in the cortex of the parietal lobe and hippocampus, and spatial learning and memory in a mouse model of senile dementia 被引量:9
8
作者 Zhenguo Zhong Dengpan Wu Liang Lu Jinsheng Wang Wenyan Zhang Zeqiang Qu 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第12期1297-1303,共7页
BACKGROUND: The pharmacological actions of Panax notoginseng saponins (PNS) lie in removing free radicals, anti-inflammation and anti-oxygenation. It can also improve memory and behavior in rat models of Alzheime... BACKGROUND: The pharmacological actions of Panax notoginseng saponins (PNS) lie in removing free radicals, anti-inflammation and anti-oxygenation. It can also improve memory and behavior in rat models of Alzheimer's disease. OBJECTIVE: Using the Morris water maze, immunohistochemistry, real-time PCR and RT-PCR, this study aimed to measure improvement in spatial learning, memory, expression of amyloid precursor protein (App) and β -amyloid (A β ), to investigate the mechanism of action of PNS in the treatment of AD in the senescence accelerated mouse-prone 8 (SAMP8) and compare the effects with huperzine A. DESIGN, TIME AND SETTING: A completely randomized grouping design, controlled animal experiment was performed in the Center for Research & Development of New Drugs, Guangxi Traditional Chinese Medical University from July 2005 to April 2007. MATERIALS: Sixty male SAMP8 mice, aged 3 months, purchased from Tianjin Chinese Traditional Medical University of China, were divided into four groups: PNS high-dosage group, PNS low-dosage group, huperzine A group and control group. PNS was provided by Weihe Pharmaceutical Co., Ltd. (batch No.: Z53021485, Yuxi, Yunan Province, China). Huperzine A was provided by Zhenyuan Pharmaceutical Co., Ltd. (batch No.: 20040801, Zhejiang, China). METHODS: The high-dosage group and low-dosage group were treated with 93.50 and 23.38 mg/kg PNS respectively per day and the huperzine A group was treated with 0.038 6 mg/kg huperzine A per day, all by intragastric administration, for 8 consecutive weeks. The same volume of double distilled water was given to the control group. MAIN OUTCOME MEASURES: After drug administration, learning and memory abilities were assessed by place navigation and spatial probe tests. The recording indices consisted of escape latency (time-to-platform), and the percentage of swimming time spent in each quadrant. The number of A β 1-40, A β 1-42 and App immunopositive neurons in the brains of SAMP8 mice was analyzed by immunohistochemistry. The mRNA content ofApp, tau, acetylcholinesterase, and synaptophysin (Syp) was tested by real time PCR and RT-PCR. RESULTS: The PCR results show that PNS can downregulate the expression of the App gene and upregulate the expression of the Syp gene in the parietal cortex and hippocampus of SAMP8 mice. The therapeutic effects of the PNS high-dosage group were greater than those of the PNS low-dosage group and the huperzine A group (P 〈 0.05). The results of the Morris water maze and immunohistochemistry indicated that PNS can improve the capacity for spatial learning and memory in SAMP8 mice, and reduce the content of A β 1-40, A β 1-42 and expression of App in the brains of SAMP8 mice. The therapeutic effects of the PNS high-dosage group were greater than that of the PNS low-dosage group and the huperzine A group (P 〈 0.05). CONCLUSION: These results support the hypothesis that PNS plays a therapeutic and protective role on the pathological lesions and learning dysfunction of Alzheimer's disease. The therapeutic effects of PNS for Alzheimer's disease are possibly achieved through downregulating the expression of the App gene and upregulating the expression of the Syp gene. The therapeutic effects of PNS are dose-dependent and are greater than the effect of huperzine A. 展开更多
关键词 Alzheimer's disease Panax notoginseng saponins learning and memory β -amyloid precursor protein 1-40 β -amyloid precursor protein 1-42 amyloid β -peptide SYNAPTOPHYSIN senescence accelerated mouse-prone 8
下载PDF
Key gene and protein changes in the beta-amyloid pathway following Longyanshen polysaccharides treatment in a mouse model of Alzheimer's disease 被引量:4
9
作者 Zhongshi Huang Shijun Zhang +3 位作者 Haiyuan Xie Xing Lin Weizhe Jiang Renbin Huang 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第10期756-762,共7页
BACKGROUND: During onset and development of Alzheimer's disease, β-amyloid (Aβ) precursor protein (APP), β-site amyloid precursor protein cleaving enzyme (BACE), and β-amyloid are key genes and proteins in... BACKGROUND: During onset and development of Alzheimer's disease, β-amyloid (Aβ) precursor protein (APP), β-site amyloid precursor protein cleaving enzyme (BACE), and β-amyloid are key genes and proteins in the Aβ pathway, and over-expression of these genes can lead to Aβ deposit/on in the brain. OBJECTIVE: To observe the influence of Longyanshen polysaccharides on expression of BACE, APP, and Aβ in the senescence-accelerated mouse prone/8 (SAMP8) brain, and to compare these effects with huperzine A treatment. DESIGN, TIME AND SETTING: A randomized, controlled, neurobiochemical experiment was performed at the Department of Pharmacology and Scientific Experimental Center of Guangxi Medical University from September 2005 to January 2008. MATERIALS: Longyanshen polysaccharfdes powder was extracted from the dried slices of the medicinal plant Longyanshen. The active component, Longyanshen polysaccharides, was provided by the Department of Pharmacology, Guangxi Medical University; huperzine A was purchased from Yuzhong Drug Manufactory, China. METHODS: Healthy SAMP8 mice were used to establish a model of Alzheimer's disease. A total of 50 SAMP8 mice were randomly assigned to 5 groups (n = 10): SAMP8, huperzine A, low-, middle-, and high-dose polysaccharides. In addition, 10 senescence-accelerated mouse resistant 1 (SAMR1) mice were selected as normal controls. SAMP8 and SAMR1 mice were administered 30 mL/kg normal saline; the huperzine A group was administered 0.02 mg/kg huperzine A; the low-, middle-, and high-dose polysaccharides groups were respectively administered 45, 90, and 180 mg/kg Longyanshen polysaccharides. Each group was treated by intragastric administration, once per day, for 50 consecutive days. MAIN OUTCOME MEASURES: One hour after the final administration, immunohistochemical analysis was used to determine Aβ expression in the cortex and hippocampus of SAMP8 mice. Reverse-transcription polymerase chain reaction was used to determine mRNA levels of BACE and APP in SAMP8 brain tissue. RESULTS: Compared with the SAMR1 group, Aβ expression in the cerebral cortex and hippocampus, as well as expression of BACE, APP mRNA in the brain was significantly increased in the SAMP8 group (P 〈 0.05-0.01). Compared with the SAMP8 group, Aβ expression, as well as BACE and APP mRNA expression, were significantly decreased in the cerebral cortex and hippocampus of huperzine A and low-, middle-, and high-dose polysaccharides groups (P 〈 0.05-0.01). In particular, the effect of high-dose polysaccharides was the most significant (P 〈 0.05-0.01 ). CONCLUSION: Longyanshen polysaccharides reduced or inhibited over-expression of BACE, APP, and Aβ in SAMP8 mice in a dose-dependent manner, and the effect was not worse than huperzine A. 展开更多
关键词 β-amyloid β-site amyloid precursor protein cleaving enzyme β-amyloid precursor protein Longyanshen polysaccharides
下载PDF
Compound Danshen tablets downregulate amyloid protein precursor mRNA expression in a transgenic cell model of Alzheimer's disease Effects and a comparison with donepezil 被引量:8
10
作者 Ren'an Qin Desheng Zhou +4 位作者 Jiajun Wang Hua Hu Yang Yang Xiaoxuan Yao Xiaopeng Sun 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第9期659-663,共5页
After gene mutation, the pcDNA3.1/APP595/596 plasmid was transfected into HEK293 cells to establish a cell model of Alzheimer's disease. The cell model was treated with donepezil or compound Danshen tablets after cul... After gene mutation, the pcDNA3.1/APP595/596 plasmid was transfected into HEK293 cells to establish a cell model of Alzheimer's disease. The cell model was treated with donepezil or compound Danshen tablets after culture for 72 hours. Reverse transcription-PCR showed that the mRNA expression of amyloid protein precursor decreased in all groups following culture for 24 hours, and that there was no significant difference in the amount of decrease between donepezil and compound Danshen tablets. Our results suggest that compound Danshen tablets can reduce expression of the mRNA for amyloid protein precursor in a transgenic cell model of Alzheimer's disease, with similar effects to donepezil. 展开更多
关键词 amyloid protein precursor Alzheimer’s disease transgenic cell model compound Danshen tablets Chinese medicine neural regeneration
下载PDF
Impact of Sub-chronic Aluminium-maltolate Exposure on Catabolism of Amyloid Precursor Protein in Rats 被引量:3
11
作者 LIANG Rui Feng LI Wei Qing +2 位作者 WANG Hong WANG Jun Xia NIU Qiao 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2013年第6期445-452,共8页
Objective To investigate the impact of sub-chronic Aluminium-maltolate [Al(mal)s] exposure on the catabolism of amyloid precursor protein (APP) in rats. Methods Forty adult male Sprague-Dawley (SD) rats were ran... Objective To investigate the impact of sub-chronic Aluminium-maltolate [Al(mal)s] exposure on the catabolism of amyloid precursor protein (APP) in rats. Methods Forty adult male Sprague-Dawley (SD) rats were randomly divided into five groups: the control group, the maltolate group (7.56 mg/kg BW), and the Al(mal)s groups (0.27, 0.54, and 1.08 mg/kg BW, respectively). Control rats were administered with 0.9% normal saline through intraperitoneal (i.p.) injection. Maltolate and Al(mal)s were administered to the rats also through i.p. injections. Administration was conducted daily for two months. Rat neural behavior was examined using open field tests (OFT). And the protein expressions and their mRNAs transcription related with APP catabolism were studied using enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (RT-PCR). Results The expressions of APP, 13-site APP cleaving enzyme 1 (BACEI) and presenilin-1 (PSi) proteins and their mRNAs transcription increased gradually with the increase of Al(mal)3 doses (P〈0.05). The enzyme activity of BACEI in the 0.54 and 1.08 mg/kg Al(mal)s groups increased significantly (P〈0.05). The expression of 8-amyloid protein (AS) 1-40 gradually decreased while the protein expression of A81-42 increased gradually with the increase of Al(mal)s doses (P〈0.05). Conclusion Result from our study suggested that one of the possible mechanisms that Al(mal)s can cause neurotoxicity is that Al(mal)s can increase the generation of A81-42 by facilitating the expressions of APP, β-, and γ-secretase. 展开更多
关键词 Aluminium-maltolate Amyloid precursor protein 6-amyloid protein RAT
下载PDF
Relationship between β-amyloid protein 1-42, thyroid hormone levels and the risk of cognitive impairment after ischemic stroke 被引量:17
12
作者 Lei Mao Xiao-Han Chen +6 位作者 Jian-Hua Zhuang Peng Li Yi-Xin Xu Yu-Chen Zhao Yue-Jin Ma Bin He You Yin 《World Journal of Clinical Cases》 SCIE 2020年第1期76-87,共12页
BACKGROUND Post-stroke cognitive impairment(PSCI)is not only a common consequence of stroke but also an important factor for adverse prognosis of patients.Biochemical indicators such as blood lipids and blood pressure... BACKGROUND Post-stroke cognitive impairment(PSCI)is not only a common consequence of stroke but also an important factor for adverse prognosis of patients.Biochemical indicators such as blood lipids and blood pressure are affected by many factors,and the ability of evaluating the progress of patients with PSCI is insufficient.Therefore,it is necessary to find sensitive markers for predicting the progress of patients and avoiding PSCI.Recent studies have shown thatβ-amyloid protein 1-42(Aβ1-42)and thyroid hormone levels are closely related to PSCI,which may be the influencing factors of PSCI,but there are few related studies.AIM To investigate the relationship between serum levels of Aβand thyroid hormones in acute stage and PSCI and its predicted value.METHODS A total of 195 patients with acute cerebral infarction confirmed from June 2016 to January 2018 were enrolled in this study.Baseline data and serological indicators were recorded to assess cognitive function of patients.All patients were followed up for 1 year.Their cognitive functions were evaluated within 1 wk,3 mo,6 mo and 1 yr after stroke.At the end of follow-up,the patients were divided into PSCI and non-PSCI according to Montreal cognitive assessment score,and the relationship between biochemical indexes and the progression of PSCI was explored.RESULTS Compared with patients with non-PSCI,the levels of Aβ1-42,triiodothyronine(T3)and free thyroxin were lower in the patients with PSCI.Repeated measures analysis of variance showed that the overall content of Aβ1-42 and T3 in PSCI was also lower than that of the non-PSCI patients.Further analysis revealed that Aβ1-42(r=0.348),T3(r=0.273)and free thyroxin(r=0.214)were positively correlated with disease progression(P<0.05),suggesting that these indicators have the potential to predict disease progression and outcome.Cox regression analysis showed that Aβ1-42 and T3 were important factors of PSCI.Then stratified analysis showed that the lower the Aβ1-42 and T3,the higher risk of PSCI in patients who were aged over 70,female and illiterate.CONCLUSION Aβ1-42 and T3 have the ability to predict the progression of PSCI,which is expected to be applied clinically to reduce the incidence of PSCI and improve the quality of life of patients. 展开更多
关键词 Post-stroke cognitive impairment TRIIODOTHYRONINE β-amyloid protein Prognosis Montreal cognitive assessment Free thyroxin
下载PDF
Effect of glycosides of Cistanche on the expression of mitochondrial precursor protein and keratin type Ⅱ cytoskeletal 6A in a rat model of vascular dementia 被引量:5
13
作者 Yan-mei Zhang Wei Wu +2 位作者 Wei Ma Fang Wang Jun Yuan 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第7期1152-1158,共7页
Glycosides of Cistanche(GC)is a preparation used extensively for its neuroprotective effect against neurological diseases,but its mechanisms of action remains incompletely understood.Here,we established a bilateral ... Glycosides of Cistanche(GC)is a preparation used extensively for its neuroprotective effect against neurological diseases,but its mechanisms of action remains incompletely understood.Here,we established a bilateral common carotid artery occlusion model of vascular dementia in rats and injected the model rats with a suspension of GC(10 mg/kg/day,intraperitoneally)for 14 consecutive days.Immunohistochemistry showed that GC significantly reduced p-tau and amyloid beta(Aβ)immunoreactivity in the hippocampus of the model rats.Proteomic analysis demonstrated upregulation of mitochondrial precursor protein and downregulation of keratin type II cytoskeletal6A after GC treatment compared with model rats that had received saline.Western blot assay confirmed these findings.Our results suggest that the neuroprotective effect of GC in vascular dementia occurs via the promotion of neuronal cytoskeleton regeneration. 展开更多
关键词 nerve regeneration vascular dementia glycosides of Cistanche mitochondrial precursor protein keratin type cytoskeletal 6A PROTEOMICS NEUROPROTECTION neural regeneration
下载PDF
Amyloid precursor protein and growth-associated protein 43 expression in brain white matter and spinal cord tissues in a rat model of experimental autoimmune encephalomyelitis 被引量:3
14
作者 Yizhou Wang Shuang Kou +6 位作者 Jingcheng Tang Ping Zhang Qiuxia Zhang Yan Liu Qi Zheng Hui Zhao Lei Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第2期101-106,共6页
Studies have demonstrated that amyloid precursor protein (APP) expression increases in multiple sclerosis tissues during acutely and chronically active stages. To determine the relationship between axonal injury and... Studies have demonstrated that amyloid precursor protein (APP) expression increases in multiple sclerosis tissues during acutely and chronically active stages. To determine the relationship between axonal injury and regeneration in multiple sclerosis, an animal model of experimental autoimmune encephalomyelitis was induced using different doses of myelin basic protein peptide. APP and growth-associated protein 43 (GAP-43), which is considered a specific marker of neural regeneration, were assessed by western blot analysis. Expression of APP and GAP-43, as well as the correlation between these two proteins, in brain white matter and spinal cord tissues of experimental autoimmune encephalomyelitis rats at different pathological stages was analyzed. Results showed that APP and GAP-43 expression increased during the acute stage and decreased during remission, with a positive correlation between APP and GAP-43 expression in brain white matter and spinal cord tissues. These results suggest that APP and GAP-43 could provide nutritional and protective effects on damaged neurons. 展开更多
关键词 amyloid precursor protein axonal regeneration central nervous system experimental autoimmune encephalomyelitis growth-associated protein 43
下载PDF
Physiological effects of amyloid precursor protein and its derivatives on neural stem cell biology and signaling pathways involved 被引量:3
15
作者 Raquel Coronel Charlotte Palmer +4 位作者 Adela Bernabeu-Zornoza María Monteagudo Andreea Rosca Alberto Zambrano Isabel Liste 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第10期1661-1671,共11页
The pathological implication of amyloid precursor protein(APP)in Alzheimer’s disease has been widely documented due to its involvement in the generation of amyloid-β peptide.However,the physiological functions of AP... The pathological implication of amyloid precursor protein(APP)in Alzheimer’s disease has been widely documented due to its involvement in the generation of amyloid-β peptide.However,the physiological functions of APP are still poorly understood.APP is considered a multimodal protein due to its role in a wide variety of processes,both in the embryo and in the adult brain.Specifically,APP seems to play a key role in the proliferation,differentiation and maturation of neural stem cells.In addition,APP can be processed through two canonical processing pathways,generating different functionally active fragments:soluble APP-α,soluble APP-β,amyloid-β peptide and the APP intracellular C-terminal domain.These fragments also appear to modulate various functions in neural stem cells,including the processes of proliferation,neurogenesis,gliogenesis or cell death.However,the molecular mechanisms involved in these effects are still unclear.In this review,we summarize the physiological functions of APP and its main proteolytic derivatives in neural stem cells,as well as the possible signaling pathways that could be implicated in these effects.The knowledge of these functions and signaling pathways involved in the onset or during the development of Alzheimer’s disease is essential to advance the understanding of the pathogenesis of Alzheimer’s disease,and in the search for potential therapeutic targets. 展开更多
关键词 AMYLOID precursor protein APP SOLUBLE APP alpha SOLUBLE APP BETA AMYLOID BETA peptide APP intracellular domain NEURAL stem CELLS NEURAL progenitor CELLS neurogenesis signaling pathways
下载PDF
Divalent cation tolerance protein binds to β-secretase and inhibits the processing of amyloid precursor protein 被引量:1
16
作者 Runzhong Liu Haibo Hou +2 位作者 Xuelian Yi Shanwen Wu Huan Zeng 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第11期991-999,共9页
The deposition of amyloid-beta is a pathological hallmark of Alzheimer's disease, Amyloid-beta is derived from amyloid precursor protein through sequential proteolytic cleavages by β-secretase (beta-site amyloid pr... The deposition of amyloid-beta is a pathological hallmark of Alzheimer's disease, Amyloid-beta is derived from amyloid precursor protein through sequential proteolytic cleavages by β-secretase (beta-site amyloid precursor protein-cleaving enzyme 1) and r-secretase. To further elucidate the roles of beta-site amyloid precursor protein-cleaving enzyme 1 in the development of AIzheimer's disease, a yeast two-hybrid system was used to screen a human embryonic brain cDNA library for proteins directly interacting with the intracellular domain of beta-site amyloid precursor protein-cleaving enzyme 1. A potential beta-site amyloid precursor protein-cleaving enzyme 1- interacting protein identified from the positive clones was divalent cation tolerance protein. Immunoprecipitation studies in the neuroblastoma cell line N2a showed that exogenous divalent cation tolerance protein interacts with endogenous beta-site amyloid precursor protein-cleaving enzyme 1. The overexpression of divalent cation tolerance protein did not affect beta-site amyloid precursor protein-cleaving enzyme 1 protein levels, but led to increased amyloid precursor protein levels in N2a/APP695 cells, with a concomitant reduction in the processing product amyloid precursor protein C-terminal fragment, indicating that divalent cation tolerance protein inhibits the processing of amyloid precursor protein. Our experimental findings suggest that divalent cation tolerance protein negatively regulates the function of beta-site amyloid precursor protein-cleaving enzyme 1. Thus, divalent cation tolerance protein could play a protective role in Alzheimer's disease. 展开更多
关键词 neural regeneration brain injury neurodegenerative diseases Alzheimer's disease amyloid-betaβ-secretase amyloid precursor protein beta-site amyloid precursor protein-cleaving enzyme 1 interaction amyloid precursor protein C-terminal fragment western blot yeast two-hybridization grants-supported paper NEUROREGENERATION
下载PDF
Inhibiting p38 mitogen-activated protein kinase attenuates cerebral ischemic injury in Swedish mutant amyloid precursor protein transgenic mice 被引量:1
17
作者 Liangyu Zou Haiyan Qin +3 位作者 Yitao He Heming Huang Yi Lu Xiaofan Chu 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第14期1088-1094,共7页
Cerebral ischemia was induced using photothrombosis 1 hour after intraperitoneal injection of the p38 mitogen-activated protein kinase (MAPK) inhibitor $B239063 into Swedish mutant amyloid precursor protein (APP/SW... Cerebral ischemia was induced using photothrombosis 1 hour after intraperitoneal injection of the p38 mitogen-activated protein kinase (MAPK) inhibitor $B239063 into Swedish mutant amyloid precursor protein (APP/SWE) transgenic and non-transgenic mice. The number of surviving neurons in the penumbra was quantified using Nissl staining, and the activity of p38 MAPKs was measured by western blotting. The number of surviving neurons in the penumbra was significantly reduced in APP/SWE transgenic mice compared with non-transgenic controls 7 days after cerebral ischemia, but the activity of p38 MAPKs was significantly elevated compared with the non-ischemic hemisphere in the APP/SWE transgenic mice. SB239063 prevented these changes. The APP/SWE mutation exacerbated ischemic brain injury, and this could be alleviated by inhibiting p38 MAPK activity. 展开更多
关键词 cerebral ischemia amyloid precursor protein TRANSGENIC Alzheimer's disease p38mitogen-activated protein kinase SB239063 neural regeneration
下载PDF
THE PROTECTIVE EFFECTS OF THE TOTAL SAPONIN OF DIPSACUS ASPEROIDES ON THE APOPTOSIS OF HIPPOCAMPAL NEURONS INDUCED BY β-AMYLOID PROTEIN 被引量:2
18
作者 钱亦华 杨杰 +4 位作者 胡海涛 刘勇 杨广德 曹云新 任惠民 《Journal of Pharmaceutical Analysis》 SCIE CAS 2004年第1期30-34,共5页
Objective To investigate the effects of the total saponin of Dipsacus asperoides (tSDA) and ginsenoside Rb1 (GRb1) on the apoptosis of primary cultured hippocampal neurons induced by β-amyloid protein (Aβ). Methods... Objective To investigate the effects of the total saponin of Dipsacus asperoides (tSDA) and ginsenoside Rb1 (GRb1) on the apoptosis of primary cultured hippocampal neurons induced by β-amyloid protein (Aβ). Methods Primary cultured hippocampal neurons, the cultures were pretreated with tSDA and GRb1 on 10d for 24 hours respectively. Then the cultures were treated with 35 μmol·L -1 Aβ25-35 for 24 hours, observed the changing of survival rate of neurons and the apoptosis of neurons with biochemical analysis combining immunofluorescent cytochemical double-staining technique. Results Hippocampal neurons were treated with 35 μmol·L -1 Aβ for 24 hours, and survival rate of neurons downed to 52.6%. When neurons were pretreated by tSDA and GRb1, survival rate of neurons increased 11% to 15%. The findings of immunofluorescent cytochemical double-staining indicated that apoptotic neurons were obviously more than that of the blank group, reaching 43.9%.When neurons were pretreated by tSDA and GRb1, apoptotic neurons were downed to 16.6%, 10.8% respectively. Conclusion tSDA had the same effects as GRb1, protecting the neurons, antagonizing neurotoxicity of Aβ, increasing survival rate of neurons, and reducing apoptotic neurons induced by Aβ. 展开更多
关键词 total saponin of Dipsacus asperoides β-amyloid protein cell culture APOPTOSIS Alzheimer's disease
下载PDF
Expression and Immunological Analysis of Capsid Protein Precursor of Swine Vesicular Disease Virus HK/70 被引量:3
19
作者 Hong TIAN Jing-yan WU You-jun SHANG Shuang-hui YING Hai-xue ZHENG Xiang-tao LIU 《Virologica Sinica》 SCIE CAS CSCD 2010年第3期206-212,共7页
VP1, a capsid protein of swine vesicular disease virus, was cloned from the SVDV HK/70 strain and inserted into retroviral vector pBABE puro, and expressed in PK15 cells by an retroviral expression system. The ability... VP1, a capsid protein of swine vesicular disease virus, was cloned from the SVDV HK/70 strain and inserted into retroviral vector pBABE puro, and expressed in PK15 cells by an retroviral expression system. The ability of the VP1 protein to induce an immune response was then evaluated in guinea pigs. Western blot and ELISA results indicated that the VP1 protein can be recognized by SVDV positive serum, Furthermore, anti-SVDV specific antibodies and lymphocyte proliferation were elicited and increased by VP1 protein after vaccination. These results encourage further work towards the development of a vaccine against SVDV infection. 展开更多
关键词 Swine vesicular disease virus Capsid protein precursor gene (vp1) Gene expression Immunere sponse
下载PDF
Schisandrin B protects PC12 cells by decreasing the expression of amyloid precursor protein and vacuolar protein sorting 35
20
作者 Mingmin Yan Shanping Mao +4 位作者 Huimin Dong Baohui Liu Qian Zhang Gaofeng Pan Zhiping Fu 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第9期652-658,共7页
PC12 cell injury was induced using 20 μM amyloid β-protein 25-35 to establish a model of Alzheimer's disease. The cells were then treated with 5, 10, and 25 μM Schisandrin B. Methylthiazolyldiphenyl-tetrazolium br... PC12 cell injury was induced using 20 μM amyloid β-protein 25-35 to establish a model of Alzheimer's disease. The cells were then treated with 5, 10, and 25 μM Schisandrin B. Methylthiazolyldiphenyl-tetrazolium bromide assays and Hoechst 33342 staining results showed that with increasing Schisandrin B concentration, the survival rate of PC12 cells injured by amyloid β-protein 25-35 gradually increased and the rate of apoptosis gradually decreased. Reverse transcription-PCR, immunocytochemical staining and western blot results showed that with increasing Schisandrin B concentration, the mRNA and protein expression of vacuolar protein sorting 35 and amyloid precursor protein were gradually decreased. Vacuolar protein sorting 35 and amyloid precursor protein showed a consistent trend for change. These findings suggest that 5, 10, and 25 μM Schisandrin B antagonizes the cellular injury induced by amyloid β-protein 25-35 in a dose-dependent manner. This may be caused by decreasing the expression of vacuolar protein sorting 35 and amyloid precursor protein. 展开更多
关键词 Schisandrin B PC12 cells amyloid β-protein 25-35 amyloid precursor protein vacuolar protein sorting 35 neural protection
下载PDF
上一页 1 2 47 下一页 到第
使用帮助 返回顶部