The review provides an overview of the approaches, applications, and methods for ester prodrugs. Ester prodrugs are pharmacologically inactive compounds in their original form but become active drugs on biotransformat...The review provides an overview of the approaches, applications, and methods for ester prodrugs. Ester prodrugs are pharmacologically inactive compounds in their original form but become active drugs on biotransformation within the body, which offers advantages concerning the solubility, stability, and targeted delivery of the active drug. Several approaches of ester prodrugs have been reviewed in this review, including simple ester prodrugs, amino acid ester prodrugs, sugar ester prodrugs, lipid ester prodrugs, and polymeric ester prodrugs. This review incorporates in vitro and in vivo methods as well as the characterization of physical and chemical properties for ester prodrugs, cell culture systems, enzymatic assays, and animal models—all of these having a very important bearing on the evaluation of stability, bioavailability, and efficacy for ester prodrugs. While the benefits of using ester prodrugs are significant, there are also disadvantages like instability, poor or variable enzymatic hydrolysis, and toxicity from released promoieties or by-products. This review discusses solutions to the various limitations that include enhancing stability with ionizable promoieties and using physiologically-based pharmacokinetic modeling. The review also highlights the application of ester prodrugs in neurological disorders, such as Parkinson’s disease, and the ongoing efforts to address the critical limitations in treatment efficacy. Future prodrug strategies are poised to advance significantly by harnessing diverse transport mechanisms across the blood-brain barrier and integrating nanotechnology.展开更多
Cometabolic degradation is currently an effective and extensively way to remove high molecular weight polycyclic aromatic hydrocarbons(HMW-PAHs).Unfortunately,due to low bio-accessibility and high biotoxicity,the come...Cometabolic degradation is currently an effective and extensively way to remove high molecular weight polycyclic aromatic hydrocarbons(HMW-PAHs).Unfortunately,due to low bio-accessibility and high biotoxicity,the cometabolic degradation rate of HMW-PAHs is limited.Glycine-β-cyclodextrin(GCD)was obtained through amino modification ofβ-cyclodextrin(BCD)and added to cometabolic system of phenanthrene(PHE)and pyrene(PYR)to assist PYR biodegradation.Results show that the addition of GCD(100 mg/L)effectively improved the removal rate of PYR(20 mg/L)by 42.3%.GCD appeared to increase the bio-accessibility and reduce the biotoxicity of PHE and PYR,and then promoted the growth of Pseudomonas stutzeri DJP1 and stimulated the elevation of dehydrogenase(DHA)and catechol 12 dioxygenase(C12O)activities.The phthalate metabolic pathway was accelerated,which improved the cometabolic degradation.This study provided a new reference for the cometabolic degradation of HMW-PAHs.展开更多
Bio-based cyclodextrins(CDs)are a common research object in supramolecular chemistry.The special cavity structure of CDs can form supramolecular self-assemblies such as vesicles and microcrystals through weak interact...Bio-based cyclodextrins(CDs)are a common research object in supramolecular chemistry.The special cavity structure of CDs can form supramolecular self-assemblies such as vesicles and microcrystals through weak interaction with guest molecules.The different forms of supramolecular self-assemblies can be transformed into each other under certain conditions.The regulation of supramolecular self-assembly is not only helpful to understand the self-assembly principle,but also beneficial to its application.In the present study,the self-assembly behavior of epoxy-β-cyclodextrin(EP-β-CD)and mixed anionic and cationic surfactant system(sodium dodecyl sulfate/dodecyltrimethylammonium bromide,SDS/DTAB)in aqueous solution was studied.Morphological and particle size characterization found that the SDS/DTAB@EP-β-CD complex,as the basic building unit,self-assembled into worm-like micelles at lower temperatures and vesicles at higher temperatures.Nuclear magnetic resonance(NMR)and Fourier transform infrared spectroscopy(FT-IR)analysis revealed that the driving force for the formation of vesicles and worm-like micelles was the hydrogen bonds between EP-β-CD molecules,while water molecules played an important role in promoting vesicle formation between SDS/DTAB@EP-β-CD units.Herein,the mechanism of the morphologic transformation of SDS/DTAB@EP-β-CD supramolecular aggregates induced by temperature was elucidated by exploring the self-assembly process,which may provide an excellent basis for the development of delivery carriers.展开更多
In this study, the adsorption effect of β-cyclodextrin modified biochar (BC) on phenanthrene (PHE) in contaminated soil was investigated, aiming to provide an efficient and environmentally friendly remediation strate...In this study, the adsorption effect of β-cyclodextrin modified biochar (BC) on phenanthrene (PHE) in contaminated soil was investigated, aiming to provide an efficient and environmentally friendly remediation strategy for Polycyclic Aromatic Hydrocarbons (PAHs) contaminated soil. Through kinetic and isotherm analysis, β-CDBC-CA showed excellent phenanthrene adsorption performance, and the adsorption effect increased with the increase of time and was affected by temperature. The results show that β-CDBC-CA can not only effectively adsorb phenanthrene in soil, but also serve as a surfactant to help desorption phenanthrene adsorbed by soil organic matter and improve the efficiency of microbial degradation. The experimental data showed that the Elovich model could describe the adsorption behavior of β-CDBC-CA on phenanthrene well, while Langmuir and Freundlich models performed better in fitting parameters, revealing the adsorption mechanism of phenanthrene in contaminated soil by β-cyclodextrin-modified biochar. In addition, temperature has a significant effect on the adsorption capacity of β-CDBC-CA, and its application in soil remediation can be optimized by adjusting temperature. This study not only provides new materials and technical means for soil remediation but also provides important data support for an in-depth understanding of the environmental behavior of PAHs. By citing relevant research results, this study further improves the control and understanding of environmental risks of PAHs, which is of great significance for the protection of ecological environment and human health.展开更多
Attributing to their broad pharmacological effects encompassing anti-inflammation,antitoxin,and immunosuppression,glucocorticoids(GCs)are extensively utilized in the clinic for the treatment of diverse diseases such a...Attributing to their broad pharmacological effects encompassing anti-inflammation,antitoxin,and immunosuppression,glucocorticoids(GCs)are extensively utilized in the clinic for the treatment of diverse diseases such as lupus erythematosus,nephritis,arthritis,ulcerative colitis,asthma,keratitis,macular edema,and leukemia.However,longterm use often causes undesirable side effects,including metabolic disorders-induced Cushing's syndrome(buffalo back,full moon face,hyperglycemia,etc.),osteoporosis,aggravated infection,psychosis,glaucoma,and cataract.These notorious side effects seriously compromise patients'quality of life,especially in patients with chronic diseases.Therefore,glucocorticoid-based advanced drug delivery systems for reducing adverse effects have received extensive attention.Among them,prodrugs have the advantages of low investment,low risk,and high success rate,making them a promising strategy.In this review,we propose the strategies for the design and summarize current research progress of glucocorticoid-based prodrugs in recent decades,including polymer-based prodrugs,dendrimer-based prodrugs,antibody-drug conjugates,peptide-drug conjugates,carbohydrate-based prodrugs,aliphatic acid-based prodrugs and so on.Besides,we also raise issues that need to be focused on during the development of glucocorticoid-based prodrugs.This review is expected to be helpful for the research and development of novel GCs and prodrugs.展开更多
Nineβ‐cyclodextrin derivatives containing an amino group were synthesized via nucleophilic sub‐stitution from mono(6‐O‐p‐tolylsulfonyl)‐β‐cyclodextrin and used in asymmetric biomimetic Mi‐chael addition re...Nineβ‐cyclodextrin derivatives containing an amino group were synthesized via nucleophilic sub‐stitution from mono(6‐O‐p‐tolylsulfonyl)‐β‐cyclodextrin and used in asymmetric biomimetic Mi‐chael addition reactions in water at room temperature. The mechanism responsible for the moder‐ate activity and enantioselectivity of the β‐cyclodextrin derivatives was explored using nuclear magnetic resonance spectroscopy, namely 2D 1H rotating‐frame overhauser effect spectroscopy (ROESY), ultraviolet absorption spectroscopy, and quantum chemical calculations, which provide a useful technique for investigating the formation of inclusion complexes. The effects of the pH of the reaction medium, theβ‐cyclodextrin derivative dosage, the structure of the modifying amino group, and various substrates on the yield and enantioselectivity were investigated. The results indicated that these factors had an important effect on the enantiomeric excess (ee) in the reaction system. Experiments using a competitor for inclusion complex formation showed that a hydrophobic cavity is necessary for enantioselective Michael addition. A comparison of the reactions using 4‐nitro‐β‐nitrostyrene and 2‐nitro‐β‐nitrostyrene showed that steric hindrance improved the enan‐tioselectivity. This was verified by the optimized geometries obtained from quantum chemical cal‐culations. An ee of 71%was obtained in the asymmetric Michael addition of cyclohexanone and 2‐nitro‐β‐nitrostyrene, using (S)‐2‐aminomethylpyrrolidine‐modified β‐CD as the catalyst, in an aqueous buffer solution, i.e., CH3COONa‐HCl (pH 7.5).展开更多
Glutathione(GSH)-activated prodrugs are promising for overcoming the limitations of conventional anti-tumor drugs.However,current GSH-responsive disulfide groups exhibit unregulated reactivity,making it impossible to ...Glutathione(GSH)-activated prodrugs are promising for overcoming the limitations of conventional anti-tumor drugs.However,current GSH-responsive disulfide groups exhibit unregulated reactivity,making it impossible to precisely control the drug release rate.We herein report a series of GSH-responsive prodrugs with a“three-in-one”molecular design by integrating a fluorescence report unit,stimuliresponsive unit and chemodrug into one scaffold with tunable aromatic nucleophilic substitution(SNAr)reactivity.The drug release rate of these prodrugs is tailored by modification of substituent groups with different electron-withdrawing or-donating abilities on the BODIPY core.Furthermore,the prodrugs self-assemble in water to form nanoparticles that serve as photosensitizers to produce reactive oxygen species upon irradiation for photodynamic therapy(PDT).The PDT process also increases the concentration of GSH in cells,further promoting the release of drugs for chemotherapy.This strategy provides a powerful platform for sequential photodynamic and chemotherapy with tunable drug release rates and synergistic therapeutic effects.展开更多
Cetyltrimethylammonium bromide (CTAB)/potassium bromide (KBr) micellar system has been used as a viscosity probe to study the inclusion complexation between β-cyclodextrin (β-CD) and CTAB. Viscosity measuremen...Cetyltrimethylammonium bromide (CTAB)/potassium bromide (KBr) micellar system has been used as a viscosity probe to study the inclusion complexation between β-cyclodextrin (β-CD) and CTAB. Viscosity measurements show that the inclusion complexation between β-CD and CTAB may cause the breakdown of CTAB/KBr wormlike micelles, resulting in the decrease of the solution viscosity. The viscosity minimum at Cβ-CD/CCTAB=2 indicate the molecular ratio of host molecule to guest molecule is 2:1 in the β-CD/CTAB inclusion complex.展开更多
Stimuli-responsive drug delivery systems based on polymeric micelles can achieve controlled drug release to improve the therapeutic outcome and reduce unwanted systematic toxicity and side effects of the cytotoxic dru...Stimuli-responsive drug delivery systems based on polymeric micelles can achieve controlled drug release to improve the therapeutic outcome and reduce unwanted systematic toxicity and side effects of the cytotoxic drug in chemotherapy but often face challenging synthesis and purification of functionalized biocompatible polymer materials and low drug loading efficiency. In the present study, we reported a novel redox-responsive self-assembly polymeric micelle system, mPEG-β-CD/Ad-SS-CPT, to achieve high loading efficiency and selective delivery of camptothecin(CPT) in a reductive environment inside cancer cells. The host-guest supramolecular micelles utilized a simple β-CD modified PEG, mPEG-β-cyclodextrin(mPEG-β-CD), as the polymeric host with the ease of synthesis and purification. The guest prodrug Ad-SS-CPT contained the disulfide bond as the redox sensitivity group. The selective cleavage of disulfide bond and subsequent drug release in a reductive environment could potentially reduce system toxicity and improve the therapeutic outcome of CPT. In vitro studies showed that the micelles exhibited excellent cytotoxicity against He La cells comparable to the free drug. The host-guest polymeric micelles also showed great potentials for multi-drug co-delivery. Collectively, our current findings provided a general and convenient approach to design drug delivery systems based on stimuli-responsive polymeric micelles for disease treatment.展开更多
Cancer enzymology is a promising filiation of bio-medical sciences. In thepast decades, enzymes, such as GST(glutathione S-transferase) , PKC(protein kinase C) , Topo(DNAtopoisomerases), TK(tyrosine kinase), CD (bacte...Cancer enzymology is a promising filiation of bio-medical sciences. In thepast decades, enzymes, such as GST(glutathione S-transferase) , PKC(protein kinase C) , Topo(DNAtopoisomerases), TK(tyrosine kinase), CD (bacterial cytosine deaminase), CPG2(carboxypeptidase G2) ,and PNP (purine nucleoside phosphorylase), have been known to bear close relations to cancer. Theirspecific expression and influence on the process of tumor initiation, promotion and progressionattract scientists to apply them as a biochemical marker of certain malignant tumor, a predictor ofresponse in cancer chemotherapy; to apply them to drug design, tumor prevention and as adjuvant toradiotherapy or surgery.展开更多
A novel cyclodextrin-containing polymer was prepared by graftingβ-cyclodextrin onto the backbone of poly(D,L-lactic acid)(PLA).First,mono(6-(2-aminoethyl)amino-6-deoxy)-β-cyclodextrin(β-CD-6-en)was prepared by sulf...A novel cyclodextrin-containing polymer was prepared by graftingβ-cyclodextrin onto the backbone of poly(D,L-lactic acid)(PLA).First,mono(6-(2-aminoethyl)amino-6-deoxy)-β-cyclodextrin(β-CD-6-en)was prepared by sulfonylation and amination ofβ-cyclodextrin and modified poly(D,L-lactic acid)(MPLA)was prepared by free radical polymerization of maleic anhydride and PLA.Then,grafting ofβ-cyclodextrin derivative to MPLA backbone was carried out by N-acylation reaction of MPLA andβ-CD-6-en in dimethyl formamide.The...展开更多
A small shielding effect on the hydrogen atoms of chiral carbons of β-cyclodextrin (β-CD) was detected by 1H nuclear magnetic resonance, but a large environmental change of the chiral carbon atoms at high concentr...A small shielding effect on the hydrogen atoms of chiral carbons of β-cyclodextrin (β-CD) was detected by 1H nuclear magnetic resonance, but a large environmental change of the chiral carbon atoms at high concentration ratios of lithium carbonate (Li2CO3) to β-CD was observed by polarimetry in aqueous solution. These findings urged us to investigate whether different formation conditions of the molecule-ion system between Li2CO3 and β-CD in solid state were involved in different spectral performances. To answer the question, we prepared three adducts of Li2CO3 to β-CD, i.e., samples 1, 2, and 3, by magnetic stirring, solvothermal and grinding conditions, respectively. Powder X-ray diffraction and Fourier transformation infrared spectroscopy provided the information of formation of the three molecule-ion adducts. Besides, scanning electron microscope images provided different surface information of the three adducts. Further, significant spectral differences in thermal behavior of these adducts were found by thermogravimetry and derivative thermogravimetry.展开更多
A simple and sensitive high performance liquid chromatography with fluorescence detection (HPLC-FD) has been developed for simultaneous quantification of doxorubicin (DOX) and its dipeptide conjugate prodrug (PDO...A simple and sensitive high performance liquid chromatography with fluorescence detection (HPLC-FD) has been developed for simultaneous quantification of doxorubicin (DOX) and its dipeptide conjugate prodrug (PDOX) in mice plasma. The chromatographic separation was carried out on an Amethyst C18-H column with gradient mobile phase of 0.1% formic acid and 0.1% formic acid in acetonitrile at a flow rate of 1.0 mL/min. The excitation and emission wavelengths were set at 490 and 550 nm, respectively. The method was comprehensively validated. The limits of detection were low up to 5.0 ng/mL for DOX and 25.0 ng/mL for PDOX. And the limits of quantification were low up to 12.5 ng/mL for DOX and 50 ng/mL for PDOX, which were lower than those for most of the current methods. The calibration curves showed good linearity (R2 〉 0.999) over the concentration ranges. The extraction recoveries ranged from 84.0% to 88.2% for DOX and from 85.4% to 89.2% for PDOX. Satisfactory intra-day and inter-day precisions were achieved with RSDs less than 9.1%. The results show that the developed HPLC-FD method is accurate, reliable and will be helpful for preclinical pharmacokinetic study of DOX and PDOX.展开更多
In order to study the hydrolytic characterization of an anti-inflammatory prodrug ( RI-1 ) in vitro, an effective, accurate and reliable method for the simultaneous determination of the prodrug and its two hydrolyti...In order to study the hydrolytic characterization of an anti-inflammatory prodrug ( RI-1 ) in vitro, an effective, accurate and reliable method for the simultaneous determination of the prodrug and its two hydrolytic active compounds is developed using reverse phase high-performance liquid chromatography (RP-HPLC). The chromatographic separation is performed on an ODS-2 C18 column (250 mm × 4. 6 mm, 5.0 μm particle size) with a simple elution program. The mobile phase is V( methanol) : V(0. 1% phosphoric acid solution) =90:10 (adjust pH to 2. 3). A wavelength of 225 nm and a mobile phase flow rate of 1.0 mL/min are utilized for the quantitative analysis. Excellent linear behaviors over the investigated concentration ranges are observed with values of R2 higher than 0. 999 for all the analytes. The validated method is successfully applied to the simultaneous determination of the prodrug and its active components can be used to detect hydrolytic characterization in vitro.展开更多
A facile, efficient and substrate-selective oxidation of aldehydes to carboxylic acids with NaClO catalyzed by β-cyclodextrin in water has been developed. A series of aldehydes which could form inclusion complex with...A facile, efficient and substrate-selective oxidation of aldehydes to carboxylic acids with NaClO catalyzed by β-cyclodextrin in water has been developed. A series of aldehydes which could form inclusion complex with β-cyclodextrin (β-CD) were oxidized selectively with excellent yields.展开更多
The goal of this study was to improve the solubility and oral bioavailability of tamibarotene by complexing it with hydroxypropyl-β-cyclodextrin(HP-β-CD).The inclusion complex of tamibarotene with hydroxypropyl-β-c...The goal of this study was to improve the solubility and oral bioavailability of tamibarotene by complexing it with hydroxypropyl-β-cyclodextrin(HP-β-CD).The inclusion complex of tamibarotene with hydroxypropyl-β-cyclodextrin(Am80-HP-β-CD)was prepared through a freeze-drying method at the mole ratio of 1:1(Am80:HP-β-CD).Fourier transform infrared spectroscopy(FT-IR)and differential scanning calorimetry(DSC)indicated the formation of Am80-HP-β-CD.In vitro dissolution studies showed that the solubility and dissolution percentage of Am80-HP-β-CD was improved substantially compared to Am80.An improved dissolution with approximately 97%drug release in 3 min was observed,in comparison with Am80 with approximately 60% release in 45 min.In vivo studies indicated that the AUC0-∞ has increased 2.79 times and the Cmax 4.37 times after the formation of inclusion complex.The decrease of tmaxindicated the Am80-HP-β-CD inclusion complex can be absorbed into blood faster.In short,the solubility and bio-availability of Am80 has notably increased with the complexation of HP-β-CD.Therefore,using the inclusion technique is a promising method to improve the solubility of insoluble drugs.展开更多
Homodimeric prodrug-based self-assembled nanoparticles,with carrier-free structure and ultrahigh drug loading,is drawing more and more attentions.Homodimeric prodrugs are composed of two drug molecules and a pivotal l...Homodimeric prodrug-based self-assembled nanoparticles,with carrier-free structure and ultrahigh drug loading,is drawing more and more attentions.Homodimeric prodrugs are composed of two drug molecules and a pivotal linkage.The influence of the linkages on the self-assembly,in vivo fate and antitumor activity of homodimeric prodrugs is the focus of research.Herein,three docetaxel(DTX)homodimeric prodrugs are developed using different lengths of diselenide bond-containing linkages.Interestingly,compared with the other two linkages,the longest diselenide bond-containing linkage could facilitate the self-delivery of DTX prodrugs,thus improving the stability,circulation time and tumor targeting of prodrug nanoassemblies.Besides,the extension of linkages reduces the redox-triggered drug release and cytotoxicity of prodrug nanoassemblies in tumor cells.Although the longest diselenide bond-containing prodrug nanoassemblies possessed the lowest cytotoxicity to 4T1 cells,their stable nanostructure maintained intact during circulation and achieve the maximum accumulation of DTX in tumor cells,which finally“turned the table”.Our study illustrates the crucial role of linkages in homodimeric prodrugs,and gives valuable proposal for the development of advanced nano-DDS for cancer treatment.展开更多
In this work,in order to obtain deep clean gas oil,a novel organic–inorganic hybrid(n-C4H9)4N)7H5Si2W18Cd4O68@β-cyclodextrin(abbreviated as TBA-Si WCd@β-CD)composite was synthesized by supporting quaternary ammoniu...In this work,in order to obtain deep clean gas oil,a novel organic–inorganic hybrid(n-C4H9)4N)7H5Si2W18Cd4O68@β-cyclodextrin(abbreviated as TBA-Si WCd@β-CD)composite was synthesized by supporting quaternary ammonium salt of sandwich-type polysilicotungstate onβ-cyclodextrin(TBA-SiWCd@β-CD)as an efficient catalyst for oxidative desulfurization(ODS)of gas oil.The successful composition of the materials explained by the formation of host–guest inclusion complex,which confirmed through FTIR,UV–vis,XRD,SEM,and EDX characterization analyses.Experimental results revealed that the levels of sulfur content and mercaptan compounds of gas oil lowered with 97%removal efficiency.Compared with the ODS treatment of gas oil,the TBA-Si WCd@β-CD composite showed an outstanding catalytic performance for the oxidation of dibenzothiophene(DBT)in the prepared model fuel.The main factors that influence the desulfurization efficiency and the kinetic study of the ODS process were investigated.The prepared heterogeneous catalyst was found to give remarkable reusability for five runs without a discernible decrease in its activity.This study suggested the potential application of the TBA-Si WCd@β-CD catalyst for removal of hazardous sulfur compounds from gas oil fuel.展开更多
The inclusion-complex of CD-MCP (β-cyclodextrin (β-CD) including 1-methylcyclopropene (1-MCP)) was prepared and characterized. Basing on programmed-heating procedure and weight-temperature analysis, as well as...The inclusion-complex of CD-MCP (β-cyclodextrin (β-CD) including 1-methylcyclopropene (1-MCP)) was prepared and characterized. Basing on programmed-heating procedure and weight-temperature analysis, as well as the application of Satava-Sestak's, Ozawa's and Kissinger's methods, the mechanism and kinetics of thermal dissociation of this inclusion complex were studied. An additional mass loss is found at 170-180℃. The mechanism of thermal dissociation of CD-MCP is dominated by a one-dimensional random nucleation and subsequent growth process (A2/3). The activation energy Es and the pre-exponential factor AS for the process are 102.14 kJ/mol and 3.63×10^10s^-1, respectively. This ES value shows that there is no strong chemical intere, ctions between β-CD and 1-MC;P,展开更多
β-cyclodextrin (CD) grafted N-maleoyl chitosan (CD-g-NMCS) with two different degrees of substitution (DS) of N-maleoyl (DS = 21.2% and 30.5%) were synthesized from maleic anhydride and chitosan bearing pendant cyclo...β-cyclodextrin (CD) grafted N-maleoyl chitosan (CD-g-NMCS) with two different degrees of substitution (DS) of N-maleoyl (DS = 21.2% and 30.5%) were synthesized from maleic anhydride and chitosan bearing pendant cyclodextrin (CD-g-CS). CD-g-NMCS based nanoparticles were prepared via an ionic gelation method together with chitosan and CD-g-CS nanoparticles.The size and zeta potential of prepared CD-g-NMCS nanoparticles were 179.2~274.0 nm and 36.2~42.4 m V, respectively. In vitro stability test indicated that CD-g-NMCS nanoparticles were more stable in phosphate-buffered saline compared with chitosan nanoparticles. Moreover, a poorly water-soluble drug, ketoprofen (KTP), was selected as a model drug to study the obtained nanoparticle’s potentials as drug delivery carriers. The drug loading efficiency of CD-g-NMCS20 nanoparticles were 14.8% for KTP. MTT assay showed that KTP loaded CD-g-NMCS nanoparticles were safe drug carriers. Notably, in vitro drug release studies showed that KTP was released in a sustained-release manner for the nanoparticles. The pharmacokinetic of drug loaded CD-g-NMCS20 nanoparticles were evaluated in rats after intravenous administration. The results of studies revealed that, compared with free KTP, KTP loaded CD-g-NMCS20 nanoparticles exhibited a significant increase in AUC0→24h and mean residence time by 6.6-fold and 2.9-fold, respectively. Therefore, CD-g-NMCS nanoparticles could be used as a novel promising nanoparticle-based drug delivery system for sustained release of poorly water-soluble drugs. The carboxylic acid groups of the CD-g-NMCS molecule provide convenient sites for further structural modifications including introduction of tissue-or disease-specific targeting groups.展开更多
文摘The review provides an overview of the approaches, applications, and methods for ester prodrugs. Ester prodrugs are pharmacologically inactive compounds in their original form but become active drugs on biotransformation within the body, which offers advantages concerning the solubility, stability, and targeted delivery of the active drug. Several approaches of ester prodrugs have been reviewed in this review, including simple ester prodrugs, amino acid ester prodrugs, sugar ester prodrugs, lipid ester prodrugs, and polymeric ester prodrugs. This review incorporates in vitro and in vivo methods as well as the characterization of physical and chemical properties for ester prodrugs, cell culture systems, enzymatic assays, and animal models—all of these having a very important bearing on the evaluation of stability, bioavailability, and efficacy for ester prodrugs. While the benefits of using ester prodrugs are significant, there are also disadvantages like instability, poor or variable enzymatic hydrolysis, and toxicity from released promoieties or by-products. This review discusses solutions to the various limitations that include enhancing stability with ionizable promoieties and using physiologically-based pharmacokinetic modeling. The review also highlights the application of ester prodrugs in neurological disorders, such as Parkinson’s disease, and the ongoing efforts to address the critical limitations in treatment efficacy. Future prodrug strategies are poised to advance significantly by harnessing diverse transport mechanisms across the blood-brain barrier and integrating nanotechnology.
基金Supported by the National Natural Science Foundation of China(No.51979255)。
文摘Cometabolic degradation is currently an effective and extensively way to remove high molecular weight polycyclic aromatic hydrocarbons(HMW-PAHs).Unfortunately,due to low bio-accessibility and high biotoxicity,the cometabolic degradation rate of HMW-PAHs is limited.Glycine-β-cyclodextrin(GCD)was obtained through amino modification ofβ-cyclodextrin(BCD)and added to cometabolic system of phenanthrene(PHE)and pyrene(PYR)to assist PYR biodegradation.Results show that the addition of GCD(100 mg/L)effectively improved the removal rate of PYR(20 mg/L)by 42.3%.GCD appeared to increase the bio-accessibility and reduce the biotoxicity of PHE and PYR,and then promoted the growth of Pseudomonas stutzeri DJP1 and stimulated the elevation of dehydrogenase(DHA)and catechol 12 dioxygenase(C12O)activities.The phthalate metabolic pathway was accelerated,which improved the cometabolic degradation.This study provided a new reference for the cometabolic degradation of HMW-PAHs.
基金China Postdoctoral Science Foundation(2020M681125)National Natural Science Foundation of China(32272254,31901618)Collaborative Innovation Center of Fragrance Flavour and Cosmetics.
文摘Bio-based cyclodextrins(CDs)are a common research object in supramolecular chemistry.The special cavity structure of CDs can form supramolecular self-assemblies such as vesicles and microcrystals through weak interaction with guest molecules.The different forms of supramolecular self-assemblies can be transformed into each other under certain conditions.The regulation of supramolecular self-assembly is not only helpful to understand the self-assembly principle,but also beneficial to its application.In the present study,the self-assembly behavior of epoxy-β-cyclodextrin(EP-β-CD)and mixed anionic and cationic surfactant system(sodium dodecyl sulfate/dodecyltrimethylammonium bromide,SDS/DTAB)in aqueous solution was studied.Morphological and particle size characterization found that the SDS/DTAB@EP-β-CD complex,as the basic building unit,self-assembled into worm-like micelles at lower temperatures and vesicles at higher temperatures.Nuclear magnetic resonance(NMR)and Fourier transform infrared spectroscopy(FT-IR)analysis revealed that the driving force for the formation of vesicles and worm-like micelles was the hydrogen bonds between EP-β-CD molecules,while water molecules played an important role in promoting vesicle formation between SDS/DTAB@EP-β-CD units.Herein,the mechanism of the morphologic transformation of SDS/DTAB@EP-β-CD supramolecular aggregates induced by temperature was elucidated by exploring the self-assembly process,which may provide an excellent basis for the development of delivery carriers.
文摘In this study, the adsorption effect of β-cyclodextrin modified biochar (BC) on phenanthrene (PHE) in contaminated soil was investigated, aiming to provide an efficient and environmentally friendly remediation strategy for Polycyclic Aromatic Hydrocarbons (PAHs) contaminated soil. Through kinetic and isotherm analysis, β-CDBC-CA showed excellent phenanthrene adsorption performance, and the adsorption effect increased with the increase of time and was affected by temperature. The results show that β-CDBC-CA can not only effectively adsorb phenanthrene in soil, but also serve as a surfactant to help desorption phenanthrene adsorbed by soil organic matter and improve the efficiency of microbial degradation. The experimental data showed that the Elovich model could describe the adsorption behavior of β-CDBC-CA on phenanthrene well, while Langmuir and Freundlich models performed better in fitting parameters, revealing the adsorption mechanism of phenanthrene in contaminated soil by β-cyclodextrin-modified biochar. In addition, temperature has a significant effect on the adsorption capacity of β-CDBC-CA, and its application in soil remediation can be optimized by adjusting temperature. This study not only provides new materials and technical means for soil remediation but also provides important data support for an in-depth understanding of the environmental behavior of PAHs. By citing relevant research results, this study further improves the control and understanding of environmental risks of PAHs, which is of great significance for the protection of ecological environment and human health.
基金supported by the National Natural Science Foundation of China[82172086]National Key R&D Program of China[2020YFE0201700]+2 种基金Shenyang Science and Technology Talent Support Program[RC210447]Career Development Program for Young and Middle-aged Teachers of Shenyang Pharmaceutical University[ZQN2019004]“Dual Service”Program of University in Shenyang。
文摘Attributing to their broad pharmacological effects encompassing anti-inflammation,antitoxin,and immunosuppression,glucocorticoids(GCs)are extensively utilized in the clinic for the treatment of diverse diseases such as lupus erythematosus,nephritis,arthritis,ulcerative colitis,asthma,keratitis,macular edema,and leukemia.However,longterm use often causes undesirable side effects,including metabolic disorders-induced Cushing's syndrome(buffalo back,full moon face,hyperglycemia,etc.),osteoporosis,aggravated infection,psychosis,glaucoma,and cataract.These notorious side effects seriously compromise patients'quality of life,especially in patients with chronic diseases.Therefore,glucocorticoid-based advanced drug delivery systems for reducing adverse effects have received extensive attention.Among them,prodrugs have the advantages of low investment,low risk,and high success rate,making them a promising strategy.In this review,we propose the strategies for the design and summarize current research progress of glucocorticoid-based prodrugs in recent decades,including polymer-based prodrugs,dendrimer-based prodrugs,antibody-drug conjugates,peptide-drug conjugates,carbohydrate-based prodrugs,aliphatic acid-based prodrugs and so on.Besides,we also raise issues that need to be focused on during the development of glucocorticoid-based prodrugs.This review is expected to be helpful for the research and development of novel GCs and prodrugs.
基金supported by the National Natural Science Foundation of China (21425627,21376279)~~
文摘Nineβ‐cyclodextrin derivatives containing an amino group were synthesized via nucleophilic sub‐stitution from mono(6‐O‐p‐tolylsulfonyl)‐β‐cyclodextrin and used in asymmetric biomimetic Mi‐chael addition reactions in water at room temperature. The mechanism responsible for the moder‐ate activity and enantioselectivity of the β‐cyclodextrin derivatives was explored using nuclear magnetic resonance spectroscopy, namely 2D 1H rotating‐frame overhauser effect spectroscopy (ROESY), ultraviolet absorption spectroscopy, and quantum chemical calculations, which provide a useful technique for investigating the formation of inclusion complexes. The effects of the pH of the reaction medium, theβ‐cyclodextrin derivative dosage, the structure of the modifying amino group, and various substrates on the yield and enantioselectivity were investigated. The results indicated that these factors had an important effect on the enantiomeric excess (ee) in the reaction system. Experiments using a competitor for inclusion complex formation showed that a hydrophobic cavity is necessary for enantioselective Michael addition. A comparison of the reactions using 4‐nitro‐β‐nitrostyrene and 2‐nitro‐β‐nitrostyrene showed that steric hindrance improved the enan‐tioselectivity. This was verified by the optimized geometries obtained from quantum chemical cal‐culations. An ee of 71%was obtained in the asymmetric Michael addition of cyclohexanone and 2‐nitro‐β‐nitrostyrene, using (S)‐2‐aminomethylpyrrolidine‐modified β‐CD as the catalyst, in an aqueous buffer solution, i.e., CH3COONa‐HCl (pH 7.5).
基金support from the National Natural Science Foundation of China(22177014,22231001 and 21971023)the Fundamental Research Funds for the Central Universities and Key Laboratory of Photochemical Conversion and Optoelectronic Materials,TIPC,CAS.
文摘Glutathione(GSH)-activated prodrugs are promising for overcoming the limitations of conventional anti-tumor drugs.However,current GSH-responsive disulfide groups exhibit unregulated reactivity,making it impossible to precisely control the drug release rate.We herein report a series of GSH-responsive prodrugs with a“three-in-one”molecular design by integrating a fluorescence report unit,stimuliresponsive unit and chemodrug into one scaffold with tunable aromatic nucleophilic substitution(SNAr)reactivity.The drug release rate of these prodrugs is tailored by modification of substituent groups with different electron-withdrawing or-donating abilities on the BODIPY core.Furthermore,the prodrugs self-assemble in water to form nanoparticles that serve as photosensitizers to produce reactive oxygen species upon irradiation for photodynamic therapy(PDT).The PDT process also increases the concentration of GSH in cells,further promoting the release of drugs for chemotherapy.This strategy provides a powerful platform for sequential photodynamic and chemotherapy with tunable drug release rates and synergistic therapeutic effects.
基金This work was supported by the Doctor Research Foundation of Anhui University of Architecture (No.20101201) and the Postdoctoral Science Foundation of Anhui University of Architecture (No.20110101).
文摘Cetyltrimethylammonium bromide (CTAB)/potassium bromide (KBr) micellar system has been used as a viscosity probe to study the inclusion complexation between β-cyclodextrin (β-CD) and CTAB. Viscosity measurements show that the inclusion complexation between β-CD and CTAB may cause the breakdown of CTAB/KBr wormlike micelles, resulting in the decrease of the solution viscosity. The viscosity minimum at Cβ-CD/CCTAB=2 indicate the molecular ratio of host molecule to guest molecule is 2:1 in the β-CD/CTAB inclusion complex.
基金National Key Research and Development Program of China (Grant No. 2019YFA0904800)Science and Technology Commission of Shanghai Municipality (Grant No. 11DZ2260600 and 10DZ2220500)Shanghai Natural Science Fund (Grant No. 20ZR1414700)。
文摘Stimuli-responsive drug delivery systems based on polymeric micelles can achieve controlled drug release to improve the therapeutic outcome and reduce unwanted systematic toxicity and side effects of the cytotoxic drug in chemotherapy but often face challenging synthesis and purification of functionalized biocompatible polymer materials and low drug loading efficiency. In the present study, we reported a novel redox-responsive self-assembly polymeric micelle system, mPEG-β-CD/Ad-SS-CPT, to achieve high loading efficiency and selective delivery of camptothecin(CPT) in a reductive environment inside cancer cells. The host-guest supramolecular micelles utilized a simple β-CD modified PEG, mPEG-β-cyclodextrin(mPEG-β-CD), as the polymeric host with the ease of synthesis and purification. The guest prodrug Ad-SS-CPT contained the disulfide bond as the redox sensitivity group. The selective cleavage of disulfide bond and subsequent drug release in a reductive environment could potentially reduce system toxicity and improve the therapeutic outcome of CPT. In vitro studies showed that the micelles exhibited excellent cytotoxicity against He La cells comparable to the free drug. The host-guest polymeric micelles also showed great potentials for multi-drug co-delivery. Collectively, our current findings provided a general and convenient approach to design drug delivery systems based on stimuli-responsive polymeric micelles for disease treatment.
文摘Cancer enzymology is a promising filiation of bio-medical sciences. In thepast decades, enzymes, such as GST(glutathione S-transferase) , PKC(protein kinase C) , Topo(DNAtopoisomerases), TK(tyrosine kinase), CD (bacterial cytosine deaminase), CPG2(carboxypeptidase G2) ,and PNP (purine nucleoside phosphorylase), have been known to bear close relations to cancer. Theirspecific expression and influence on the process of tumor initiation, promotion and progressionattract scientists to apply them as a biochemical marker of certain malignant tumor, a predictor ofresponse in cancer chemotherapy; to apply them to drug design, tumor prevention and as adjuvant toradiotherapy or surgery.
基金Funded by the Natural Science Foundation of China(No.50603032)Education Commission of Chongqing(No.KJ090617)the Science and Technology Plan Project of Jiulongpo District,Chongqing,China(No.2008Q95)
文摘A novel cyclodextrin-containing polymer was prepared by graftingβ-cyclodextrin onto the backbone of poly(D,L-lactic acid)(PLA).First,mono(6-(2-aminoethyl)amino-6-deoxy)-β-cyclodextrin(β-CD-6-en)was prepared by sulfonylation and amination ofβ-cyclodextrin and modified poly(D,L-lactic acid)(MPLA)was prepared by free radical polymerization of maleic anhydride and PLA.Then,grafting ofβ-cyclodextrin derivative to MPLA backbone was carried out by N-acylation reaction of MPLA andβ-CD-6-en in dimethyl formamide.The...
基金ACKNOWLEDGMENTS This work was supported by the Innovation Foundation of Graduate Students in University of Science and Technology of China (No.KD2008020), and the Natural Science Foundation of Anhui Province (No.090416228).
文摘A small shielding effect on the hydrogen atoms of chiral carbons of β-cyclodextrin (β-CD) was detected by 1H nuclear magnetic resonance, but a large environmental change of the chiral carbon atoms at high concentration ratios of lithium carbonate (Li2CO3) to β-CD was observed by polarimetry in aqueous solution. These findings urged us to investigate whether different formation conditions of the molecule-ion system between Li2CO3 and β-CD in solid state were involved in different spectral performances. To answer the question, we prepared three adducts of Li2CO3 to β-CD, i.e., samples 1, 2, and 3, by magnetic stirring, solvothermal and grinding conditions, respectively. Powder X-ray diffraction and Fourier transformation infrared spectroscopy provided the information of formation of the three molecule-ion adducts. Besides, scanning electron microscope images provided different surface information of the three adducts. Further, significant spectral differences in thermal behavior of these adducts were found by thermogravimetry and derivative thermogravimetry.
基金supported by the National Natural Science Foundation of China (Grant nos. 21375101, 81573384 and 91417301)Natural Science Foundation of Hubei Province, China (No. 2014CFA077)Innovation Seed Fund and Translational Medical Research Fund of Wuhan University School of Medicine, China
文摘A simple and sensitive high performance liquid chromatography with fluorescence detection (HPLC-FD) has been developed for simultaneous quantification of doxorubicin (DOX) and its dipeptide conjugate prodrug (PDOX) in mice plasma. The chromatographic separation was carried out on an Amethyst C18-H column with gradient mobile phase of 0.1% formic acid and 0.1% formic acid in acetonitrile at a flow rate of 1.0 mL/min. The excitation and emission wavelengths were set at 490 and 550 nm, respectively. The method was comprehensively validated. The limits of detection were low up to 5.0 ng/mL for DOX and 25.0 ng/mL for PDOX. And the limits of quantification were low up to 12.5 ng/mL for DOX and 50 ng/mL for PDOX, which were lower than those for most of the current methods. The calibration curves showed good linearity (R2 〉 0.999) over the concentration ranges. The extraction recoveries ranged from 84.0% to 88.2% for DOX and from 85.4% to 89.2% for PDOX. Satisfactory intra-day and inter-day precisions were achieved with RSDs less than 9.1%. The results show that the developed HPLC-FD method is accurate, reliable and will be helpful for preclinical pharmacokinetic study of DOX and PDOX.
文摘In order to study the hydrolytic characterization of an anti-inflammatory prodrug ( RI-1 ) in vitro, an effective, accurate and reliable method for the simultaneous determination of the prodrug and its two hydrolytic active compounds is developed using reverse phase high-performance liquid chromatography (RP-HPLC). The chromatographic separation is performed on an ODS-2 C18 column (250 mm × 4. 6 mm, 5.0 μm particle size) with a simple elution program. The mobile phase is V( methanol) : V(0. 1% phosphoric acid solution) =90:10 (adjust pH to 2. 3). A wavelength of 225 nm and a mobile phase flow rate of 1.0 mL/min are utilized for the quantitative analysis. Excellent linear behaviors over the investigated concentration ranges are observed with values of R2 higher than 0. 999 for all the analytes. The validated method is successfully applied to the simultaneous determination of the prodrug and its active components can be used to detect hydrolytic characterization in vitro.
基金the National Natural Science Foundation of China(No.20776053)the Program for New Century Excellent Talents in University(No.NCET-06-740)for providing financial support for this project.
文摘A facile, efficient and substrate-selective oxidation of aldehydes to carboxylic acids with NaClO catalyzed by β-cyclodextrin in water has been developed. A series of aldehydes which could form inclusion complex with β-cyclodextrin (β-CD) were oxidized selectively with excellent yields.
文摘The goal of this study was to improve the solubility and oral bioavailability of tamibarotene by complexing it with hydroxypropyl-β-cyclodextrin(HP-β-CD).The inclusion complex of tamibarotene with hydroxypropyl-β-cyclodextrin(Am80-HP-β-CD)was prepared through a freeze-drying method at the mole ratio of 1:1(Am80:HP-β-CD).Fourier transform infrared spectroscopy(FT-IR)and differential scanning calorimetry(DSC)indicated the formation of Am80-HP-β-CD.In vitro dissolution studies showed that the solubility and dissolution percentage of Am80-HP-β-CD was improved substantially compared to Am80.An improved dissolution with approximately 97%drug release in 3 min was observed,in comparison with Am80 with approximately 60% release in 45 min.In vivo studies indicated that the AUC0-∞ has increased 2.79 times and the Cmax 4.37 times after the formation of inclusion complex.The decrease of tmaxindicated the Am80-HP-β-CD inclusion complex can be absorbed into blood faster.In short,the solubility and bio-availability of Am80 has notably increased with the complexation of HP-β-CD.Therefore,using the inclusion technique is a promising method to improve the solubility of insoluble drugs.
基金This work was supported by China Postdoctoral Innovative Talents Support Program(no.BX20190219)China Postdoctoral Science Foundation(no.2019M661134)National Natural Science Foundation of China(no.81872816).
文摘Homodimeric prodrug-based self-assembled nanoparticles,with carrier-free structure and ultrahigh drug loading,is drawing more and more attentions.Homodimeric prodrugs are composed of two drug molecules and a pivotal linkage.The influence of the linkages on the self-assembly,in vivo fate and antitumor activity of homodimeric prodrugs is the focus of research.Herein,three docetaxel(DTX)homodimeric prodrugs are developed using different lengths of diselenide bond-containing linkages.Interestingly,compared with the other two linkages,the longest diselenide bond-containing linkage could facilitate the self-delivery of DTX prodrugs,thus improving the stability,circulation time and tumor targeting of prodrug nanoassemblies.Besides,the extension of linkages reduces the redox-triggered drug release and cytotoxicity of prodrug nanoassemblies in tumor cells.Although the longest diselenide bond-containing prodrug nanoassemblies possessed the lowest cytotoxicity to 4T1 cells,their stable nanostructure maintained intact during circulation and achieve the maximum accumulation of DTX in tumor cells,which finally“turned the table”.Our study illustrates the crucial role of linkages in homodimeric prodrugs,and gives valuable proposal for the development of advanced nano-DDS for cancer treatment.
文摘In this work,in order to obtain deep clean gas oil,a novel organic–inorganic hybrid(n-C4H9)4N)7H5Si2W18Cd4O68@β-cyclodextrin(abbreviated as TBA-Si WCd@β-CD)composite was synthesized by supporting quaternary ammonium salt of sandwich-type polysilicotungstate onβ-cyclodextrin(TBA-SiWCd@β-CD)as an efficient catalyst for oxidative desulfurization(ODS)of gas oil.The successful composition of the materials explained by the formation of host–guest inclusion complex,which confirmed through FTIR,UV–vis,XRD,SEM,and EDX characterization analyses.Experimental results revealed that the levels of sulfur content and mercaptan compounds of gas oil lowered with 97%removal efficiency.Compared with the ODS treatment of gas oil,the TBA-Si WCd@β-CD composite showed an outstanding catalytic performance for the oxidation of dibenzothiophene(DBT)in the prepared model fuel.The main factors that influence the desulfurization efficiency and the kinetic study of the ODS process were investigated.The prepared heterogeneous catalyst was found to give remarkable reusability for five runs without a discernible decrease in its activity.This study suggested the potential application of the TBA-Si WCd@β-CD catalyst for removal of hazardous sulfur compounds from gas oil fuel.
文摘The inclusion-complex of CD-MCP (β-cyclodextrin (β-CD) including 1-methylcyclopropene (1-MCP)) was prepared and characterized. Basing on programmed-heating procedure and weight-temperature analysis, as well as the application of Satava-Sestak's, Ozawa's and Kissinger's methods, the mechanism and kinetics of thermal dissociation of this inclusion complex were studied. An additional mass loss is found at 170-180℃. The mechanism of thermal dissociation of CD-MCP is dominated by a one-dimensional random nucleation and subsequent growth process (A2/3). The activation energy Es and the pre-exponential factor AS for the process are 102.14 kJ/mol and 3.63×10^10s^-1, respectively. This ES value shows that there is no strong chemical intere, ctions between β-CD and 1-MC;P,
基金supported by the National Science Foundation of China (No.21577037)Shanghai Committee of Science and Technology (No.17ZR1406600),Shanghai Committee of Science and Technology (grant No.11DZ2260600)Science and Technology Commission of Shanghai Municipality (STCSM,contract No.10DZ2220500)
文摘β-cyclodextrin (CD) grafted N-maleoyl chitosan (CD-g-NMCS) with two different degrees of substitution (DS) of N-maleoyl (DS = 21.2% and 30.5%) were synthesized from maleic anhydride and chitosan bearing pendant cyclodextrin (CD-g-CS). CD-g-NMCS based nanoparticles were prepared via an ionic gelation method together with chitosan and CD-g-CS nanoparticles.The size and zeta potential of prepared CD-g-NMCS nanoparticles were 179.2~274.0 nm and 36.2~42.4 m V, respectively. In vitro stability test indicated that CD-g-NMCS nanoparticles were more stable in phosphate-buffered saline compared with chitosan nanoparticles. Moreover, a poorly water-soluble drug, ketoprofen (KTP), was selected as a model drug to study the obtained nanoparticle’s potentials as drug delivery carriers. The drug loading efficiency of CD-g-NMCS20 nanoparticles were 14.8% for KTP. MTT assay showed that KTP loaded CD-g-NMCS nanoparticles were safe drug carriers. Notably, in vitro drug release studies showed that KTP was released in a sustained-release manner for the nanoparticles. The pharmacokinetic of drug loaded CD-g-NMCS20 nanoparticles were evaluated in rats after intravenous administration. The results of studies revealed that, compared with free KTP, KTP loaded CD-g-NMCS20 nanoparticles exhibited a significant increase in AUC0→24h and mean residence time by 6.6-fold and 2.9-fold, respectively. Therefore, CD-g-NMCS nanoparticles could be used as a novel promising nanoparticle-based drug delivery system for sustained release of poorly water-soluble drugs. The carboxylic acid groups of the CD-g-NMCS molecule provide convenient sites for further structural modifications including introduction of tissue-or disease-specific targeting groups.