The supercritical CO_(2)(sCO_(2))power cycle could improve efficiencies for a wide range of thermal power plants.The sCO_(2)turbine generator plays an important role in the sCO_(2)power cycle by directly converting th...The supercritical CO_(2)(sCO_(2))power cycle could improve efficiencies for a wide range of thermal power plants.The sCO_(2)turbine generator plays an important role in the sCO_(2)power cycle by directly converting thermal energy into mechanical work and electric power.The operation of the generator encounters challenges,including high temperature,high pressure,high rotational speed,and other engineering problems,such as leakage.Experimental studies of sCO_(2)turbines are insufficient because of the significant difficulties in turbine manufacturing and system construction.Unlike most experimental investigations that primarily focus on 100 kW‐or MW‐scale power generation systems,we consider,for the first time,a small‐scale power generator using sCO_(2).A partial admission axial turbine was designed and manufactured with a rated rotational speed of 40,000 rpm,and a CO_(2)transcritical power cycle test loop was constructed to validate the performance of our manufactured generator.A resistant gas was proposed in the constructed turbine expander to solve the leakage issue.Both dynamic and steady performances were investigated.The results indicated that a peak electric power of 11.55 kW was achieved at 29,369 rpm.The maximum total efficiency of the turbo‐generator was 58.98%,which was affected by both the turbine rotational speed and pressure ratio,according to the proposed performance map.展开更多
The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayto...The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayton cycle layouts are developed in this study for different reactors to reduce the cost and increase the thermohydraulic performance of nuclear power generation to promote the commercialization of nuclear energy.Parametric analysis,multi-objective optimizations,and four decision-making methods are applied to obtain each Brayton scheme’s optimal thermohydraulic and economic indexes.Results show that for the same design thermal power scale of reactors,the higher the core’s exit temperature,the better the Brayton cycle’s thermo-economic performance.Among the four-cycle layouts,the recompression cycle(RC)has the best overall performance,followed by the simple recuperation cycle(SR)and the intercooling cycle(IC),and the worst is the reheating cycle(RH).However,RH has the lowest total cost of investment(C_(tot))of$1619.85 million,and IC has the lowest levelized cost of energy(LCOE)of 0.012$/(kWh).The nuclear Brayton cycle system’s overall performance has been improved due to optimization.The performance of the molten salt reactor combined with the intercooling cycle(MSR-IC)scheme has the greatest improvement,with the net output power(W_(net)),thermal efficiencyη_(t),and exergy efficiency(η_(e))improved by 8.58%,8.58%,and 11.21%,respectively.The performance of the lead-cooled fast reactor combined with the simple recuperation cycle scheme was optimized to increase C_(tot) by 27.78%.In comparison,the internal rate of return(IRR)increased by only 7.8%,which is not friendly to investors with limited funds.For the nuclear Brayton cycle,the molten salt reactor combined with the recompression cycle scheme should receive priority,and the gas-cooled fast reactor combined with the reheating cycle scheme should be considered carefully.展开更多
Coal-fired power plants are a major carbon source in China. In order to assess the evaluation of China's carbon reduction progress with the promise made on the Paris Agreement, it is crucial to monitor the carbon ...Coal-fired power plants are a major carbon source in China. In order to assess the evaluation of China's carbon reduction progress with the promise made on the Paris Agreement, it is crucial to monitor the carbon flux intensity from coal-fired power plants. Previous studies have calculated CO_(2) emissions from point sources based on Orbiting Carbon Observatory-2 and-3(OCO-2 and OCO-3) satellite measurements, but the factors affecting CO_(2) flux estimations are uncertain. In this study, we employ a Gaussian Plume Model to estimate CO_(2) emissions from three power plants in China based on OCO-3 XCO_(2) measurements. Moreover, flux uncertainties resulting from wind information, background values,satellite CO_(2) measurements, and atmospheric stability are discussed. This study highlights the CO_(2) flux uncertainty derived from the satellite measurements. Finally, satellite-based CO_(2) emission estimates are compared to bottom-up inventories.The satellite-based CO_(2) emission estimates at the Tuoketuo and Nongliushi power plants are ~30 and ~10 kt d^(-1) smaller than the Open-Data Inventory for Anthropogenic Carbon dioxide(ODIAC) respectively, but ~10 kt d^(-1) larger than the ODIAC at Baotou.展开更多
The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its ther...The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its thermodynamic properties make it a fluid of choice in the efficient use of energy at low and medium temperatures in engine cycles. However, the performance of transcritical CO2 cycles weakens under high temperature and pressure conditions, especially in refrigeration systems;On the other hand, this disadvantage becomes rather interesting in engine cycles where CO2 can be used as an alternative to the organic working fluid in small and medium-sized electrical systems for low quality or waste heat sources. In order to improve the performance of systems operating with CO2 in the field of refrigeration and electricity production, research has made it possible to develop several concepts, of which this article deals with a review of the state of the art, followed by analyzes in-depth and critical of the various developments to the most recent modifications in these fields. Detailed discussions on the performance and technical characteristics of the different evolutions are also highlighted as well as the factors affecting the overall performance of the systems studied. Finally, perspectives on the future development of the use of CO2 in these different cycles are presented.展开更多
Beta gallium oxide(β-Ga_(2)O_(3)) has attracted significant attention for applications in power electronics due to its ultrawide bandgap of ~ 4.8 eV and the large critical electric field of 8 MV/cm. These properties ...Beta gallium oxide(β-Ga_(2)O_(3)) has attracted significant attention for applications in power electronics due to its ultrawide bandgap of ~ 4.8 eV and the large critical electric field of 8 MV/cm. These properties yield a high Baliga's figures of merit(BFOM) of more than 3000. Though β-Ga_(2)O_(3) possesses superior material properties, the lack of p-type doping is the main obstacle that hinders the development of β-Ga_(2)O_(3)-based power devices for commercial use. Constructing heterojunctions by employing other p-type materials has been proven to be a feasible solution to this issue. Nickel oxide(NiO) is the most promising candidate due to its wide band gap of 3.6–4.0 eV. So far, remarkable progress has been made in NiO/β-Ga_(2)O_(3) heterojunction power devices. This review aims to summarize recent advances in the construction, characterization, and device performance of the NiO/β-Ga_(2)O_(3) heterojunction power devices. The crystallinity, band structure, and carrier transport property of the sputtered NiO/β-Ga_(2)O_(3) heterojunctions are discussed. Various device architectures, including the NiO/β-Ga_(2)O_(3) heterojunction pn diodes(HJDs), junction barrier Schottky(JBS) diodes, and junction field effect transistors(JFET), as well as the edge terminations and super-junctions based on the NiO/β-Ga_(2)O_(3) heterojunction, are described.展开更多
There is currently great optimism within the electronics community that gallium oxide(Ga_(2)O_(3)) ultra-wide bandgap semiconductors have unprecedented prospects for eventually revolutionizing a rich variety of power ...There is currently great optimism within the electronics community that gallium oxide(Ga_(2)O_(3)) ultra-wide bandgap semiconductors have unprecedented prospects for eventually revolutionizing a rich variety of power electronic applications. Specially, benefiting from its ultra-high bandgap of around 4.8 eV, it is expected that the emerging Ga_(2)O_(3) technology would offer an exciting platform to deliver massively enhanced device performance for power electronics and even completely new applications.展开更多
β-Ga_(2)O_(3) Schottky barrier diodes have undergone rapid progress in research and development for power electronic applications.This paper reviews state-of-the-art β-Ga_(2)O_(3) rectifier technologies,including ad...β-Ga_(2)O_(3) Schottky barrier diodes have undergone rapid progress in research and development for power electronic applications.This paper reviews state-of-the-art β-Ga_(2)O_(3) rectifier technologies,including advanced diode architectures that have enabled lower reverse leakage current via the reduced-surface-field effect.Characteristic device properties including onresistance,breakdown voltage,rectification ratio,dynamic switching,and nonideal effects are summarized for the different devices.Notable results on the high-temperature resilience of β-Ga_(2)O_(3) Schottky diodes,together with the enabling thermal packaging solutions,are also presented.展开更多
This work demonstrates high-performance NiO/β-Ga_(2)O_(3) vertical heterojunction diodes(HJDs)with double-layer junc-tion termination extension(DL-JTE)consisting of two p-typed NiO layers with varied lengths.The bott...This work demonstrates high-performance NiO/β-Ga_(2)O_(3) vertical heterojunction diodes(HJDs)with double-layer junc-tion termination extension(DL-JTE)consisting of two p-typed NiO layers with varied lengths.The bottom 60-nm p-NiO layer fully covers theβ-Ga_(2)O_(3) wafer,while the geometry of the upper 60-nm p-NiO layer is 10μm larger than the square anode elec-trode.Compared with a single-layer JTE,the electric field concentration is inhibited by double-layer JTE structure effectively,resulting in the breakdown voltage being improved from 2020 to 2830 V.Moreover,double p-typed NiO layers allow more holes into the Ga_(2)O_(3) drift layer to reduce drift resistance.The specific on-resistance is reduced from 1.93 to 1.34 mΩ·cm^(2).The device with DL-JTE shows a power figure-of-merit(PFOM)of 5.98 GW/cm^(2),which is 2.8 times larger than that of the conven-tional single-layer JTE structure.These results indicate that the double-layer JTE structure provides a viable way of fabricating high-performance Ga_(2)O_(3) HJDs.展开更多
Theα-Ga2 O_(3)nanorod array is grown on FTO by hydrothermal and annealing processes.And a self-powered PEDOT:PSS/α-Ga_(2)O_(3)nanorod array/FTO(PGF)photodetector has been demonstrated by spin coating PEDOT:PSS on th...Theα-Ga2 O_(3)nanorod array is grown on FTO by hydrothermal and annealing processes.And a self-powered PEDOT:PSS/α-Ga_(2)O_(3)nanorod array/FTO(PGF)photodetector has been demonstrated by spin coating PEDOT:PSS on theα-Ga_(2)O_(3)nanorod array.Successfully,the PGF photodetector shows solar-blind UV/visible dual-band photodetection.Our device possesses comparable solar-blind UV responsivity(0.18 mA/W at 235 nm)and much faster response speed(0.102 s)than most of the reported self-poweredα-Ga_(2)O_(3)nanorod array solar-blind UV photodetectors.And it presents the featured and distinguished visible band photoresponse with a response speed of 0.136 s at 540 nm.The response time is also much faster than the other non-self-poweredβ-Ga_(2)O_(3)DUV/visible dual-band photodetectors due to the fast-speed separation of photogenerated carries by the built-in electric field in the depletion regions of PEDOT:PSS/α-Ga_(2)O_(3)heterojunction.The results herein may prove a promising way to realize fast-speed self-poweredα-Ga_(2)O_(3)photodetectors with solar-blind UV/visible dual-band photodetection by simple processes for the applications of multiple-target tracking,imaging,machine vision and communication.展开更多
基金National Science Fund for Excellent Young Scholars,Grant/Award Number:52022066。
文摘The supercritical CO_(2)(sCO_(2))power cycle could improve efficiencies for a wide range of thermal power plants.The sCO_(2)turbine generator plays an important role in the sCO_(2)power cycle by directly converting thermal energy into mechanical work and electric power.The operation of the generator encounters challenges,including high temperature,high pressure,high rotational speed,and other engineering problems,such as leakage.Experimental studies of sCO_(2)turbines are insufficient because of the significant difficulties in turbine manufacturing and system construction.Unlike most experimental investigations that primarily focus on 100 kW‐or MW‐scale power generation systems,we consider,for the first time,a small‐scale power generator using sCO_(2).A partial admission axial turbine was designed and manufactured with a rated rotational speed of 40,000 rpm,and a CO_(2)transcritical power cycle test loop was constructed to validate the performance of our manufactured generator.A resistant gas was proposed in the constructed turbine expander to solve the leakage issue.Both dynamic and steady performances were investigated.The results indicated that a peak electric power of 11.55 kW was achieved at 29,369 rpm.The maximum total efficiency of the turbo‐generator was 58.98%,which was affected by both the turbine rotational speed and pressure ratio,according to the proposed performance map.
基金This work was supported of National Natural Science Foundation of China Fund(No.52306033)State Key Laboratory of Engines Fund(No.SKLE-K2022-07)the Jiangxi Provincial Postgraduate Innovation Special Fund(No.YC2022-s513).
文摘The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayton cycle layouts are developed in this study for different reactors to reduce the cost and increase the thermohydraulic performance of nuclear power generation to promote the commercialization of nuclear energy.Parametric analysis,multi-objective optimizations,and four decision-making methods are applied to obtain each Brayton scheme’s optimal thermohydraulic and economic indexes.Results show that for the same design thermal power scale of reactors,the higher the core’s exit temperature,the better the Brayton cycle’s thermo-economic performance.Among the four-cycle layouts,the recompression cycle(RC)has the best overall performance,followed by the simple recuperation cycle(SR)and the intercooling cycle(IC),and the worst is the reheating cycle(RH).However,RH has the lowest total cost of investment(C_(tot))of$1619.85 million,and IC has the lowest levelized cost of energy(LCOE)of 0.012$/(kWh).The nuclear Brayton cycle system’s overall performance has been improved due to optimization.The performance of the molten salt reactor combined with the intercooling cycle(MSR-IC)scheme has the greatest improvement,with the net output power(W_(net)),thermal efficiencyη_(t),and exergy efficiency(η_(e))improved by 8.58%,8.58%,and 11.21%,respectively.The performance of the lead-cooled fast reactor combined with the simple recuperation cycle scheme was optimized to increase C_(tot) by 27.78%.In comparison,the internal rate of return(IRR)increased by only 7.8%,which is not friendly to investors with limited funds.For the nuclear Brayton cycle,the molten salt reactor combined with the recompression cycle scheme should receive priority,and the gas-cooled fast reactor combined with the reheating cycle scheme should be considered carefully.
基金supported by the Shanghai Sailing Program (Grant No. 22YF1442000)the Key Laboratory of Middle Atmosphere and Global Environment Observation(Grant No. LAGEO-2021-07)+1 种基金the National Natural Science Foundation of China (Grant No. 41975035)Jiaxing University (Grant Nos. 00323027AL and CD70522035)。
文摘Coal-fired power plants are a major carbon source in China. In order to assess the evaluation of China's carbon reduction progress with the promise made on the Paris Agreement, it is crucial to monitor the carbon flux intensity from coal-fired power plants. Previous studies have calculated CO_(2) emissions from point sources based on Orbiting Carbon Observatory-2 and-3(OCO-2 and OCO-3) satellite measurements, but the factors affecting CO_(2) flux estimations are uncertain. In this study, we employ a Gaussian Plume Model to estimate CO_(2) emissions from three power plants in China based on OCO-3 XCO_(2) measurements. Moreover, flux uncertainties resulting from wind information, background values,satellite CO_(2) measurements, and atmospheric stability are discussed. This study highlights the CO_(2) flux uncertainty derived from the satellite measurements. Finally, satellite-based CO_(2) emission estimates are compared to bottom-up inventories.The satellite-based CO_(2) emission estimates at the Tuoketuo and Nongliushi power plants are ~30 and ~10 kt d^(-1) smaller than the Open-Data Inventory for Anthropogenic Carbon dioxide(ODIAC) respectively, but ~10 kt d^(-1) larger than the ODIAC at Baotou.
文摘The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its thermodynamic properties make it a fluid of choice in the efficient use of energy at low and medium temperatures in engine cycles. However, the performance of transcritical CO2 cycles weakens under high temperature and pressure conditions, especially in refrigeration systems;On the other hand, this disadvantage becomes rather interesting in engine cycles where CO2 can be used as an alternative to the organic working fluid in small and medium-sized electrical systems for low quality or waste heat sources. In order to improve the performance of systems operating with CO2 in the field of refrigeration and electricity production, research has made it possible to develop several concepts, of which this article deals with a review of the state of the art, followed by analyzes in-depth and critical of the various developments to the most recent modifications in these fields. Detailed discussions on the performance and technical characteristics of the different evolutions are also highlighted as well as the factors affecting the overall performance of the systems studied. Finally, perspectives on the future development of the use of CO2 in these different cycles are presented.
基金supported by the Guangdong Basic and Applied Basic Research Foundation under Grant No. 2022A1515012163。
文摘Beta gallium oxide(β-Ga_(2)O_(3)) has attracted significant attention for applications in power electronics due to its ultrawide bandgap of ~ 4.8 eV and the large critical electric field of 8 MV/cm. These properties yield a high Baliga's figures of merit(BFOM) of more than 3000. Though β-Ga_(2)O_(3) possesses superior material properties, the lack of p-type doping is the main obstacle that hinders the development of β-Ga_(2)O_(3)-based power devices for commercial use. Constructing heterojunctions by employing other p-type materials has been proven to be a feasible solution to this issue. Nickel oxide(NiO) is the most promising candidate due to its wide band gap of 3.6–4.0 eV. So far, remarkable progress has been made in NiO/β-Ga_(2)O_(3) heterojunction power devices. This review aims to summarize recent advances in the construction, characterization, and device performance of the NiO/β-Ga_(2)O_(3) heterojunction power devices. The crystallinity, band structure, and carrier transport property of the sputtered NiO/β-Ga_(2)O_(3) heterojunctions are discussed. Various device architectures, including the NiO/β-Ga_(2)O_(3) heterojunction pn diodes(HJDs), junction barrier Schottky(JBS) diodes, and junction field effect transistors(JFET), as well as the edge terminations and super-junctions based on the NiO/β-Ga_(2)O_(3) heterojunction, are described.
文摘There is currently great optimism within the electronics community that gallium oxide(Ga_(2)O_(3)) ultra-wide bandgap semiconductors have unprecedented prospects for eventually revolutionizing a rich variety of power electronic applications. Specially, benefiting from its ultra-high bandgap of around 4.8 eV, it is expected that the emerging Ga_(2)O_(3) technology would offer an exciting platform to deliver massively enhanced device performance for power electronics and even completely new applications.
文摘β-Ga_(2)O_(3) Schottky barrier diodes have undergone rapid progress in research and development for power electronic applications.This paper reviews state-of-the-art β-Ga_(2)O_(3) rectifier technologies,including advanced diode architectures that have enabled lower reverse leakage current via the reduced-surface-field effect.Characteristic device properties including onresistance,breakdown voltage,rectification ratio,dynamic switching,and nonideal effects are summarized for the different devices.Notable results on the high-temperature resilience of β-Ga_(2)O_(3) Schottky diodes,together with the enabling thermal packaging solutions,are also presented.
基金supported by the National Natural Science Foundation of China under Grant U21A20503.
文摘This work demonstrates high-performance NiO/β-Ga_(2)O_(3) vertical heterojunction diodes(HJDs)with double-layer junc-tion termination extension(DL-JTE)consisting of two p-typed NiO layers with varied lengths.The bottom 60-nm p-NiO layer fully covers theβ-Ga_(2)O_(3) wafer,while the geometry of the upper 60-nm p-NiO layer is 10μm larger than the square anode elec-trode.Compared with a single-layer JTE,the electric field concentration is inhibited by double-layer JTE structure effectively,resulting in the breakdown voltage being improved from 2020 to 2830 V.Moreover,double p-typed NiO layers allow more holes into the Ga_(2)O_(3) drift layer to reduce drift resistance.The specific on-resistance is reduced from 1.93 to 1.34 mΩ·cm^(2).The device with DL-JTE shows a power figure-of-merit(PFOM)of 5.98 GW/cm^(2),which is 2.8 times larger than that of the conven-tional single-layer JTE structure.These results indicate that the double-layer JTE structure provides a viable way of fabricating high-performance Ga_(2)O_(3) HJDs.
基金Project supported by the National Natural Science Foundation of China(Grant No.61705155)。
文摘Theα-Ga2 O_(3)nanorod array is grown on FTO by hydrothermal and annealing processes.And a self-powered PEDOT:PSS/α-Ga_(2)O_(3)nanorod array/FTO(PGF)photodetector has been demonstrated by spin coating PEDOT:PSS on theα-Ga_(2)O_(3)nanorod array.Successfully,the PGF photodetector shows solar-blind UV/visible dual-band photodetection.Our device possesses comparable solar-blind UV responsivity(0.18 mA/W at 235 nm)and much faster response speed(0.102 s)than most of the reported self-poweredα-Ga_(2)O_(3)nanorod array solar-blind UV photodetectors.And it presents the featured and distinguished visible band photoresponse with a response speed of 0.136 s at 540 nm.The response time is also much faster than the other non-self-poweredβ-Ga_(2)O_(3)DUV/visible dual-band photodetectors due to the fast-speed separation of photogenerated carries by the built-in electric field in the depletion regions of PEDOT:PSS/α-Ga_(2)O_(3)heterojunction.The results herein may prove a promising way to realize fast-speed self-poweredα-Ga_(2)O_(3)photodetectors with solar-blind UV/visible dual-band photodetection by simple processes for the applications of multiple-target tracking,imaging,machine vision and communication.