期刊文献+
共找到271,956篇文章
< 1 2 250 >
每页显示 20 50 100
Integrated multi-omics analysis reveals liver metabolic reprogramming by fish iridovirus and antiviral function of alpha-linolenic acid
1
作者 Lin Liu Ya Zhang +6 位作者 Meng-Di Yuan Dong-Miao Xiao Wei-Hua Xu Qi Zheng Qi-Wei Qin You-Hua Huang Xiao-Hong Huang 《Zoological Research》 SCIE CSCD 2024年第3期520-534,共15页
Iridovirus poses a substantial threat to global aquaculture due to its high mortality rate;however,the molecular mechanisms underpinning its pathogenesis are not well elucidated.Here,a multi-omics approach was applied... Iridovirus poses a substantial threat to global aquaculture due to its high mortality rate;however,the molecular mechanisms underpinning its pathogenesis are not well elucidated.Here,a multi-omics approach was applied to groupers infected with Singapore grouper iridovirus(SGIV),focusing on the roles of key metabolites.Results showed that SGIV induced obvious histopathological damage and changes in metabolic enzymes within the liver.Furthermore,SGIV significantly reduced the contents of lipid droplets,triglycerides,cholesterol,and lipoproteins.Metabolomic analysis indicated that the altered metabolites were enriched in 19 pathways,with a notable down-regulation of lipid metabolites such as glycerophosphates and alpha-linolenic acid(ALA),consistent with disturbed lipid homeostasis in the liver.Integration of transcriptomic and metabolomic data revealed that the top enriched pathways were related to cell growth and death and nucleotide,carbohydrate,amino acid,and lipid metabolism,supporting the conclusion that SGIV infection induced liver metabolic reprogramming.Further integrative transcriptomic and proteomic analysis indicated that SGIV infection activated crucial molecular events in a phagosome-immune depression-metabolism dysregulation-necrosis signaling cascade.Of note,integrative multi-omics analysis demonstrated the consumption of ALA and linoleic acid(LA)metabolites,and the accumulation of L-glutamic acid(GA),accompanied by alterations in immune,inflammation,and cell death-related genes.Further experimental data showed that ALA,but not GA,suppressed SGIV replication by activating antioxidant and anti-inflammatory responses in the host.Collectively,these findings provide a comprehensive resource for understanding host response dynamics during fish iridovirus infection and highlight the antiviral potential of ALA in the prevention and treatment of iridoviral diseases. 展开更多
关键词 IRIDOVIRUS Liver damage Metabolic reprogramming SGIV Alpha-linolenic acid ANTIINFLAMMATORY
下载PDF
Anti-inflammatory Mechanism of Gamma-linolenic Acid in RAW264.7 Cells
2
作者 孔秀芹 殷志敏 罗兰 《Agricultural Science & Technology》 CAS 2010年第6期1-3,共3页
[Objective] The aim was to investigate the anti-inflammatory effect and the mechanism of gamma-linolenic acid on lipopolysaccharide-induced RAW264.7 cells.[Method] Macrophagic system RAW 264.7 cells were cultured in v... [Objective] The aim was to investigate the anti-inflammatory effect and the mechanism of gamma-linolenic acid on lipopolysaccharide-induced RAW264.7 cells.[Method] Macrophagic system RAW 264.7 cells were cultured in vitro,when cells grew to fusion state,they were pretreated with 0,12.5,25.0,50.0 μmol/L of GLA for 4 h,and then 100 ng/ml of LPS were added to induce for 12 h or 30 min.Meanwhile,the blank control and LPS control were set.And the expression of iNOS,COX-2 and the effect of GLA on IκBα,p-JNK/SAPK(Thr183/Tyr185),p38 MAPK,p-p38 MAPK(Thr180/Tyr182),ERK1/2,p-ERK1/2 were detected by Western blot.[Result] GLA significantly inhibited the expression of iNOS and COX-2 in RAW264.7 cells induced by LPS,and in the range of 0-50 μmol/L of GLA,the inhibition effect was concentration-dependent(P0.05).GLA could significantly inhibited the degradation of IκBα(P0.05),thereby inhibited the activation of NF-κB.GLA could significantly inhibited the phosphorylation of LPS-induced JNK1/2 and ERK1/2(P0.05),while it had not significantly effect on the phosphorylation of p38(P0.05).[Conclusion] GLA had excellent anti-inflammation effect.The inhibition of the phosphorylation of JNK1/2,ERK1/2 and the inhibition of activation of NF-κB might be the important mechanism for the educing of its biological effect. 展开更多
关键词 Gamma-linolenic acid ENDOTOXIN INFLAMMATION
下载PDF
Formulation ofα-linolenic acid microemulsion free of co-surfactant 被引量:2
3
作者 Feng Liu Zheng Wu Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2010年第1期105-108,共4页
A novel class ofα-linolenic acid-in-water microemulsion free of co-surfactant was investigated as potential food delivery systems.Rough demarcation within the transparent region was deduced from the results of conduc... A novel class ofα-linolenic acid-in-water microemulsion free of co-surfactant was investigated as potential food delivery systems.Rough demarcation within the transparent region was deduced from the results of conductivity and polarizing optical microscopy.The microemulsion mean hydrodynamic diameter and characterization were determined by dynamic light scattering and negative-staining TEM.The location of ALA molecules in the microemulsion formulations was determined by ~1H NMR spectroscopy. 展开更多
关键词 MICROEMULSION α-linolenic acid Particle diameter ~1H NMR
下载PDF
Palm oil protectsα-linolenic acid from rumen biohydrogenation and muscle oxidation in cashmere goat kids 被引量:4
4
作者 Xue Wang Graeme B.Martin +7 位作者 Qi Wen Shulin Liu Yinhao Li Binlin Shi Xiaoyu Guo Yanli Zhao Yangdong Guo Sumei Yan 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2021年第2期711-728,共18页
Background:In ruminants,dietary C18:3n-3 can be lost through biohydrogenation in the rumen;and C18:3n-3 that by-passes the rumen still can be lost through oxidation in muscle,theoretically reducing the deposition of C... Background:In ruminants,dietary C18:3n-3 can be lost through biohydrogenation in the rumen;and C18:3n-3 that by-passes the rumen still can be lost through oxidation in muscle,theoretically reducing the deposition of C18:3n-3,the substrate for synthesis of poly-unsaturated fatty acids(n-3 LCPUFA)in muscle.In vitro studies have shown that rumen hydrogenation of C18:3n-3 is reduced by supplementation with palm oil(rich in cis-9 C18:1).In addition,in hepatocytes,studies with neonatal rats have shown that cis-9 C18:1 inhibits the oxidation of C18:3n-3.It therefore seems likely that palm oil could reduce both rumen biohydrogenation of C18:3n-3 and muscle oxidation of C18:3n-3.The present experiment tested whether the addition of palm oil to a linseed oil supplement for goat kids would prevent the losses of C18:3n-3 and thus improve the FA composition in two muscles,Longissimus dorsi and Biceps femoris.To investigate the processes involved,we studied the rumen bacterial communities and measured the mRNA expression of genes related to lipid metabolism in Longissimus dorsi.Sixty 4-month-old castrated male Albas white cashmere kids were randomly allocated among three dietary treatments.All three diets contained the same ingredients in the same proportions,but differed in their fat additives:palm oil(PMO),linseed oil(LSO)or mixed oil(MIX;2 parts linseed oil plus 1 part palm oil on a weight basis).Results:Compared with the LSO diet,the MIX diet decreased the relative abuandance of Pseudobutyrivibrio,a bacterial species that is positively related to the proportional loss rate of dietary C18:3n-3 and that has been reported to generate the ATP required for biohydrogenation(reflecting a decrease in the abundance of rumen bacteria that hydrogenate C18:3n-3 in MIX kids).In muscle,the MIX diet increased concentrations of C18:3n-3,C20:5n-3,C22:6n-3,and n-3 LCPUFA,and thus decreased the n-6/n-3 ratio;decreased the mRNA expression of CPT1β(a gene associated with fatty acid oxidation)and increased the mRNA expression of FADS1 and FADS2(genes associated with n-3 LCPUFA synthesis),compared with the LSO diet.Interestingly,compared to Longissimus dorsi,Biceps femoris had greater concentrations of PUFA,greater ratios of unsaturated fatty acids/saturated fatty acids(U/S),and poly-unsaturated fatty acids/saturated fatty acids(P/S),but a lesser concentration of saturated fatty acids(SFA).Conclusions:In cashmere goat kids,a combination of linseed and palm oils in the diet increases the muscle concentration of n-3 LCPUFA,apparently by decreasing the relative abundance of rumen bacteria that are positively related to the proportional loss rate of dietary C18:3n-3,by inhibiting mRNA expression of genes related to C18:3n-3 oxidation in muscle,and by up-regulating mRNA expression of genes related to n-3 LCPUFA synthesis in muscle,especially in Longissimus dorsi. 展开更多
关键词 DESATURASES Docosahexaenoic acid HYDROGENATION Goats MEAT Oleic acid Oxidative stress
下载PDF
α-Linolenic acid alleviates aluminium chloride-induced toxicity in PC12 cells by activation of PKA-CREB-BDNF signaling pathway 被引量:1
5
作者 Huihui Liu Ling Han +1 位作者 Xiaoyang Xia Xia Xiang 《Oil Crop Science》 CSCD 2022年第2期63-70,共8页
Aluminum has been associated with neurodegenerative diseases.ALA(α-linolenic acid),an essential dietary component for human health,possesses prominent biological activities.Herein,we aim to explore the neuroprotectiv... Aluminum has been associated with neurodegenerative diseases.ALA(α-linolenic acid),an essential dietary component for human health,possesses prominent biological activities.Herein,we aim to explore the neuroprotective effects of ALA on aluminum toxicity and reveal the underlying mechanism.Results show that aluminum chloride(denoted as Al)enabled cell viability decline and apoptosis with oxidative stress and mitochondrial damage in differentiated rat pheochromocytoma cells(PC12)for 24 h incubation.Compared with Al(10 mmol/L)treatment alone,ALA(50μmol/L)pretreatment for 24 h significantly enhanced cell viability by 28.40%,and hindered cell apoptosis by 12.35%,together with recovering redox state balance and alleviating mitochondrial damage.It was measured that ALA treatment upregulated Bcl-2 expression and down-regulated Bax level,accompanied with an expression decline of caspase-3 and caspase-9.Meanwhile,ALA pretreatment was proved to increase protein kinase A(PKA)expression and to promote phosphorylation of cAMP response element-binding protein(p-CREB),resulting in elevation on the level of brain-derived neurotrophic factor(BDNF).The above results showed that ALA attenuated Al toxicity in PC12 cells by mediating the PKA-CREBBDNF signaling pathway. 展开更多
关键词 Aluminium toxicity α-linolenic acid PC12 cells Oxidative stress PKA-CREB-BDNF
下载PDF
Production of γ-linolenic acid and stearidonic acid by Synechococcus sp.PCC7002 containing cyanobacterial fatty acid desaturase genes 被引量:3
6
作者 董学卫 何庆芳 +4 位作者 彭振英 于金慧 边斐 李有志 毕玉平 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2016年第4期772-780,共9页
Genetic modifi cation is useful for improving the nutritional qualities of cyanobacteria. To increase the total unsaturated fatty acid content, along with the ratio of ω-3/ω-6 fatty acids, genetic engineering can be... Genetic modifi cation is useful for improving the nutritional qualities of cyanobacteria. To increase the total unsaturated fatty acid content, along with the ratio of ω-3/ω-6 fatty acids, genetic engineering can be used to modify fatty acid metabolism. S ynechococcus sp. PCC7002, a fast-growing cyanobacterium, does not contain a Δ6 desaturase gene and is therefore unable to synthesize γ-linolenic acid(GLA) and stearidonic acid(SDA), which are important in human health. In this work, we constructed recombinant vectors Syd6 D, Syd15 D and Syd6Dd15 D to express the Δ15 desaturase and Δ6 desaturase genes from Synechocystis PCC6803 in Synechococcus sp. PCC7002, with the aim of expressing polyunsaturated fatty acids. Overexpression of the Δ15 desaturase gene in S ynechococcus resulted in 5.4 times greater accumulation of α-linolenic acid compared with the wild-type while Δ6 desaturase gene expression produced both GLA and SDA. Co-expression of the two genes resulted in low-level accumulation of GLA but much larger amounts of SDA, accounting for as much to 11.64% of the total fatty acid content. 展开更多
关键词 Synechococcus sp.PCC7002 Synechocystis sp.PCC6803 Δ15 fatty acid desaturase Δ6 fatty acid desaturase polyunsaturated fatty acids
下载PDF
Biotechnology ofα-linolenic acid in oilseed rape(Brassica napus)using FAD2 and FAD3 from chia(Salvia hispanica)
7
作者 XUE Yu-fei Inkabanga Tseke ALAIN +7 位作者 YIN Neng-wen JIANG Jia-yi ZHAO Yan-ping LU Kun LI Jia-na DING Yan-song ZHANG Shi-qing CHAI You-rong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第12期3810-3815,共6页
α-Linolenic acid(ALA,18:3Δ9,12,15)is an essential fatty acid for humans since it is the precursor for the biosynthesis of omega-3 long-chain polyunsaturated fatty acids(LC-PUFA).Modern people generally suffer from d... α-Linolenic acid(ALA,18:3Δ9,12,15)is an essential fatty acid for humans since it is the precursor for the biosynthesis of omega-3 long-chain polyunsaturated fatty acids(LC-PUFA).Modern people generally suffer from deficiency of ALA because most staple food oils are low or lack ALA content.Biotechnological enrichment of ALA in staple oil crops is a promising strategy.Chia(Salvia hispanica)has the highest ALA content in its seed oil among known oil crops.In this study,the FAD2 and FAD3 genes from chia were engineered into a staple oil crop,oilseed rape(Brassica napus),via Agrobaterium tumefaciens-mediated transformation of their LP4-2A fusion gene construct driven by the seed-specific promoter P_(NapA).In seeds of T0,T1,and T2 lines,the average ALA contents were 20.86,23.54,and 24.92%,respectively,which were 2.21,2.68,and 3.03 folds of the non-transformed controls(9.42,8.78,and 8.22%),respectively.The highest seed ALA levels of T0,T1,and T2 plants were 38.41,35.98,and 39.19%respectively,which were 4.10-4.77 folds of the respective controls.FA-pathway enzyme genes(BnACCD,BnFATA,BnSAD,BnSCD,BnDGAT1,BnDGAT2,and BnDGAT3)and positive regulatory genes(BnWRI1,BnLEC1,BnL1L,BnLEC2,BnABI3,BnbZIP67,and BnMYB96)were all significantly up-regulated.In contrast,BnTT1,BnTT2,BnTT8,BnTT16,BnTTG1,and BnTTG2,encoding negative oil accumulation regulators but positive secondary metabolism regulators,were all significantly down-regulated.This means the foreign ShFAD2-ShFAD3 fusion gene,directly and indirectly,remodeled both positive and negative loci of the whole FA-related network in transgenic B.napus seeds. 展开更多
关键词 BIOTECHNOLOGY α-linolenic acid oilseed rape(Brassica napus) FAD2 FAD3 chia(Salvia hispanica)
下载PDF
Decoding the nexus:branched-chain amino acids and their connection with sleep,circadian rhythms,and cardiometabolic health
8
作者 Hui Li Laurent Seugnet 《Neural Regeneration Research》 SCIE CAS 2025年第5期1350-1363,共14页
The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and,either directly or indirectly,overall body health,encompassing metabolic and cardiovascular well-being.Given th... The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and,either directly or indirectly,overall body health,encompassing metabolic and cardiovascular well-being.Given the heightened metabolic activity of the brain,there exists a considerable demand for nutrients in comparison to other organs.Among these,the branched-chain amino acids,comprising leucine,isoleucine,and valine,display distinctive significance,from their contribution to protein structure to their involvement in overall metabolism,especially in cerebral processes.Among the first amino acids that are released into circulation post-food intake,branched-chain amino acids assume a pivotal role in the regulation of protein synthesis,modulating insulin secretion and the amino acid sensing pathway of target of rapamycin.Branched-chain amino acids are key players in influencing the brain's uptake of monoamine precursors,competing for a shared transporter.Beyond their involvement in protein synthesis,these amino acids contribute to the metabolic cycles ofγ-aminobutyric acid and glutamate,as well as energy metabolism.Notably,they impact GABAergic neurons and the excitation/inhibition balance.The rhythmicity of branchedchain amino acids in plasma concentrations,observed over a 24-hour cycle and conserved in rodent models,is under circadian clock control.The mechanisms underlying those rhythms and the physiological consequences of their disruption are not fully understood.Disturbed sleep,obesity,diabetes,and cardiovascular diseases can elevate branched-chain amino acid concentrations or modify their oscillatory dynamics.The mechanisms driving these effects are currently the focal point of ongoing research efforts,since normalizing branched-chain amino acid levels has the ability to alleviate the severity of these pathologies.In this context,the Drosophila model,though underutilized,holds promise in shedding new light on these mechanisms.Initial findings indicate its potential to introduce novel concepts,particularly in elucidating the intricate connections between the circadian clock,sleep/wake,and metabolism.Consequently,the use and transport of branched-chain amino acids emerge as critical components and orchestrators in the web of interactions across multiple organs throughout the sleep/wake cycle.They could represent one of the so far elusive mechanisms connecting sleep patterns to metabolic and cardiovascular health,paving the way for potential therapeutic interventions. 展开更多
关键词 branched-chain amino acids cardiovascular health circadian clock DROSOPHILA INSULIN metabolism SLEEP γ-aminobutyric acid
下载PDF
Increased excitatory amino acid transporter 2 levels in basolateral amygdala astrocytes mediate chronic stress–induced anxiety-like behavior
9
作者 Xirong Xu Shoumin Xuan +3 位作者 Shuai Chen Dan Liu Qian Xiao Jie Tu 《Neural Regeneration Research》 SCIE CAS 2025年第6期1721-1734,共14页
The conventional perception of astrocytes as mere supportive cells within the brain has recently been called into question by empirical evidence, which has revealed their active involvement in regulating brain functio... The conventional perception of astrocytes as mere supportive cells within the brain has recently been called into question by empirical evidence, which has revealed their active involvement in regulating brain function and encoding behaviors associated with emotions.Specifically, astrocytes in the basolateral amygdala have been found to play a role in the modulation of anxiety-like behaviors triggered by chronic stress. Nevertheless, the precise molecular mechanisms by which basolateral amygdala astrocytes regulate chronic stress–induced anxiety-like behaviors remain to be fully elucidated. In this study, we found that in a mouse model of anxiety triggered by unpredictable chronic mild stress, the expression of excitatory amino acid transporter 2 was upregulated in the basolateral amygdala. Interestingly, our findings indicate that the targeted knockdown of excitatory amino acid transporter 2 specifically within the basolateral amygdala astrocytes was able to rescue the anxiety-like behavior in mice subjected to stress. Furthermore, we found that the overexpression of excitatory amino acid transporter 2 in the basolateral amygdala, whether achieved through intracranial administration of excitatory amino acid transporter 2agonists or through injection of excitatory amino acid transporter 2-overexpressing viruses with GfaABC1D promoters, evoked anxiety-like behavior in mice. Our single-nucleus RNA sequencing analysis further confirmed that chronic stress induced an upregulation of excitatory amino acid transporter 2 specifically in astrocytes in the basolateral amygdala. Moreover, through in vivo calcium signal recordings, we found that the frequency of calcium activity in the basolateral amygdala of mice subjected to chronic stress was higher compared with normal mice.After knocking down the expression of excitatory amino acid transporter 2 in the basolateral amygdala, the frequency of calcium activity was not significantly increased, and anxiety-like behavior was obviously mitigated. Additionally, administration of an excitatory amino acid transporter 2 inhibitor in the basolateral amygdala yielded a notable reduction in anxiety level among mice subjected to stress. These results suggest that basolateral amygdala astrocytic excitatory amino acid transporter 2 plays a role in in the regulation of unpredictable chronic mild stress-induced anxiety-like behavior by impacting the activity of local glutamatergic neurons, and targeting excitatory amino acid transporter 2 in the basolateral amygdala holds therapeutic promise for addressing anxiety disorders. 展开更多
关键词 ANXIETY ASTROCYTES basolateral amygdala behavior dihydrokainic acid excitatory amino acid transporter 2 fiber photometry GLUTAMATE LDN-212320 TRANSPORTER
下载PDF
Effects of Supplementing Various Linoleic to α-linolenic Acid Ratios and Vitamin A on Production Performance and Egg Characteristics of Laying Hens during Summer Months 被引量:1
10
作者 S.Ahmad M.Yousaf +5 位作者 Z.Kamran M.U.Sohail M.N.Tahir K.C.Koutoulis A.Manzoor 《Journal of Zoological Research》 2019年第1期1-9,共9页
In the present feeding trial,responses of laying hens that were kept at high ambient temperature and Fed with various dietary ratios of linoleic acid(LNA)toα-linolenic acid(ALA)and vitamin A levels on production perf... In the present feeding trial,responses of laying hens that were kept at high ambient temperature and Fed with various dietary ratios of linoleic acid(LNA)toα-linolenic acid(ALA)and vitamin A levels on production performance and egg quality traits were evaluated.A total of 360 Leghorn laying hens at 40th week of age(average initial body weight;1.79±0.23 kg)were fed with various combinations of canola oil and linseed oil containing diets to achieve LNA to ALA dietary ratios of 20:1,10:1,4:1,2:1,1:1 and 1:2,each supplemented with 3000 or 10000 IU of vitamin A/kg of diet.The experiment was designed as a 6×2 factorial Completely Randomized Design that continued for 12 weeks.Feed intake,body weight gain,egg production and egg quality traits were recorded during the trial.Decreasing dietary LNA to ALA ratio or increasing poly unsaturated fatty acids(PUFA)in the diet decreased(P<0.05)body weight gain and yolk percentage in laying hens.Feed intake,hen-day and hen-housed egg production,feed conversion ratio(FCR)per dozen of eggs and shell quality remained unaffected(P>0.05)by dietary treatments.Feed conversion ratio per kg eggs,egg weight and egg-shell thickness showed a curvilinear(P<0.05)response to decreasing dietary LNA to ALA ratio.Although the dietary ratio of LNA to ALA of 4:1 or less could produce eggs by the hens with desirable quantities of n-6 and n-3 PUFA–that are characteristics of functional diets–the performance of laying hens in terms of body weight gain and egg-yolk percentage was slightly compromised.Therefore,a 4:1 or 2:1 LNA to ALA combination can make a borderline between the production traits and the feed economics. 展开更多
关键词 EGG quality FATTY acidS Hot climate Layers performance VITAMIN A
下载PDF
Targeting harmful effects of non-excitatory amino acids as an alternative therapeutic strategy to reduce ischemic damage
11
作者 Victoria Jiménez Carretero IrisÁlvarez-Merz +2 位作者 Jorge Hernández-Campano Sergei A.Kirov Jesús M.Hernández-Guijo 《Neural Regeneration Research》 SCIE CAS 2025年第9期2454-2463,共10页
The involvement of the excitatory amino acids glutamate and aspartate in ce rebral ischemia and excitotoxicity is well-documented.Nevertheless,the role of non-excitatory amino acids in brain damage following a stroke ... The involvement of the excitatory amino acids glutamate and aspartate in ce rebral ischemia and excitotoxicity is well-documented.Nevertheless,the role of non-excitatory amino acids in brain damage following a stroke or brain trauma remains largely understudied.The release of amino acids by necrotic cells in the ischemic core may contribute to the expansion of the penumbra.Our findings indicated that the reversible loss of field excitato ry postsynaptic potentials caused by transient hypoxia became irreversible when exposed to a mixture of just four non-excitatory amino acids(L-alanine,glycine,L-glutamine,and L-serine)at their plasma concentrations.These amino acids induce swelling in the somas of neurons and astrocytes during hypoxia,along with permanent dendritic damage mediated by N-methyl-D-aspartate receptors.Blocking N-methyl-D-aspartate receptors prevented neuronal damage in the presence of these amino acids during hypoxia.It is likely that astroglial swelling caused by the accumulation of these amino acids via the alanine-serine-cysteine transporter 2 exchanger and system N transporters activates volume-regulated anion channels,leading to the release of excitotoxins and subsequent neuronal damage through N-methyl-D-aspartate receptor activation.Thus,previously unrecognized mechanisms involving non-excitatory amino acids may contribute to the progression and expansion of brain injury in neurological emergencies such as stroke and traumatic brain injury.Understanding these pathways co uld highlight new therapeutic targets to mitigate brain injury. 展开更多
关键词 cell swelling N-methyl-D-aspartate receptor non-excitatory amino acids STROKE synaptic transmission
下载PDF
Dysregulation of genes involved in the long-chain fatty acid transport in pancreatic ductal adenocarcinoma
12
作者 Radu Cristian Poenaru Elena Milanesi +7 位作者 Andrei Marian Niculae Anastasia-Maria Dobre Catalina Vladut Mihai Ciocîrlan Daniel Vasile Balaban Vlad Herlea Maria Dobre Mihail Eugen Hinescu 《World Journal of Gastrointestinal Oncology》 SCIE 2025年第1期199-206,共8页
BACKGROUND Pancreatic ductal adenocarcinoma(PDAC)is an aggressive lethal malignancy with limited options for treatment and a 5-year survival rate of 11%in the United States.As for other types of tumors,such as colorec... BACKGROUND Pancreatic ductal adenocarcinoma(PDAC)is an aggressive lethal malignancy with limited options for treatment and a 5-year survival rate of 11%in the United States.As for other types of tumors,such as colorectal cancer,aberrant de novo lipid synthesis and reprogrammed lipid metabolism have been suggested to be associated with PDAC development and progression.AIM To identify the possible involvement of lipid metabolism in PDAC by analyzing in tumoral and non-tumoral tissues the expression level of the most relevant genes involved in the long-chain fatty acid(FA)import into cell.METHODS A gene expression analysis of FASN,CD36,SLC27A1,SLC27A2,SLC27A3,SLC27A4,SLC27A5,ACSL1,and ACSL3 was performed by qRT-PCR in 24 tumoral PDAC tissues and 11 samples from non-tumoral pancreatic tissues obtained via fine needle aspiration or via surgical resection.The genes were considered significantly dysregulated between the groups when the p value was<0.05 and the fold change(FC)was≤0.5 and≥2.RESULTS We found that three FA transporters and two long-chain acyl-CoA synthetases genes were significantly upregulated in the PDAC tissue compared to the non-tumoral tissue:SLC27A2(FC=5.66;P=0.033),SLC27A3(FC=2.68;P=0.040),SLC27A4(FC=3.13;P=0.033),ACSL1(FC=4.10;P<0.001),and ACSL3(FC=2.67;P=0.012).We further investigated any possible association between the levels of the analyzed mRNAs and the specific characteristics of the tumors,including the anatomic location,the lymph node involvement,and the presence of metastasis.A significant difference in the expression of SLC27A3(FC=3.28;P=0.040)was found comparing patients with and without lymph nodes involvement with an overexpression of this transcript in 17 patients presenting tumoral cells in the lymph nodes.CONCLUSION Despite the low number of patients analyzed,these preliminary results seem to be promising.Addressing lipid metabolism through a broad strategy could be a beneficial way to treat this malignancy.Future in vitro and in vivo studies on these genes may offer important insights into the mechanisms linking PDAC with the long-chain FA import pathway. 展开更多
关键词 CARCINOMA Pancreatic ductal Fatty acid transport Gene expression Biomarkers
下载PDF
Additive neurorestorative effects of exercise and docosahexaenoic acid intake in a mouse model of Parkinson’s disease
13
作者 Olivier Kerdiles Méryl-Farelle Oye Mintsa Mi-mba +8 位作者 Katherine Coulombe Cyntia Tremblay VincentÉmond Martine Saint-Pierre Clémence Rouxel Line Berthiaume Pierre Julien Francesca Cicchetti Frédéric Calon 《Neural Regeneration Research》 SCIE CAS 2025年第2期574-586,共13页
There is a need to develop interventions to slow or reverse the degeneration of dopamine neurons in Parkinson’s disease after diagnosis.Given that preclinical and clinical studies suggest benefits of dietary n-3 poly... There is a need to develop interventions to slow or reverse the degeneration of dopamine neurons in Parkinson’s disease after diagnosis.Given that preclinical and clinical studies suggest benefits of dietary n-3 polyunsaturated fatty acids,such as docosahexaenoic acid,and exercise in Parkinson’s disease,we investigated whether both could synergistically interact to induce recovery of the dopaminergic pathway.First,mice received a unilateral stereotactic injection of 6-hydroxydopamine into the striatum to establish an animal model of nigrostriatal denervation.Four weeks after lesion,animals were fed a docosahexaenoic acid-enriched or a control diet for the next 8 weeks.During this period,the animals had access to a running wheel,which they could use or not.Docosahexaenoic acid treatment,voluntary exercise,or the combination of both had no effect on(i)distance traveled in the open field test,(ii)the percentage of contraversive rotations in the apomorphine-induction test or(iii)the number of tyrosine-hydroxylase-positive cells in the substantia nigra pars compacta.However,the docosahexaenoic acid diet increased the number of tyrosine-hydroxylase-positive terminals and induced a rise in dopamine concentrations in the lesioned striatum.Compared to docosahexaenoic acid treatment or exercise alone,the combination of docosahexaenoic acid and exercise(i)improved forelimb balance in the stepping test,(ii)decreased the striatal DOPAC/dopamine ratio and(iii)led to increased dopamine transporter levels in the lesioned striatum.The present results suggest that the combination of exercise and docosahexaenoic acid may act synergistically in the striatum of mice with a unilateral lesion of the dopaminergic system and provide support for clinical trials combining nutrition and physical exercise in the treatment of Parkinson’s disease. 展开更多
关键词 6-HYDROXYDOPAMINE DOPAMINE dopamine transporter EXERCISE neurorestoration Parkinson’s disease polyunsaturated fatty acids omega-3
下载PDF
Maintaining moderate levels of hypochlorous acid promotes neural stem cell proliferation and differentiation in the recovery phase of stroke
14
作者 Lin-Yan Huang Yi-De Zhang +9 位作者 Jie Chen Hai-Di Fan Wan Wang Bin Wang Ju-Yun Ma Peng-Peng Li Hai-Wei Pu Xin-Yian Guo Jian-Gang Shen Su-Hua Qi 《Neural Regeneration Research》 SCIE CAS 2025年第3期845-857,共13页
It has been shown clinically that continuous removal of ischemia/reperfusion-induced reactive oxygen species is not conducive to the recovery of late stroke.Indeed,previous studies have shown that excessive increases ... It has been shown clinically that continuous removal of ischemia/reperfusion-induced reactive oxygen species is not conducive to the recovery of late stroke.Indeed,previous studies have shown that excessive increases in hypochlorous acid after stroke can cause severe damage to brain tissue.Our previous studies have found that a small amount of hypochlorous acid still exists in the later stage of stroke,but its specific role and mechanism are currently unclear.To simulate stroke in vivo,a middle cerebral artery occlusion rat model was established,with an oxygen-glucose deprivation/reoxygenation model established in vitro to mimic stroke.We found that in the early stage(within 24 hours)of ischemic stroke,neutrophils produced a large amount of hypochlorous acid,while in the recovery phase(10 days after stroke),microglia were activated and produced a small amount of hypochlorous acid.Further,in acute stroke in rats,hypochlorous acid production was prevented using a hypochlorous acid scavenger,taurine,or myeloperoxidase inhibitor,4-aminobenzoic acid hydrazide.Our results showed that high levels of hypochlorous acid(200μM)induced neuronal apoptosis after oxygen/glucose deprivation/reoxygenation.However,in the recovery phase of the middle cerebral artery occlusion model,a moderate level of hypochlorous acid promoted the proliferation and differentiation of neural stem cells into neurons and astrocytes.This suggests that hypochlorous acid plays different roles at different phases of cerebral ischemia/reperfusion injury.Lower levels of hypochlorous acid(5 and 100μM)promoted nuclear translocation ofβ-catenin.By transfection of single-site mutation plasmids,we found that hypochlorous acid induced chlorination of theβ-catenin tyrosine 30 residue,which promoted nuclear translocation.Altogether,our study indicates that maintaining low levels of hypochlorous acid plays a key role in the recovery of neurological function. 展开更多
关键词 cell differentiation cerebral ischemia/reperfusion injury CHLORINATION hypochlorous acid MICROGLIA neural stem cell NEUROGENESIS nuclear translocation stroke β-catenin
下载PDF
Enhanced autophagic clearance of amyloid-βvia histone deacetylase 6-mediated V-ATPase assembly and lysosomal acidification protects against Alzheimer's disease in vitro and in vivo
15
作者 Zhimin Long Chuanhua Ge +5 位作者 Yueyang Zhao Yuanjie Liu Qinghua Zeng Qing Tang Zhifang Dong Guiqiong He 《Neural Regeneration Research》 SCIE CAS 2025年第9期2633-2644,共12页
Recent studies have suggested that abnormal acidification of lysosomes induces autophagic accumulation of amyloid-βin neurons,which is a key step in senile plaque formation.Therefore,resto ring normal lysosomal funct... Recent studies have suggested that abnormal acidification of lysosomes induces autophagic accumulation of amyloid-βin neurons,which is a key step in senile plaque formation.Therefore,resto ring normal lysosomal function and rebalancing lysosomal acidification in neurons in the brain may be a new treatment strategy for Alzheimer's disease.Microtubule acetylation/deacetylation plays a central role in lysosomal acidification.Here,we show that inhibiting the classic microtubule deacetylase histone deacetylase 6 with an histone deacetylase 6 shRNA or thehistone deacetylase 6 inhibitor valproic acid promoted lysosomal reacidification by modulating V-ATPase assembly in Alzheimer's disease.Fu rthermore,we found that treatment with valproic acid markedly enhanced autophagy.promoted clearance of amyloid-βaggregates,and ameliorated cognitive deficits in a mouse model of Alzheimer's disease.Our findings demonstrate a previously unknown neuroprotective mechanism in Alzheimer's disease,in which histone deacetylase 6 inhibition by valproic acid increases V-ATPase assembly and lysosomal acidification. 展开更多
关键词 Alzheimer's disease amyloid-β APP/PS1 mice autophagy cognitive impairment histone deacetylase 6 lysosomal acidification microtubule acetylation valproic acid V-ATPASE
下载PDF
Activation of adult endogenous neurogenesis by a hyaluronic acid collagen gel containing basic fibroblast growth factor promotes remodeling and functional recovery of the injured cerebral cortex
16
作者 Yan Li Peng Hao +6 位作者 Hongmei Duan Fei Hao Wen Zhao Yudan Gao Zhaoyang Yang Kwok-Fai So Xiaoguang Li 《Neural Regeneration Research》 SCIE CAS 2025年第10期2923-2937,共15页
The presence of endogenous neural stem/progenitor cells in the adult mammalian brain suggests that the central nervous system can be repaired and regenerated after injury.However,whether it is possible to stimulate ne... The presence of endogenous neural stem/progenitor cells in the adult mammalian brain suggests that the central nervous system can be repaired and regenerated after injury.However,whether it is possible to stimulate neurogenesis and reconstruct cortical layers II to VI in non-neurogenic regions,such as the cortex,remains unknown.In this study,we implanted a hyaluronic acid collagen gel loaded with basic fibroblast growth factor into the motor cortex immediately following traumatic injury.Our findings reveal that this gel effectively stimulated the proliferation and migration of endogenous neural stem/progenitor cells,as well as their differentiation into mature and functionally integrated neurons.Importantly,these new neurons reconstructed the architecture of cortical layers II to VI,integrated into the existing neural circuitry,and ultimately led to improved brain function.These findings offer novel insight into potential clinical treatments for traumatic cerebral cortex injuries. 展开更多
关键词 adult endogenous neurogenesis basic fibroblast growth factor-hyaluronic acid collagen gel cortical remodeling functional recovery migration motor cortex injury neural circuits neural stem cells newborn neurons proliferation
下载PDF
Recovery of Li, Ni, Co and Mn from spent lithium-ion batteries assisted by organic acids: Process optimization and leaching mechanism 被引量:2
17
作者 Liuyi Ren Bo Liu +5 位作者 Shenxu Bao Wei Ding Yimin Zhang Xiaochuan Hou Chao Lin Bo Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期518-530,共13页
The proper recycling of spent lithium-ion batteries(LIBs)can promote the recovery and utilization of valuable resources,while also negative environmental effects resulting from the presence of toxic and hazardous subs... The proper recycling of spent lithium-ion batteries(LIBs)can promote the recovery and utilization of valuable resources,while also negative environmental effects resulting from the presence of toxic and hazardous substances.In this study,a new environmentally friendly hydro-metallurgical process was proposed for leaching lithium(Li),nickel(Ni),cobalt(Co),and manganese(Mn)from spent LIBs using sulfuric acid with citric acid as a reductant.The effects of the concentration of sulfuric acid,the leaching temperature,the leaching time,the solid-liquid ratio,and the reducing agent dosage on the leaching behavior of the above elements were investigated.Key parameters were optimized using response surface methodology(RSM)to maximize the recovery of metals from spent LIBs.The maxim-um recovery efficiencies of Li,Ni,Co,and Mn can reach 99.08%,98.76%,98.33%,and 97.63%.under the optimized conditions(the sulfuric acid concentration was 1.16 mol/L,the citric acid dosage was 15wt%,the solid-liquid ratio was 40 g/L,and the temperature was 83℃ for 120 min),respectively.It was found that in the collaborative leaching process of sulfuric acid and citric acid,the citric acid initially provided strong reducing CO_(2)^(-),and the transition metal ions in the high state underwent a reduction reaction to produce transition metal ions in the low state.Additionally,citric acid can also act as a proton donor and chelate with lower-priced transition metal ions,thus speeding up the dissolution process. 展开更多
关键词 spent lithium-ion batteries LEACHING response surface methodology sulfuric acid citric acid
下载PDF
A comparison study on structure-function relationship of polysaccharides obtained from sea buckthorn berries using different methods:antioxidant and bile acid-binding capacity 被引量:8
18
作者 Qiaoyun Li Zuman Dou +5 位作者 Qingfei Duan Chun Chen Ruihai Liu Yueming Jiang Bao Yang Xiong Fu 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期494-505,共12页
In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic... In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic(HRP-U),acid(HRP-C)and alkali(HRP-A)assisted extraction methods were investigated.The results demonstrated that extraction methods had significant effects on extraction yield,monosaccharide composition,molecular weight,particle size,triple-helical structure,and surface morphology of HRPs except for the major linkage bands.Thermogravimetric analysis showed that HRP-U with filamentous reticular microstructure exhibited better thermal stability.The HRP-A with the lowest molecular weight and highest arabinose content possessed the best antioxidant activities.Moreover,the rheological analysis indicated that HRPs with higher galacturonic acid content and molecular weight showed higher viscosity and stronger crosslinking network(HRP-C,HRP-W and HRP-U),which exhibited stronger bile acid binding capacity.The present findings provide scientific evidence in the preparation technology of sea buckthorn polysaccharides with good antioxidant and bile acid binding capacity which are related to the structure affected by the extraction methods. 展开更多
关键词 Sea buckthorn Extraction method STRUCTURE Rheological properties Antioxidant activity Bile acid binding capacity
下载PDF
Selective leaching of lithium from spent lithium-ion batteries using sulfuric acid and oxalic acid 被引量:1
19
作者 Haijun Yu Dongxing Wang +6 位作者 Shuai Rao Lijuan Duan Cairu Shao Xiaohui Tu Zhiyuan Ma Hongyang Cao Zhiqiang Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期688-696,共9页
Traditional hydrometallurgical methods for recovering spent lithium-ion batteries(LIBs)involve acid leaching to simultaneously extract all valuable metals into the leachate.These methods usually are followed by a seri... Traditional hydrometallurgical methods for recovering spent lithium-ion batteries(LIBs)involve acid leaching to simultaneously extract all valuable metals into the leachate.These methods usually are followed by a series of separation steps such as precipitation,extraction,and stripping to separate the individual valuable metals.In this study,we present a process for selectively leaching lithium through the synergistic effect of sulfuric and oxalic acids.Under optimal leaching conditions(leaching time of 1.5 h,leaching temperature of 70°C,liquid-solid ratio of 4 mL/g,oxalic acid ratio of 1.3,and sulfuric acid ratio of 1.3),the lithium leaching efficiency reached89.6%,and the leaching efficiencies of Ni,Co,and Mn were 12.8%,6.5%,and 21.7%.X-ray diffraction(XRD)and inductively coupled plasma optical emission spectrometer(ICP-OES)analyses showed that most of the Ni,Co,and Mn in the raw material remained as solid residue oxides and oxalates.This study offers a new approach to enriching the relevant theory for selectively recovering lithium from spent LIBs. 展开更多
关键词 selective leaching oxalic acid sulfuric acid spent lithium-ion batteries
下载PDF
Boric Acid-Assisted Pyrolysis for High-Loading Single-Atom Catalysts to Boost Oxygen Reduction Reaction in Zn-Air Batteries 被引量:4
20
作者 Chenxi Xu Jiexing Wu +12 位作者 Liang Chen Yi Gong Boyang Mao Jincan Zhang Jinhai Deng Mingxuan Mao Yan Shi Zhaohui Hou Mengxue Cao Huanxin Li Haihui Zhou Zhongyuan Huang Yafei Kuang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期102-110,共9页
The emerging of single-atom catalysts(SACs)offers a great opportunity for the development of advanced energy storage and conversion devices due to their excellent activity and durability,but the actual mass production... The emerging of single-atom catalysts(SACs)offers a great opportunity for the development of advanced energy storage and conversion devices due to their excellent activity and durability,but the actual mass production of high-loading SACs is still challenging.Herein,a facile and green boron acid(H_(3)BO_(3))-assisted pyrolysis strategy is put forward to synthesize SACs by only using chitosan,cobalt salt and H_(3)BO_(3)as precursor,and the effect of H_(3)BO_(3)is deeply investigated.The results show that molten boron oxide derived from H_(3)BO_(3)as ideal high-temperature carbonization media and blocking media play important role in the synthesis process.As a result,the acquired Co/N/B tri-doped porous carbon framework(Co-N-B-C)not only presents hierarchical porous structure,large specific surface area and abundant carbon edges but also possesses high-loading single Co atom(4.2 wt.%),thus giving rise to outstanding oxygen catalytic performance.When employed as a catalyst for air cathode in Zn-air batteries,the resultant Co-N-B-C catalyst shows remarkable power density and long-term stability.Clearly,our work gains deep insight into the role of H_(3)BO_(3)and provides a new avenue to synthesis of high-performance SACs. 展开更多
关键词 boric acid oxygen reduction reaction single-atom catalysts Zn-air batteries
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部