Logging data and its interpretation results are one of the most important basic data for understanding reservoirs and oilfield development. Standardized and unified logging interpretation results play a decisive role ...Logging data and its interpretation results are one of the most important basic data for understanding reservoirs and oilfield development. Standardized and unified logging interpretation results play a decisive role in fine reservoir description and reservoir development. Aiming at the problem of the conflict between the development effect and the initial interpretation result of Yan 9 reservoir in Hujianshan area of Ordos Basin, by combining the current well production performance, logging, oil test, production test and other data, on the basis of making full use of core, coring, logging, thin section analysis and high pressure mercury injection data, the four characteristics of reservoir are analyzed, a more scientific and reasonable calculation model of reservoir logging parameters is established, and the reserves are recalculated after the second interpretation standard of logging is determined. The research improves the accuracy of logging interpretation and provides an effective basis for subsequent production development and potential horizons.展开更多
Data mining is the process of extracting implicit but potentially useful information from incomplete, noisy, and fuzzy data. Data mining offers excellent nonlinear modeling and self-organized learning, and it can play...Data mining is the process of extracting implicit but potentially useful information from incomplete, noisy, and fuzzy data. Data mining offers excellent nonlinear modeling and self-organized learning, and it can play a vital role in the interpretation of well logging data of complex reservoirs. We used data mining to identify the lithologies in a complex reservoir. The reservoir lithologies served as the classification task target and were identified using feature extraction, feature selection, and modeling of data streams. We used independent component analysis to extract information from well curves. We then used the branch-and- bound algorithm to look for the optimal feature subsets and eliminate redundant information. Finally, we used the C5.0 decision-tree algorithm to set up disaggregated models of the well logging curves. The modeling and actual logging data were in good agreement, showing the usefulness of data mining methods in complex reservoirs.展开更多
The complex pore structure of carbonate reservoirs hinders the correlation between porosity and permeability.In view of the sedimentation,diagenesis,testing,and production characteristics of carbonate reservoirs in th...The complex pore structure of carbonate reservoirs hinders the correlation between porosity and permeability.In view of the sedimentation,diagenesis,testing,and production characteristics of carbonate reservoirs in the study area,combined with the current trends and advances in well log interpretation techniques for carbonate reservoirs,a log interpretation technology route of“geological information constraint+deep learning”was developed.The principal component analysis(PCA)was employed to establish lithology identification criteria with an accuracy of 91%.The Bayesian stepwise discriminant method was used to construct a sedimentary microfacies identification method with an accuracy of 90.5%.Based on production data,the main lithologies and sedimentary microfacies of effective reservoirs were determined,and 10 petrophysical facies with effective reservoir characteristics were identified.Constrained by petrophysical facies,the mean interpretation error of porosity compared to core analysis results is 2.7%,and the ratio of interpreted permeability to core analysis is within one order of magnitude,averaging 3.6.The research results demonstrate that deep learning algorithms can uncover the correlation in carbonate reservoir well logging data.Integrating geological and production data and selecting appropriate machine learning algorithms can significantly improve the accuracy of well log interpretation for carbonate reservoirs.展开更多
The distributions of local velocity and local phase holdup along the radial direction of pipes are complicated because of gravity differentiation,and the distribution of fluid velocity fi eld changes along the gravity...The distributions of local velocity and local phase holdup along the radial direction of pipes are complicated because of gravity differentiation,and the distribution of fluid velocity fi eld changes along the gravity direction in horizontal wells.Therefore,measuring the mixture flow and water holdup is difficult,resulting in poor interpretation accuracy of the production logging output profile.In this paper,oil–water two-phase flow dynamic simulation logging experiments in horizontal oil–water two-phase fl ow simulation wells were conducted using the Multiple Array Production Suite,which comprises a capacitance array tool(CAT)and a spinner array tool(SAT),and then the response characteristics of SAT and CAT in diff erent fl ow rates and water cut production conditions were studied.According to the response characteristics of CAT in diff erent water holdup ranges,interpolation imaging along the wellbore section determines the water holdup distribution,and then,the oil–water two-phase velocity fi eld in the fl ow section was reconstructed on the basis of the fl ow section water holdup distribution and the logging value of SAT and combined with the rheological equation of viscous fl uid,and the calculation method of the oil–water partial phase fl ow rate in the fl ow section was proposed.This new approach was applied in the experiment data calculations,and the results are basically consistent with the experimental data.The total fl ow rate and water holdup from the calculation are in agreement with the set values in the experiment,suggesting that the method has high accuracy.展开更多
This paper first deeply interprets the connotation of the“One Core,Two Lines,Four Dimensions”ideological and political teaching model in courses.Then,it explores the significant meaning of integrating this teaching ...This paper first deeply interprets the connotation of the“One Core,Two Lines,Four Dimensions”ideological and political teaching model in courses.Then,it explores the significant meaning of integrating this teaching model into the Interpretation of Concrete Plane Construction Drawings course.Finally,based on the challenges faced in this work,corresponding educational countermeasures are proposed to help improve the effectiveness and quality of ideological and political construction in the Interpretation of Concrete Plane Construction Drawings course and enhance the level of talent cultivation.展开更多
Azimuth gamma logging while drilling(LWD)is one of the important technologies of geosteering but the information of real-time data transmission is limited and the interpretation is difficult.This study proposes a meth...Azimuth gamma logging while drilling(LWD)is one of the important technologies of geosteering but the information of real-time data transmission is limited and the interpretation is difficult.This study proposes a method of applying artificial intelligence in the LWD data interpretation to enhance the accuracy and efficiency of real-time data processing.By examining formation response characteristics of azimuth gamma ray(GR)curve,the preliminary formation change position is detected based on wavelet transform modulus maxima(WTMM)method,then the dynamic threshold is determined,and a set of contour points describing the formation boundary is obtained.The classification recognition model based on the long short-term memory(LSTM)is designed to judge the true or false of stratum information described by the contour point set to enhance the accuracy of formation identification.Finally,relative dip angle is calculated by nonlinear least square method.Interpretation of azimuth gamma data and application of real-time data processing while drilling show that the method proposed can effectively and accurately determine the formation changes,improve the accuracy of formation dip interpretation,and meet the needs of real-time LWD geosteering.展开更多
Since gas hydrate exists in three different forms at the same time such as pore filling,particle support and separate stratification,the calculation method of hydrate saturation using traditional shaly sand formation ...Since gas hydrate exists in three different forms at the same time such as pore filling,particle support and separate stratification,the calculation method of hydrate saturation using traditional shaly sand formation interpretation models is equivalent to considering only the simple case that hydrate exists as pore filling,and does not consider other complex states.Based on the analysis of hydrate resistivity experimental data and the general form of the resistivity-oil(gas)saturation relationship,the best simplified formula of hydrate saturation calculation is derived,then the physical meaning of the three items are clarified:they respectively represent the resistivity index-saturation relationship when hydrate particles are completely distributed in the pores of formation rocks,supported in the form of particles,and exist in layers,corresponding quantitative evaluation method of hydrate saturation is built.The field application shows that the hydrate saturation calculated by this method is closer to that obtained by sampling analysis.At the same time,it also provides a logging analysis basis for the effective development after hydrate exploration.展开更多
The development of shale gas reservoir is mainly based on horizontal well production.Slug flow of gas-liquid two-phase is invariably encountered in inclined wells and horizontal wells of a producing environment.Due to...The development of shale gas reservoir is mainly based on horizontal well production.Slug flow of gas-liquid two-phase is invariably encountered in inclined wells and horizontal wells of a producing environment.Due to gravitational differentiation,oil-water two-phase flow pattern,the local velocity and local phase holdup along the radial direction of pipe in near horizontal wells will perform complicatedly.This paper presented the results of an experimental study and a theoretical analysis of two-phase gas/water flow in horizontal and highly inclined systems.Extensive experiments were conducted using a test loop made of 124 mm diameter acrylic pipe with inclination angles from the horizontal of 0°,5°,15°,45°,°2°,°5°and°10°,and with the total flow rate ranging from 50 to 800 m3/day.Based on the research on the law of slug flow dynamics model for gas-water two-phase flow in near horizontal pipeline,the theoretical analysis and experimental researches were done to propose the expressions of stable and exact production logging interpretation model for two-phase flow in near horizontal pipeline.The performance of the proposed method for estimating water holdup and water superficial velocity is in good agreement with our measurements.As a result,the slug flow dynamics model of gas-water two-phase flow in near horizontal wellbore was developed.The application effect of production logging in near horizontal wells had been improved.展开更多
Hills like White Elephants is one of the masterpieces of Ernest Hemingway. The story bears an open ending. This paper attempts to analyze the heroine-Jig's psychological fluctuations, and her three emotional stage...Hills like White Elephants is one of the masterpieces of Ernest Hemingway. The story bears an open ending. This paper attempts to analyze the heroine-Jig's psychological fluctuations, and her three emotional stages to support the author's interpretation on the end of the story—the heroine's final decision is to have the baby born.展开更多
LWD(logging while drilling) data has been used to explore complex subtle reservoirs by realtime visual interpretation and geo-steering.The method comprises of computer communication,well log data processing,formatio...LWD(logging while drilling) data has been used to explore complex subtle reservoirs by realtime visual interpretation and geo-steering.The method comprises of computer communication,well log data processing,formation recognition,reservoir modeling and model updating in real time.We studied the key technologies related to real-time LWD data visual interpretation and geo-steering and developed computer software with Chinese intellectual property rights covering the following important aspects: 1) real-time computer communication of well site LWD data;2) visualization of geological model and borehole information;3) real-time interpretation of LWD data;4) real-time geological model updating and geo-steering technology.We use field application examples to demonstrate the feasibility and validity of the proposed technologies.展开更多
With the successful application and breakthrough of deep learning technology in image segmentation,there has been continuous development in the field of seismic facies interpretation using convolutional neural network...With the successful application and breakthrough of deep learning technology in image segmentation,there has been continuous development in the field of seismic facies interpretation using convolutional neural networks.These intelligent and automated methods significantly reduce manual labor,particularly in the laborious task of manually labeling seismic facies.However,the extensive demand for training data imposes limitations on their wider application.To overcome this challenge,we adopt the UNet architecture as the foundational network structure for seismic facies classification,which has demonstrated effective segmentation results even with small-sample training data.Additionally,we integrate spatial pyramid pooling and dilated convolution modules into the network architecture to enhance the perception of spatial information across a broader range.The seismic facies classification test on the public data from the F3 block verifies the superior performance of our proposed improved network structure in delineating seismic facies boundaries.Comparative analysis against the traditional UNet model reveals that our method achieves more accurate predictive classification results,as evidenced by various evaluation metrics for image segmentation.Obviously,the classification accuracy reaches an impressive 96%.Furthermore,the results of seismic facies classification in the seismic slice dimension provide further confirmation of the superior performance of our proposed method,which accurately defines the range of different seismic facies.This approach holds significant potential for analyzing geological patterns and extracting valuable depositional information.展开更多
Integrated gravitational, electrical-magnetic surveys and data processing carried out in the Sanshandao-Jiaojia area, Eastern Shandong Province, northeast China, aim to illuminate the geological characteristics of thi...Integrated gravitational, electrical-magnetic surveys and data processing carried out in the Sanshandao-Jiaojia area, Eastern Shandong Province, northeast China, aim to illuminate the geological characteristics of this shallow-covered area and delineate deep-seated gold prospecting targets. In this region, altogether 12 faults exert critical control on distribution of three types of Early Precambrian metamorphic rock series, i.e. those in the metamorphic rock area, in the granitic rock area underlying the metamorphic rock, and in the remnant metamorphic rock area in granites, respectively. Additionally, the faults have major effects on distribution of four Mesozoic Linglong rock bodies of granite, i.e. the Cangshang, Liangguo, Zhuqiao-Miaojia and Jincheng granites. The Sanshandao and Jiaojia Faults are two well-known regional ore-controlling faults; they have opposite dip direction, and intersect at a depth of 4500 m. Fracture alteration zones have striking geophysical differences relative to the surrounding county rocks. The two faults extend down along dip direction in a gentle wave form, and appear at some steps with different dips. These steps comprise favorable gold prospecting areas, consistent with a step metallogenic model. Six deep-seated gold-prospecting targets are delineated, i.e. Jincheng-Qianchenjia, Xiaoxizhuang-Zhaoxian, Xiyou-Wujiazhuangzi, Xiangyangling-Xinlicun, Panjiawuzi and Miaojia-Pinglidian.展开更多
Located at the northwest continental slope of the South China Sea, the Qiongdongnan Basin bears valley-shaped bathymetry deepening toward east. It is separated from the Yinggehai Basin through NW-trending Indo-China-R...Located at the northwest continental slope of the South China Sea, the Qiongdongnan Basin bears valley-shaped bathymetry deepening toward east. It is separated from the Yinggehai Basin through NW-trending Indo-China-Red River shear zone, and connected with NW subsea basin through the Xisha Trough. Along with the rapid progress of the deepwater exploration, large amounts of high resolution geophysical and geological data were accumulated. Scientific researches about deepwater basins kept revealing brand new tectonic and sedimentary discoveries. In order to summarize the structural features and main controlling factors of the deepwater Qiongdongnan Basin, a series of researches on basin architecture, fault activities, tectonic deformation and evolution were carried out. In reference to analogue modeling experiments, a tectonic situation and a basin formation mechanism were discussed. The researches indicate that:the northern boundary of the Qiongdongnan Basin is strongly controlled by No. 2 fault. The overlapping control of two stress fields from the east and the west made the central depression zone extremely thinned. Combined with the changed stress field, the segmentation of a preexisting weakness zone made the sags in the east experiencing different rifting histories from the west ones. The NE-trending west segment of the Qiongdongnan Basin experienced strong rifting during Eocene, while the roughly EW-trending sags in the east segment show strong rifting during late Eocene and early Oligocene. Local structures such as NW-trending basal fault and inherited uplifts controlled the lateral segmentation. So first order factors such as regional stress field and preexisting weakness zone controlled the basin zonation, while the second order factors determined the segmentation from east to west.展开更多
Geological radar probing technology finds wide application in engineering projects. The high-precision characteristics of geologic radar should be studied in connection with fine processing and interpretation. This ar...Geological radar probing technology finds wide application in engineering projects. The high-precision characteristics of geologic radar should be studied in connection with fine processing and interpretation. This article discusses such issues as (1) geologic radar noise source and (2) fine processing and interpretation of radar data. It is focused on how to achieve fine processing and interpretation.展开更多
Regional gravity and aeromagnetic data covering the area of 32°- 38° N, 118°-127° E at the scale of 1:1,000,000 are coordinated and integrated in a synthetic study of the South China Yellow Sea an...Regional gravity and aeromagnetic data covering the area of 32°- 38° N, 118°-127° E at the scale of 1:1,000,000 are coordinated and integrated in a synthetic study of the South China Yellow Sea and adjacent areas. Depth to magnetic crystalline basement and its structure are determined by magnetic anomaly inversion. Depth to and thickness of the Paleozoic rock are also revealed by gravity anomaly inversion with constrains of the basement and known seismic information from several profiles. Structure units, main faults, basin boundaries, and sub-suppressions are outlined on the basis of gravity data interpretation.展开更多
On March 3,2024,the prototype permeability logging instrument independently developed in China successfully completed its first downhole test in Ren 91 standard well in PetroChina Huabei Oilfield.In the open hole sect...On March 3,2024,the prototype permeability logging instrument independently developed in China successfully completed its first downhole test in Ren 91 standard well in PetroChina Huabei Oilfield.In the open hole section at a depth of 3925 metres and at a temperature of 148℃,the device collected high-quality permeability logging data.This marks a key technological breakthrough from 0 to 1 in permeability logging,and lays the foundation for the next step in developing a complete set of permeability logging equipment.展开更多
It is very important to comprehensively interpret areal seismic data with geological data in a research area. For the structural interpretations in the middle depression of the eastern basin of Liaohe oilfield, we fir...It is very important to comprehensively interpret areal seismic data with geological data in a research area. For the structural interpretations in the middle depression of the eastern basin of Liaohe oilfield, we first analyze and study geological phenomena on outcrop pictures collected in the field and establish geological outcrop models. Second, we make fault and structural interpretations based on the structural characteristics of the outcrop pictures. Third, we analyze the migration, accumulation, and formation of oil and gas using characteristics of seismic profiles. By geologic and geophysical comprehensive interpretation, it is inferred that, in the research area, the dominant factor controlling oil and gas accumulation is strike-slip faults. Structural modes and the relationship of the oil and gas in the Huangshatuo and Oulituozi oil fields are also analyzed and investigated.展开更多
During injection treatments, bottomhole pressure measurements may significantly mismatch modeling results. We devise a computationally effective technique for interpretation of fluid injection in a wellbore interval w...During injection treatments, bottomhole pressure measurements may significantly mismatch modeling results. We devise a computationally effective technique for interpretation of fluid injection in a wellbore interval with multiple geological layers based on the bottomhole pressure measurements. The permeability, porosity and compressibility in each layer are initially setup, while the skin factor and partitioning of injected fluids among the zones during the injection are found as a solution of the problem. The problem takes into account Darcy flow and chemical interactions between the injected acids, diverter fluids and reservoir rock typical in modern matrix acidizing treatments. Using the synchronously recorded injection rate and bottomhole pressure, we evaluate skin factor changes in each layer and actual fluid placement into the reservoir during different pumping jobs: matrix acidizing, water control, sand control, scale squeezes and water flooding. The model is validated by comparison with a simulator used in industry. It gives opportunity to estimate efficiency of a matrix treatment job, role of every injection stage, and control fluid delivery to each layer in real time. The presented interpretation technique significantly improves accuracy of matrix treatments analysis by coupling the hydrodynamic model with records of pressure and injection rate during the treatment.展开更多
Due to the complex nature of multi-source geological data, it is difficult to rebuild every geological structure through a single 3D modeling method. The multi-source data interpretation method put forward in this ana...Due to the complex nature of multi-source geological data, it is difficult to rebuild every geological structure through a single 3D modeling method. The multi-source data interpretation method put forward in this analysis is based on a database-driven pattern and focuses on the discrete and irregular features of geological data. The geological data from a variety of sources covering a range of accuracy, resolution, quantity and quality are classified and integrated according to their reliability and consistency for 3D modeling. The new interpolation-approximation fitting construction algorithm of geological surfaces with the non-uniform rational B-spline(NURBS) technique is then presented. The NURBS technique can retain the balance among the requirements for accuracy, surface continuity and data storage of geological structures. Finally, four alternative 3D modeling approaches are demonstrated with reference to some examples, which are selected according to the data quantity and accuracy specification. The proposed approaches offer flexible modeling patterns for different practical engineering demands.展开更多
文摘Logging data and its interpretation results are one of the most important basic data for understanding reservoirs and oilfield development. Standardized and unified logging interpretation results play a decisive role in fine reservoir description and reservoir development. Aiming at the problem of the conflict between the development effect and the initial interpretation result of Yan 9 reservoir in Hujianshan area of Ordos Basin, by combining the current well production performance, logging, oil test, production test and other data, on the basis of making full use of core, coring, logging, thin section analysis and high pressure mercury injection data, the four characteristics of reservoir are analyzed, a more scientific and reasonable calculation model of reservoir logging parameters is established, and the reserves are recalculated after the second interpretation standard of logging is determined. The research improves the accuracy of logging interpretation and provides an effective basis for subsequent production development and potential horizons.
基金sponsored by the National Science and Technology Major Project(No.2011ZX05023-005-006)
文摘Data mining is the process of extracting implicit but potentially useful information from incomplete, noisy, and fuzzy data. Data mining offers excellent nonlinear modeling and self-organized learning, and it can play a vital role in the interpretation of well logging data of complex reservoirs. We used data mining to identify the lithologies in a complex reservoir. The reservoir lithologies served as the classification task target and were identified using feature extraction, feature selection, and modeling of data streams. We used independent component analysis to extract information from well curves. We then used the branch-and- bound algorithm to look for the optimal feature subsets and eliminate redundant information. Finally, we used the C5.0 decision-tree algorithm to set up disaggregated models of the well logging curves. The modeling and actual logging data were in good agreement, showing the usefulness of data mining methods in complex reservoirs.
基金funded by the Science and Technology Project of Changzhou City(Grant No.CJ20210120)the Research Start-up Fund of Changzhou University(Grant No.ZMF21020056).
文摘The complex pore structure of carbonate reservoirs hinders the correlation between porosity and permeability.In view of the sedimentation,diagenesis,testing,and production characteristics of carbonate reservoirs in the study area,combined with the current trends and advances in well log interpretation techniques for carbonate reservoirs,a log interpretation technology route of“geological information constraint+deep learning”was developed.The principal component analysis(PCA)was employed to establish lithology identification criteria with an accuracy of 91%.The Bayesian stepwise discriminant method was used to construct a sedimentary microfacies identification method with an accuracy of 90.5%.Based on production data,the main lithologies and sedimentary microfacies of effective reservoirs were determined,and 10 petrophysical facies with effective reservoir characteristics were identified.Constrained by petrophysical facies,the mean interpretation error of porosity compared to core analysis results is 2.7%,and the ratio of interpreted permeability to core analysis is within one order of magnitude,averaging 3.6.The research results demonstrate that deep learning algorithms can uncover the correlation in carbonate reservoir well logging data.Integrating geological and production data and selecting appropriate machine learning algorithms can significantly improve the accuracy of well log interpretation for carbonate reservoirs.
基金supported by National Natural Science Foundation of China(41474115,42174155)Open Fund of Key Laboratory of Exploration Technologies for Oil and Gas Resources(Yangtze University)Ministry of Education of China(No K2018-02)。
文摘The distributions of local velocity and local phase holdup along the radial direction of pipes are complicated because of gravity differentiation,and the distribution of fluid velocity fi eld changes along the gravity direction in horizontal wells.Therefore,measuring the mixture flow and water holdup is difficult,resulting in poor interpretation accuracy of the production logging output profile.In this paper,oil–water two-phase flow dynamic simulation logging experiments in horizontal oil–water two-phase fl ow simulation wells were conducted using the Multiple Array Production Suite,which comprises a capacitance array tool(CAT)and a spinner array tool(SAT),and then the response characteristics of SAT and CAT in diff erent fl ow rates and water cut production conditions were studied.According to the response characteristics of CAT in diff erent water holdup ranges,interpolation imaging along the wellbore section determines the water holdup distribution,and then,the oil–water two-phase velocity fi eld in the fl ow section was reconstructed on the basis of the fl ow section water holdup distribution and the logging value of SAT and combined with the rheological equation of viscous fl uid,and the calculation method of the oil–water partial phase fl ow rate in the fl ow section was proposed.This new approach was applied in the experiment data calculations,and the results are basically consistent with the experimental data.The total fl ow rate and water holdup from the calculation are in agreement with the set values in the experiment,suggesting that the method has high accuracy.
基金Exploration and Practice of the Ideological and Political Teaching Mode Based on the“One Core,Two Lines,Four Dimensions”Curriculum:Taking the“Concrete Flat Construction Drawing Interpretation”Course as an Example(Z233315S)。
文摘This paper first deeply interprets the connotation of the“One Core,Two Lines,Four Dimensions”ideological and political teaching model in courses.Then,it explores the significant meaning of integrating this teaching model into the Interpretation of Concrete Plane Construction Drawings course.Finally,based on the challenges faced in this work,corresponding educational countermeasures are proposed to help improve the effectiveness and quality of ideological and political construction in the Interpretation of Concrete Plane Construction Drawings course and enhance the level of talent cultivation.
基金Supported by the PetroChina Major Scientific and Technological Project(ZD2019-183-006)Fundamental Scientific Research Fund of Central Universities(20CX05017A)China National Science and Technology Major Project(2016ZX05021-001)。
文摘Azimuth gamma logging while drilling(LWD)is one of the important technologies of geosteering but the information of real-time data transmission is limited and the interpretation is difficult.This study proposes a method of applying artificial intelligence in the LWD data interpretation to enhance the accuracy and efficiency of real-time data processing.By examining formation response characteristics of azimuth gamma ray(GR)curve,the preliminary formation change position is detected based on wavelet transform modulus maxima(WTMM)method,then the dynamic threshold is determined,and a set of contour points describing the formation boundary is obtained.The classification recognition model based on the long short-term memory(LSTM)is designed to judge the true or false of stratum information described by the contour point set to enhance the accuracy of formation identification.Finally,relative dip angle is calculated by nonlinear least square method.Interpretation of azimuth gamma data and application of real-time data processing while drilling show that the method proposed can effectively and accurately determine the formation changes,improve the accuracy of formation dip interpretation,and meet the needs of real-time LWD geosteering.
文摘Since gas hydrate exists in three different forms at the same time such as pore filling,particle support and separate stratification,the calculation method of hydrate saturation using traditional shaly sand formation interpretation models is equivalent to considering only the simple case that hydrate exists as pore filling,and does not consider other complex states.Based on the analysis of hydrate resistivity experimental data and the general form of the resistivity-oil(gas)saturation relationship,the best simplified formula of hydrate saturation calculation is derived,then the physical meaning of the three items are clarified:they respectively represent the resistivity index-saturation relationship when hydrate particles are completely distributed in the pores of formation rocks,supported in the form of particles,and exist in layers,corresponding quantitative evaluation method of hydrate saturation is built.The field application shows that the hydrate saturation calculated by this method is closer to that obtained by sampling analysis.At the same time,it also provides a logging analysis basis for the effective development after hydrate exploration.
基金Educational Commission of Hubei Province of China(D20141302)Open Fund of Key Laboratory of Exploration Technologies for Oil and Gas Resources(Yangtze University),Ministry of Education(No.K2018-02)National Natural Science Foundation of China(41474115).
文摘The development of shale gas reservoir is mainly based on horizontal well production.Slug flow of gas-liquid two-phase is invariably encountered in inclined wells and horizontal wells of a producing environment.Due to gravitational differentiation,oil-water two-phase flow pattern,the local velocity and local phase holdup along the radial direction of pipe in near horizontal wells will perform complicatedly.This paper presented the results of an experimental study and a theoretical analysis of two-phase gas/water flow in horizontal and highly inclined systems.Extensive experiments were conducted using a test loop made of 124 mm diameter acrylic pipe with inclination angles from the horizontal of 0°,5°,15°,45°,°2°,°5°and°10°,and with the total flow rate ranging from 50 to 800 m3/day.Based on the research on the law of slug flow dynamics model for gas-water two-phase flow in near horizontal pipeline,the theoretical analysis and experimental researches were done to propose the expressions of stable and exact production logging interpretation model for two-phase flow in near horizontal pipeline.The performance of the proposed method for estimating water holdup and water superficial velocity is in good agreement with our measurements.As a result,the slug flow dynamics model of gas-water two-phase flow in near horizontal wellbore was developed.The application effect of production logging in near horizontal wells had been improved.
文摘Hills like White Elephants is one of the masterpieces of Ernest Hemingway. The story bears an open ending. This paper attempts to analyze the heroine-Jig's psychological fluctuations, and her three emotional stages to support the author's interpretation on the end of the story—the heroine's final decision is to have the baby born.
基金funded by several Co. of CNPC and SINOPECChina National Science and Technology Major Projects of Oil & Gas (2011ZX05009-003)"863" Projects (2006AA060105)
文摘LWD(logging while drilling) data has been used to explore complex subtle reservoirs by realtime visual interpretation and geo-steering.The method comprises of computer communication,well log data processing,formation recognition,reservoir modeling and model updating in real time.We studied the key technologies related to real-time LWD data visual interpretation and geo-steering and developed computer software with Chinese intellectual property rights covering the following important aspects: 1) real-time computer communication of well site LWD data;2) visualization of geological model and borehole information;3) real-time interpretation of LWD data;4) real-time geological model updating and geo-steering technology.We use field application examples to demonstrate the feasibility and validity of the proposed technologies.
基金funded by the Fundamental Research Project of CNPC Geophysical Key Lab(2022DQ0604-4)the Strategic Cooperation Technology Projects of China National Petroleum Corporation and China University of Petroleum-Beijing(ZLZX 202003)。
文摘With the successful application and breakthrough of deep learning technology in image segmentation,there has been continuous development in the field of seismic facies interpretation using convolutional neural networks.These intelligent and automated methods significantly reduce manual labor,particularly in the laborious task of manually labeling seismic facies.However,the extensive demand for training data imposes limitations on their wider application.To overcome this challenge,we adopt the UNet architecture as the foundational network structure for seismic facies classification,which has demonstrated effective segmentation results even with small-sample training data.Additionally,we integrate spatial pyramid pooling and dilated convolution modules into the network architecture to enhance the perception of spatial information across a broader range.The seismic facies classification test on the public data from the F3 block verifies the superior performance of our proposed improved network structure in delineating seismic facies boundaries.Comparative analysis against the traditional UNet model reveals that our method achieves more accurate predictive classification results,as evidenced by various evaluation metrics for image segmentation.Obviously,the classification accuracy reaches an impressive 96%.Furthermore,the results of seismic facies classification in the seismic slice dimension provide further confirmation of the superior performance of our proposed method,which accurately defines the range of different seismic facies.This approach holds significant potential for analyzing geological patterns and extracting valuable depositional information.
基金the Geological Science and technology foundation of Shandong Provincial Bureau of Geology and Mineral Resources (Grant No. 20080037)
文摘Integrated gravitational, electrical-magnetic surveys and data processing carried out in the Sanshandao-Jiaojia area, Eastern Shandong Province, northeast China, aim to illuminate the geological characteristics of this shallow-covered area and delineate deep-seated gold prospecting targets. In this region, altogether 12 faults exert critical control on distribution of three types of Early Precambrian metamorphic rock series, i.e. those in the metamorphic rock area, in the granitic rock area underlying the metamorphic rock, and in the remnant metamorphic rock area in granites, respectively. Additionally, the faults have major effects on distribution of four Mesozoic Linglong rock bodies of granite, i.e. the Cangshang, Liangguo, Zhuqiao-Miaojia and Jincheng granites. The Sanshandao and Jiaojia Faults are two well-known regional ore-controlling faults; they have opposite dip direction, and intersect at a depth of 4500 m. Fracture alteration zones have striking geophysical differences relative to the surrounding county rocks. The two faults extend down along dip direction in a gentle wave form, and appear at some steps with different dips. These steps comprise favorable gold prospecting areas, consistent with a step metallogenic model. Six deep-seated gold-prospecting targets are delineated, i.e. Jincheng-Qianchenjia, Xiaoxizhuang-Zhaoxian, Xiyou-Wujiazhuangzi, Xiangyangling-Xinlicun, Panjiawuzi and Miaojia-Pinglidian.
基金The Major National Science and Technology Programs of China under contract No.2011ZX05025-003-005the Joint Program of the National Science Foundation and Guangdong Province under contract No.U1301233
文摘Located at the northwest continental slope of the South China Sea, the Qiongdongnan Basin bears valley-shaped bathymetry deepening toward east. It is separated from the Yinggehai Basin through NW-trending Indo-China-Red River shear zone, and connected with NW subsea basin through the Xisha Trough. Along with the rapid progress of the deepwater exploration, large amounts of high resolution geophysical and geological data were accumulated. Scientific researches about deepwater basins kept revealing brand new tectonic and sedimentary discoveries. In order to summarize the structural features and main controlling factors of the deepwater Qiongdongnan Basin, a series of researches on basin architecture, fault activities, tectonic deformation and evolution were carried out. In reference to analogue modeling experiments, a tectonic situation and a basin formation mechanism were discussed. The researches indicate that:the northern boundary of the Qiongdongnan Basin is strongly controlled by No. 2 fault. The overlapping control of two stress fields from the east and the west made the central depression zone extremely thinned. Combined with the changed stress field, the segmentation of a preexisting weakness zone made the sags in the east experiencing different rifting histories from the west ones. The NE-trending west segment of the Qiongdongnan Basin experienced strong rifting during Eocene, while the roughly EW-trending sags in the east segment show strong rifting during late Eocene and early Oligocene. Local structures such as NW-trending basal fault and inherited uplifts controlled the lateral segmentation. So first order factors such as regional stress field and preexisting weakness zone controlled the basin zonation, while the second order factors determined the segmentation from east to west.
基金This project is sponsored by The Special Fund of Scientific Instruments of National Natural Science Foundation of China(50127402) and The Geophysical Responses to The High-resolution Exploration for Coal-methane of 973 Program(2002CB211707).
文摘Geological radar probing technology finds wide application in engineering projects. The high-precision characteristics of geologic radar should be studied in connection with fine processing and interpretation. This article discusses such issues as (1) geologic radar noise source and (2) fine processing and interpretation of radar data. It is focused on how to achieve fine processing and interpretation.
文摘Regional gravity and aeromagnetic data covering the area of 32°- 38° N, 118°-127° E at the scale of 1:1,000,000 are coordinated and integrated in a synthetic study of the South China Yellow Sea and adjacent areas. Depth to magnetic crystalline basement and its structure are determined by magnetic anomaly inversion. Depth to and thickness of the Paleozoic rock are also revealed by gravity anomaly inversion with constrains of the basement and known seismic information from several profiles. Structure units, main faults, basin boundaries, and sub-suppressions are outlined on the basis of gravity data interpretation.
文摘On March 3,2024,the prototype permeability logging instrument independently developed in China successfully completed its first downhole test in Ren 91 standard well in PetroChina Huabei Oilfield.In the open hole section at a depth of 3925 metres and at a temperature of 148℃,the device collected high-quality permeability logging data.This marks a key technological breakthrough from 0 to 1 in permeability logging,and lays the foundation for the next step in developing a complete set of permeability logging equipment.
文摘It is very important to comprehensively interpret areal seismic data with geological data in a research area. For the structural interpretations in the middle depression of the eastern basin of Liaohe oilfield, we first analyze and study geological phenomena on outcrop pictures collected in the field and establish geological outcrop models. Second, we make fault and structural interpretations based on the structural characteristics of the outcrop pictures. Third, we analyze the migration, accumulation, and formation of oil and gas using characteristics of seismic profiles. By geologic and geophysical comprehensive interpretation, it is inferred that, in the research area, the dominant factor controlling oil and gas accumulation is strike-slip faults. Structural modes and the relationship of the oil and gas in the Huangshatuo and Oulituozi oil fields are also analyzed and investigated.
文摘During injection treatments, bottomhole pressure measurements may significantly mismatch modeling results. We devise a computationally effective technique for interpretation of fluid injection in a wellbore interval with multiple geological layers based on the bottomhole pressure measurements. The permeability, porosity and compressibility in each layer are initially setup, while the skin factor and partitioning of injected fluids among the zones during the injection are found as a solution of the problem. The problem takes into account Darcy flow and chemical interactions between the injected acids, diverter fluids and reservoir rock typical in modern matrix acidizing treatments. Using the synchronously recorded injection rate and bottomhole pressure, we evaluate skin factor changes in each layer and actual fluid placement into the reservoir during different pumping jobs: matrix acidizing, water control, sand control, scale squeezes and water flooding. The model is validated by comparison with a simulator used in industry. It gives opportunity to estimate efficiency of a matrix treatment job, role of every injection stage, and control fluid delivery to each layer in real time. The presented interpretation technique significantly improves accuracy of matrix treatments analysis by coupling the hydrodynamic model with records of pressure and injection rate during the treatment.
基金Supported by the National Natural Science Foundation of China(No.51379006 and No.51009106)the Program for New Century Excellent Talents in University of Ministry of Education of China(No.NCET-12-0404)the National Basic Research Program of China("973"Program,No.2013CB035903)
文摘Due to the complex nature of multi-source geological data, it is difficult to rebuild every geological structure through a single 3D modeling method. The multi-source data interpretation method put forward in this analysis is based on a database-driven pattern and focuses on the discrete and irregular features of geological data. The geological data from a variety of sources covering a range of accuracy, resolution, quantity and quality are classified and integrated according to their reliability and consistency for 3D modeling. The new interpolation-approximation fitting construction algorithm of geological surfaces with the non-uniform rational B-spline(NURBS) technique is then presented. The NURBS technique can retain the balance among the requirements for accuracy, surface continuity and data storage of geological structures. Finally, four alternative 3D modeling approaches are demonstrated with reference to some examples, which are selected according to the data quantity and accuracy specification. The proposed approaches offer flexible modeling patterns for different practical engineering demands.