Li-S batteries have attracted considerable interest as nextgeneration energy storage devices owing to high energy density and the natural abundance of sulfur.However,the practical applications of Li-S batteries are ha...Li-S batteries have attracted considerable interest as nextgeneration energy storage devices owing to high energy density and the natural abundance of sulfur.However,the practical applications of Li-S batteries are hampered by the shuttle effect of soluble lithium polysulfides(LPS),which results in low cycle stability.Herein,a functional interlayer has been developed to efficiently regulate the LPS and enhance the sulfur utilization using hierarchical nanostructure of C3 N4(t-C3 N4)embedded with Fe304 nanospheres.t-C3 N4 exhibits high surface area and strong anchoring of LPS,and the Fe3 O4/t-C3 N4 accelerates the anchoring of LPS and improves the electronic pathways.The combination of these materials leads to remarkable battery performance with 400%improvement in a specific capacity and a low capacity decay per cycle of 0.02%at 2 C over 1000 cycles,and stable cycling at 6.4 mg cm-2 for high-sulfur-loading cathode.展开更多
We prepared the Fe3O4/g‐C3N4nanoparticles(NPs)through a simple electrostatic self‐assembly method with a3:97weight ratio to investigate their Fenton,photo‐Fenton and oxidative functionalities besides photocatalytic...We prepared the Fe3O4/g‐C3N4nanoparticles(NPs)through a simple electrostatic self‐assembly method with a3:97weight ratio to investigate their Fenton,photo‐Fenton and oxidative functionalities besides photocatalytic functionality.We observed an improvement of the Fenton and photo‐Fenton activities of the Fe3O4/g‐C3N4nanocomposites.This improvement was attributed to efficient charge transfer between Fe3O4and g‐C3N4at the heterojunctions,inhibition of electron‐hole recombination,a high surface area,and stabilization of Fe3O4against leaching by the hydrophobic g‐C3N4.The obtained NPs showed a higher degradation potential for rhodamine B(RhB)dye than those of Fe3O4and g‐C3N4.As compared to photocatalysis,the efficiency of RhB degradation in the Fenton and photo‐Fenton reactions was increased by20%and90%,respectively.Additionally,the horseradish peroxidase(HRP)activity of the prepared nanomaterials was studied with3,3,5,5‐tetramethylbenzidinedihydrochloride(TMB)as a substrate.Dopamine oxidation was also examined.Results indicate that Fe3O4/g‐C3N4nanocomposites offers more efficient degradation of RhB dye in a photo‐Fenton system compared with regular photocatalytic degradation,which requires a long time.Our study also confirmed that Fe3O4/g‐C3N4nanocomposites can be used as a potential material for mimicking HRP owing to its high affinity for TMB.These findings suggest good potential for applications in biosensing and as a catalyst in oxidation reactions.展开更多
Designing a highly efficient non-precious based oxygen reduction reaction(ORR)electrocatalyst is critical for the commercialization of various sustainable energy storage and conversion devices such as metal-air batter...Designing a highly efficient non-precious based oxygen reduction reaction(ORR)electrocatalyst is critical for the commercialization of various sustainable energy storage and conversion devices such as metal-air batteries and fuel cells.Herein,we report a convenient strategy to synthesis Fe3O4 embedded in N doped hollow carbon sphere(NHCS)for ORR.What's interesting is that the carbon microsphere is composed of two-dimensional(2D)nanoplate that could provide more exposed active sites.The usage of solid ZnO nanowires as zinc source is crucial to obtain this structure.The Fe3O4@NHCS-2 exhibits better catalytic activity and durability than the commercial PtC catalyst.Moreover,it further displays high-performance of Zn-air batteries as a cathode electrocatalyst with a high-power density of 133 mW·cm^-2 and high specific capacity of 701 mA·h·g^-1.The special hollow structure composed 2D nanoplate,high surface area,as well as synergistic effect between the high active Fe3O4 nanoparticles and N-doped matrix endows this outstanding catalytic activity.The work presented here can be easily extended to prepare metal compounds decorated carbon nanomaterials with special structure for a broad range of energy storage and conversion devices.展开更多
Metal‐organic framework MIL‐100(Fe)and g‐C3N4 heterojunctions(MG‐x,x=5%,10%,20%,and 30%,x is the mass fraction of MIL‐100(Fe)in the hybrids)were facilely fabricated through ball‐milling and annealing,and charact...Metal‐organic framework MIL‐100(Fe)and g‐C3N4 heterojunctions(MG‐x,x=5%,10%,20%,and 30%,x is the mass fraction of MIL‐100(Fe)in the hybrids)were facilely fabricated through ball‐milling and annealing,and characterized by powder X‐ray diffraction,Fourier transform infrared spectroscopy,thermogravimetric analysis,transmission electron microscopy,UV‐visible diffuse‐reflectance spectrometry,and photoluminescence emission spectrometry.The photocatalytic activities of the series of MG‐x heterojunctions toward Cr(VI)reduction and diclofenac sodium degradation were tested upon irradiation with simulated sunlight.The influence of different organic compounds(ethanol,citric acid,oxalic acid,and diclofenac sodium)as hole scavengers and the pH values(2,3,4,6,and 8)on the photocatalytic activities of the series of MG‐x heterojunctions was investigated.MG‐20%showed superior photocatalytic Cr(VI)reduction and diclofenac sodium degradation performance than did the individual MIL‐100(Fe)and g‐C3N4 because of the improved separation of photoinduced electron‐hole charges,which was clarified via photoluminescence emission and electrochemical data.Moreover,the MG‐x exhibited good reusability and stability after several runs.展开更多
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(NRF-2019R1A2C1003594 and NRF-2019R1A2C1003551)。
文摘Li-S batteries have attracted considerable interest as nextgeneration energy storage devices owing to high energy density and the natural abundance of sulfur.However,the practical applications of Li-S batteries are hampered by the shuttle effect of soluble lithium polysulfides(LPS),which results in low cycle stability.Herein,a functional interlayer has been developed to efficiently regulate the LPS and enhance the sulfur utilization using hierarchical nanostructure of C3 N4(t-C3 N4)embedded with Fe304 nanospheres.t-C3 N4 exhibits high surface area and strong anchoring of LPS,and the Fe3 O4/t-C3 N4 accelerates the anchoring of LPS and improves the electronic pathways.The combination of these materials leads to remarkable battery performance with 400%improvement in a specific capacity and a low capacity decay per cycle of 0.02%at 2 C over 1000 cycles,and stable cycling at 6.4 mg cm-2 for high-sulfur-loading cathode.
基金supported by the National Natural Science Foundation of China(51572253,21771171)Scientific Research Grant of Hefei Science Center of CAS(2015SRG-HSC048)+1 种基金cooperation between NSFC and Netherlands Organization for Scientific Research(51561135011)CAS-TWAS Scholarship Program~~
文摘We prepared the Fe3O4/g‐C3N4nanoparticles(NPs)through a simple electrostatic self‐assembly method with a3:97weight ratio to investigate their Fenton,photo‐Fenton and oxidative functionalities besides photocatalytic functionality.We observed an improvement of the Fenton and photo‐Fenton activities of the Fe3O4/g‐C3N4nanocomposites.This improvement was attributed to efficient charge transfer between Fe3O4and g‐C3N4at the heterojunctions,inhibition of electron‐hole recombination,a high surface area,and stabilization of Fe3O4against leaching by the hydrophobic g‐C3N4.The obtained NPs showed a higher degradation potential for rhodamine B(RhB)dye than those of Fe3O4and g‐C3N4.As compared to photocatalysis,the efficiency of RhB degradation in the Fenton and photo‐Fenton reactions was increased by20%and90%,respectively.Additionally,the horseradish peroxidase(HRP)activity of the prepared nanomaterials was studied with3,3,5,5‐tetramethylbenzidinedihydrochloride(TMB)as a substrate.Dopamine oxidation was also examined.Results indicate that Fe3O4/g‐C3N4nanocomposites offers more efficient degradation of RhB dye in a photo‐Fenton system compared with regular photocatalytic degradation,which requires a long time.Our study also confirmed that Fe3O4/g‐C3N4nanocomposites can be used as a potential material for mimicking HRP owing to its high affinity for TMB.These findings suggest good potential for applications in biosensing and as a catalyst in oxidation reactions.
基金the National Natural Science Foundation of China(No.51772039)the Fundamental Research Funds for the Central University(No.DUT18LK13)The Research Center for Solar Light Energy Conversion,Kyushu Institute of Technology,Japan also supports this work financially.
文摘Designing a highly efficient non-precious based oxygen reduction reaction(ORR)electrocatalyst is critical for the commercialization of various sustainable energy storage and conversion devices such as metal-air batteries and fuel cells.Herein,we report a convenient strategy to synthesis Fe3O4 embedded in N doped hollow carbon sphere(NHCS)for ORR.What's interesting is that the carbon microsphere is composed of two-dimensional(2D)nanoplate that could provide more exposed active sites.The usage of solid ZnO nanowires as zinc source is crucial to obtain this structure.The Fe3O4@NHCS-2 exhibits better catalytic activity and durability than the commercial PtC catalyst.Moreover,it further displays high-performance of Zn-air batteries as a cathode electrocatalyst with a high-power density of 133 mW·cm^-2 and high specific capacity of 701 mA·h·g^-1.The special hollow structure composed 2D nanoplate,high surface area,as well as synergistic effect between the high active Fe3O4 nanoparticles and N-doped matrix endows this outstanding catalytic activity.The work presented here can be easily extended to prepare metal compounds decorated carbon nanomaterials with special structure for a broad range of energy storage and conversion devices.
基金supported by the National Natural Science Foundation of China(51578034,51878023)the Great Wall Scholars Training Program Project of Beijing Municipality Universities(CIT&TCD20180323)+3 种基金the Project of Construction of Innovation Teams and Teacher Career Development for Universities and Colleges Under Beijing Municipality(IDHT20170508)the Beijing Talent Project(2017A38)the Fundamental Research Funds for Beijing Universities(X18075/X18076/X18124/X18125/X18276)the Scientific Research Foundation of Beijing University of Civil Engineering and Architecture(KYJJ2017033/KYJJ2017008)~~
文摘Metal‐organic framework MIL‐100(Fe)and g‐C3N4 heterojunctions(MG‐x,x=5%,10%,20%,and 30%,x is the mass fraction of MIL‐100(Fe)in the hybrids)were facilely fabricated through ball‐milling and annealing,and characterized by powder X‐ray diffraction,Fourier transform infrared spectroscopy,thermogravimetric analysis,transmission electron microscopy,UV‐visible diffuse‐reflectance spectrometry,and photoluminescence emission spectrometry.The photocatalytic activities of the series of MG‐x heterojunctions toward Cr(VI)reduction and diclofenac sodium degradation were tested upon irradiation with simulated sunlight.The influence of different organic compounds(ethanol,citric acid,oxalic acid,and diclofenac sodium)as hole scavengers and the pH values(2,3,4,6,and 8)on the photocatalytic activities of the series of MG‐x heterojunctions was investigated.MG‐20%showed superior photocatalytic Cr(VI)reduction and diclofenac sodium degradation performance than did the individual MIL‐100(Fe)and g‐C3N4 because of the improved separation of photoinduced electron‐hole charges,which was clarified via photoluminescence emission and electrochemical data.Moreover,the MG‐x exhibited good reusability and stability after several runs.