The reactions of four different N-(O,O'-diisopropyl) phosphoamino acids (DIPP-aa), such as N-phosphoryl-L-α-alanine (DIPP- L-α-Ala), N-phosphoryl-D-α-alanine (DIPP-D-α-A1a), N-phosphoryl-β-alanine (DIPP...The reactions of four different N-(O,O'-diisopropyl) phosphoamino acids (DIPP-aa), such as N-phosphoryl-L-α-alanine (DIPP- L-α-Ala), N-phosphoryl-D-α-alanine (DIPP-D-α-A1a), N-phosphoryl-β-alanine (DIPP-β-A1a) and N-phosphoryl-γ-amino butyric acid (DIPP-γ-Aba), and four nucleosides, adenosine (A), guanosine (G), cytidine (C) and uridine (U), were studied by electrospray ionization tandem mass spectrometry (ESI-MS/MS) and HPLC/ESI-MS. DIPP-L-α-A1a and DIPP-D-α-A1a produced the same phosphorylated nucleosides, dinucleotides and phosphoroligopeptide. However, DIPP-β-A1a and DIPP-γ-Aba gave no relevant products.展开更多
The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and,either directly or indirectly,overall body health,encompassing metabolic and cardiovascular well-being.Given th...The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and,either directly or indirectly,overall body health,encompassing metabolic and cardiovascular well-being.Given the heightened metabolic activity of the brain,there exists a considerable demand for nutrients in comparison to other organs.Among these,the branched-chain amino acids,comprising leucine,isoleucine,and valine,display distinctive significance,from their contribution to protein structure to their involvement in overall metabolism,especially in cerebral processes.Among the first amino acids that are released into circulation post-food intake,branched-chain amino acids assume a pivotal role in the regulation of protein synthesis,modulating insulin secretion and the amino acid sensing pathway of target of rapamycin.Branched-chain amino acids are key players in influencing the brain's uptake of monoamine precursors,competing for a shared transporter.Beyond their involvement in protein synthesis,these amino acids contribute to the metabolic cycles ofγ-aminobutyric acid and glutamate,as well as energy metabolism.Notably,they impact GABAergic neurons and the excitation/inhibition balance.The rhythmicity of branchedchain amino acids in plasma concentrations,observed over a 24-hour cycle and conserved in rodent models,is under circadian clock control.The mechanisms underlying those rhythms and the physiological consequences of their disruption are not fully understood.Disturbed sleep,obesity,diabetes,and cardiovascular diseases can elevate branched-chain amino acid concentrations or modify their oscillatory dynamics.The mechanisms driving these effects are currently the focal point of ongoing research efforts,since normalizing branched-chain amino acid levels has the ability to alleviate the severity of these pathologies.In this context,the Drosophila model,though underutilized,holds promise in shedding new light on these mechanisms.Initial findings indicate its potential to introduce novel concepts,particularly in elucidating the intricate connections between the circadian clock,sleep/wake,and metabolism.Consequently,the use and transport of branched-chain amino acids emerge as critical components and orchestrators in the web of interactions across multiple organs throughout the sleep/wake cycle.They could represent one of the so far elusive mechanisms connecting sleep patterns to metabolic and cardiovascular health,paving the way for potential therapeutic interventions.展开更多
The involvement of the excitatory amino acids glutamate and aspartate in ce rebral ischemia and excitotoxicity is well-documented.Nevertheless,the role of non-excitatory amino acids in brain damage following a stroke ...The involvement of the excitatory amino acids glutamate and aspartate in ce rebral ischemia and excitotoxicity is well-documented.Nevertheless,the role of non-excitatory amino acids in brain damage following a stroke or brain trauma remains largely understudied.The release of amino acids by necrotic cells in the ischemic core may contribute to the expansion of the penumbra.Our findings indicated that the reversible loss of field excitato ry postsynaptic potentials caused by transient hypoxia became irreversible when exposed to a mixture of just four non-excitatory amino acids(L-alanine,glycine,L-glutamine,and L-serine)at their plasma concentrations.These amino acids induce swelling in the somas of neurons and astrocytes during hypoxia,along with permanent dendritic damage mediated by N-methyl-D-aspartate receptors.Blocking N-methyl-D-aspartate receptors prevented neuronal damage in the presence of these amino acids during hypoxia.It is likely that astroglial swelling caused by the accumulation of these amino acids via the alanine-serine-cysteine transporter 2 exchanger and system N transporters activates volume-regulated anion channels,leading to the release of excitotoxins and subsequent neuronal damage through N-methyl-D-aspartate receptor activation.Thus,previously unrecognized mechanisms involving non-excitatory amino acids may contribute to the progression and expansion of brain injury in neurological emergencies such as stroke and traumatic brain injury.Understanding these pathways co uld highlight new therapeutic targets to mitigate brain injury.展开更多
The proper recycling of spent lithium-ion batteries(LIBs)can promote the recovery and utilization of valuable resources,while also negative environmental effects resulting from the presence of toxic and hazardous subs...The proper recycling of spent lithium-ion batteries(LIBs)can promote the recovery and utilization of valuable resources,while also negative environmental effects resulting from the presence of toxic and hazardous substances.In this study,a new environmentally friendly hydro-metallurgical process was proposed for leaching lithium(Li),nickel(Ni),cobalt(Co),and manganese(Mn)from spent LIBs using sulfuric acid with citric acid as a reductant.The effects of the concentration of sulfuric acid,the leaching temperature,the leaching time,the solid-liquid ratio,and the reducing agent dosage on the leaching behavior of the above elements were investigated.Key parameters were optimized using response surface methodology(RSM)to maximize the recovery of metals from spent LIBs.The maxim-um recovery efficiencies of Li,Ni,Co,and Mn can reach 99.08%,98.76%,98.33%,and 97.63%.under the optimized conditions(the sulfuric acid concentration was 1.16 mol/L,the citric acid dosage was 15wt%,the solid-liquid ratio was 40 g/L,and the temperature was 83℃ for 120 min),respectively.It was found that in the collaborative leaching process of sulfuric acid and citric acid,the citric acid initially provided strong reducing CO_(2)^(-),and the transition metal ions in the high state underwent a reduction reaction to produce transition metal ions in the low state.Additionally,citric acid can also act as a proton donor and chelate with lower-priced transition metal ions,thus speeding up the dissolution process.展开更多
BACKGROUND Gastric cancer(GC)is associated with high mortality rates.Bile acids(BAs)reflux is a well-known risk factor for GC,but the specific mechanism remains unclear.During GC development in both humans and animals...BACKGROUND Gastric cancer(GC)is associated with high mortality rates.Bile acids(BAs)reflux is a well-known risk factor for GC,but the specific mechanism remains unclear.During GC development in both humans and animals,BAs serve as signaling molecules that induce metabolic reprogramming.This confers additional cancer phenotypes,including ferroptosis sensitivity.Ferroptosis is a novel mode of cell death characterized by lipid peroxidation that contributes universally to malignant progression.However,it is not fully defined if BAs can influence GC progression by modulating ferroptosis.AIM To reveal the mechanism of BAs regulation in ferroptosis of GC cells.METHODS In this study,we treated GC cells with various stimuli and evaluated the effect of BAs on the sensitivity to ferroptosis.We used gain and loss of function assays to examine the impacts of farnesoid X receptor(FXR)and BTB and CNC homology 1(BACH1)overexpression and knockdown to obtain further insights into the molecular mechanism involved.RESULTS Our data suggested that BAs could reverse erastin-induced ferroptosis in GC cells.This effect correlated with increased glutathione(GSH)concentrations,a reduced GSH to oxidized GSH ratio,and higher GSH peroxidase 4(GPX4)expression levels.Subsequently,we confirmed that BAs exerted these effects by activating FXR,which markedly increased the expression of GSH synthetase and GPX4.Notably,BACH1 was detected as an essential intermediate molecule in the promotion of GSH synthesis by BAs and FXR.Finally,our results suggested that FXR could significantly promote GC cell proliferation,which may be closely related to its anti-ferroptosis effect.CONCLUSION This study revealed for the first time that BAs could inhibit ferroptosis sensitivity through the FXR-BACH1-GSHGPX4 axis in GC cells.This work provided new insights into the mechanism associated with BA-mediated promotion of GC and may help identify potential therapeutic targets for GC patients with BAs reflux.展开更多
The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving c...The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving carbon neutrality is the utilization of CO_(2) under economic and sustainable conditions.Recently,the strong need for carbon neutrality has led to a proliferation of studies on the direct conversion of CO_(2) into carboxylic acids,which can effectively alleviate CO_(2) emissions and create high-value chemicals.The purpose of this review is to present the application prospects of carboxylic acids and the basic principles of CO_(2) conversion into carboxylic acids through photo-,electric-,and thermal catalysis.Special attention is focused on the regulation strategy of the activity of abundant catalysts at the molecular level,inspiring the preparation of high-performance catalysts.In addition,theoretical calculations,advanced technologies,and numerous typical examples are introduced to elaborate on the corresponding process and influencing factors of catalytic activity.Finally,challenges and prospects are provided for the future development of this field.It is hoped that this review will contribute to a deeper understanding of the conversion of CO_(2) into carboxylic acids and inspire more innovative breakthroughs.展开更多
AIM:To explore the correlation of gut microbiota and the metabolites with the progression of diabetic retinopathy(DR)and provide a novel strategy to elucidate the pathological mechanism of DR.METHODS:The fecal samples...AIM:To explore the correlation of gut microbiota and the metabolites with the progression of diabetic retinopathy(DR)and provide a novel strategy to elucidate the pathological mechanism of DR.METHODS:The fecal samples from 32 type 2 diabetes patients with proliferative retinopathy(PDR),23 with nonproliferative retinopathy(NPDR),27 without retinopathy(DM),and 29 from the sex-,age-and BMI-matched healthy controls(29 HC)were analyzed by 16S rDNA gene sequencing.Sixty fecal samples from PDR,DM,and HC groups were assayed by untargeted metabolomics.Fecal metabolites were measured using liquid chromatographymass spectrometry(LC-MS)analysis.Associations between gut microbiota and fecal metabolites were analyzed.RESULTS:A cluster of 2 microbiome and 12 metabolites accompanied with the severity of DR,and the close correlation of the disease progression with PDR-related microbiome and metabolites were found.To be specific,the structure of gut microbiota differed in four groups.Diversity and richness of gut microbiota were significantly lower in PDR and NPDR groups,than those in DM and HC groups.A cluster of microbiome enriched in PDR group,including Pseudomonas,Ruminococcaceae-UCG-002,Ruminococcaceae-UCG-005,Christensenellaceae-R-7,was observed.Functional analysis showed that the glucose and nicotinate degradations were significantly higher in PDR group than those in HC group.Arginine,serine,ornithine,and arachidonic acid were significantly enriched in PDR group,while proline was enriched in HC group.Functional analysis illustrated that arginine biosynthesis,lysine degradation,histidine catabolism,central carbon catabolism in cancer,D-arginine and D-ornithine catabolism were elevated in PDR group.Correlation analysis revealed that Ruminococcaceae-UCG-002 and Christensenellaceae-R-7 were positively associated with L-arginine,ornithine levels in fecal samples.CONCLUSION:This study elaborates the different microbiota structure in the gut from four groups.The relative abundance of Ruminococcaceae-UCG-002 and Parabacteroides are associated with the severity of DR.Amino acid and fatty acid catabolism is especially disordered in PDR group.This may help provide a novel diagnostic parameter for DR,especially PDR.展开更多
Hepatocellular carcinoma(HCC)is a prevalent and aggressive liver malignancy.The interplay between bile acids(BAs)and the gut microbiota has emerged as a critical factor in HCC development and progression.Under normal ...Hepatocellular carcinoma(HCC)is a prevalent and aggressive liver malignancy.The interplay between bile acids(BAs)and the gut microbiota has emerged as a critical factor in HCC development and progression.Under normal conditions,BA metabolism is tightly regulated through a bidirectional interplay between gut microorganisms and BAs.The gut microbiota plays a critical role in BA metabolism,and BAs are endogenous signaling molecules that help maintain liver and intestinal homeostasis.Of note,dysbiotic changes in the gut microbiota during pathogenesis and cancer development can disrupt BA homeostasis,thereby leading to liver inflammation and fibrosis,and ultimately contributing to HCC development.Therefore,understanding the intricate interplay between BAs and the gut microbiota is crucial for elucidating the mechanisms underlying hepatocarcinogenesis.In this review,we comprehensively explore the roles and functions of BA metabolism,with a focus on the interactions between BAs and gut microorganisms in HCC.Additionally,therapeutic strategies targeting BA metabolism and the gut microbiota are discussed,including the use of BA agonists/antagonists,probiotic/prebiotic and dietary interventions,fecal microbiota transplantation,and engineered bacteria.In summary,understanding the complex BA-microbiota crosstalk can provide valuable insights into HCC development and facilitate the development of innovative therapeutic approaches for liver malignancy.展开更多
γ-Aminobutyric acid is a major inhibitory neurotransmitter in the mammalian central nervous system that plays a substantial role in brain disorders.γ-Amino phosphonic acid is a unique surrogate of both natural and u...γ-Aminobutyric acid is a major inhibitory neurotransmitter in the mammalian central nervous system that plays a substantial role in brain disorders.γ-Amino phosphonic acid is a unique surrogate of both natural and unnatural γ-amino acid.Because of their unique biological activity,γ-amino acid and γ-amino phosphonic acid derivatives have attracted considerable attention.However,an efficient and straightforward method for constructing chiral γ-substituted-γ-amino acid and γ-amino phosphonic acid derivatives remains a long-standing challenge.Herein,a highly efficient,versatile,and universal Cucatalyzed asymmetric hydroamination of cinnamyl esters,cinnamyl phosphonates,and cinnamyl phosphine oxides is presented for accessing γ-amino acid andγ-amino phosphonic acid derivatives in good yields with high levels of enantiocontrol and regioselectivity.展开更多
The significant demand for high quality food has motivated us to adopt appropriate processing methods to improve the food nutritional quality and flavors.In this study,the effects of five drying methods,namely,pulsed ...The significant demand for high quality food has motivated us to adopt appropriate processing methods to improve the food nutritional quality and flavors.In this study,the effects of five drying methods,namely,pulsed vacuum drying(PVD),freeze drying(FD),infrared drying(IRD),hot-air drying(HAD)and sun drying(SD)on free amino acids(FAAs),α-dicarbonyl compounds(α-DCs)and volatile compounds(VOCs)in rape bee pollen(RBP)were determined.The results showed that FD significantly released the essential amino acids(EAAs)compared with fresh samples while SD caused the highest loss.Glucosone was the dominantα-DCs in RBP and the highest loss was observed after PVD.Aldehydes were the dominant volatiles of RBP and SD samples contained more new volatile substances(especially aldehydes)than the other four drying methods.Comprehensively,FD and PVD would be potential methods to effectively reduce the quality deterioration of RBP in the drying process.展开更多
Nine racemic homocamptothecin derivatives were synthesized and in vitro antitumor activities were evaluated by standard MTT method. The results showed that some of the compound had higher antitumor activity than irite...Nine racemic homocamptothecin derivatives were synthesized and in vitro antitumor activities were evaluated by standard MTT method. The results showed that some of the compound had higher antitumor activity than iritecan.展开更多
The retina of zebrafish can regenerate completely after injury.M ultiple studies have demonstrated that metabolic alte rations occur during retinal damage;however to date no study has identified a link between metabol...The retina of zebrafish can regenerate completely after injury.M ultiple studies have demonstrated that metabolic alte rations occur during retinal damage;however to date no study has identified a link between metabolites and retinal regeneration of zebrafish.Here,we performed an unbiased metabolome sequencing in the N-methyl-D-aspartic acid-damaged retinas of zebrafish to demonstrate the metabolomic mechanism of retinal regeneration.Among the differentially-ex pressed metabolites,we found a significant decrease in p-aminobenzoic acid in the N-methyl-D-aspartic acid-damaged retinas of zebrafish.Then,we investigated the role of p-aminobenzoic acid in retinal regeneration in adult zebrafish.Impo rtantly,p-aminobenzoic acid activated Achaetescute complex-like 1a expression,thereby promoting Müller glia reprogramming and division,as well as Müller glia-derived progenitor cell proliferation.Finally,we eliminated folic acid and inflammation as downstream effectors of PABA and demonstrated that PABA had little effect on Müller glia distribution.Taken together,these findings show that PABA contributes to retinal regeneration through activation of Achaetescute complex-like 1a expression in the N-methyl-Daspartic acid-damaged retinas of zebrafish.展开更多
Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects ...Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects and possible underlying mechanisms of MFGM on cow’s milk allergy(CMA)in aβ-lactoglobulin(BLG)-induced allergic mice model.MFGM was supplemented to allergic mice induced by BLG at a dose of 400 mg/kg body weight.Results demonstrated that MFGM alleviated food allergy symptoms,decreased serum levels of lipopolysaccharide,pro-inflammatory cytokines,immunoglobulin(Ig)E,Ig G1,and Th2 cytokines including interleukin(IL)-4,while increased serum levels of Th1 cytokines including interferon-γand regulatory T cells(Tregs)cytokines including IL-10 and transforming growth factor-β.MFGM modulated gut microbiota and enhanced intestinal barrier of BLG-allergic mice,as evidenced by decreased relative abundance of Desulfobacterota,Rikenellaceae,Lachnospiraceae,and Desulfovibrionaceae,while increased relative abundance of Bacteroidetes,Lactobacillaceae and Muribaculaceae,and enhanced expressions of tight junction proteins including Occludin,Claudin-1 and zonula occludens-1.Furthermore,MFGM increased fecal short-chain fatty acids(SCFAs)levels,which elevated G protein-coupled receptor(GPR)43 and GPR109A expressions.The increased expressions of GPR43 and GPR109A induced CD103+dendritic cells accumulation and promoted Tregs differentiation in mesenteric lymph node to a certain extent.In summary,MFGM alleviated CMA in a BLG-induced allergic mice model through enhancing intestinal barrier and promoting Tregs differentiation,which may be correlated with SCFAs-mediated activation of GPRs.These findings suggest that MFGM may be useful as a promising functional ingredient against CMA.展开更多
Proteomics is the study of proteins and their interactions in a cell. With the successful completion of the Human Cenome Project, it comes the postgenome era when the proteomics technology is emerging. This paper stud...Proteomics is the study of proteins and their interactions in a cell. With the successful completion of the Human Cenome Project, it comes the postgenome era when the proteomics technology is emerging. This paper studies protein molecule from the algebraic point of view. The algebraic system (∑, +, *) is introduced, where ∑ is the set of 64 codons. According to the characteristics of (∑, +, *), a novel quasi-amino acids code classification method is introduced and the corresponding algebraic operation table over the set ZU of the 16 kinds of quasi-amino acids is established. The internal relation is revealed about quasi-amino acids. The results show that there exist some very close correlations between the properties of the quasi-amino acids and the codon. All these correlation relationships may play an important part in establishing the logic relationship between codons and the quasi-amino acids during the course of life origination. According to Ma F et al (2003 J. Anhui Agricultural University 30 439), the corresponding relation and the excellent properties about amino acids code are very difficult to observe. The present paper shows that (ZU, +,×) is a field. Furthermore, the operational results display that the eodon tga has different property from other stop codons. In fact, in the mitochondrion from human and ox genomic codon, tga is just tryptophane, is not the stop codon like in other genetic code, it is the case of the Chen W C et al (2002 Acta Biophysiea Siniea 18(1) 87). The present theory avoids some inexplicable events of the 20 kinds of amino acids code, in other words it solves the problem of 'the 64 codon assignments of mRNA to amino acids is probably completely wrong' proposed by Yang (2006 Progress in Modern Biomedicine 6 3).展开更多
Background Infection with pathogenic bacteria during nonantibiotic breeding is one of the main causes of animal intestinal diseases.Oleanolic acid(OA)is a pentacyclic triterpene that is ubiquitous in plants.Our previo...Background Infection with pathogenic bacteria during nonantibiotic breeding is one of the main causes of animal intestinal diseases.Oleanolic acid(OA)is a pentacyclic triterpene that is ubiquitous in plants.Our previous work demonstrated the protective effect of OA on intestinal health,but the underlying molecular mechanisms remain unclear.This study investigated whether dietary supplementation with OA can prevent diarrhea and intestinal immune dysregulation caused by enterotoxigenic Escherichia coli(ETEC)in piglets.The key molecular role of bile acid receptor signaling in this process has also been explored.Results Our results demonstrated that OA supplementation alleviated the disturbance of bile acid metabolism in ETEC-infected piglets(P<0.05).OA supplementation stabilized the composition of the bile acid pool in piglets by regulating the enterohepatic circulation of bile acids and significantly increased the contents of UDCA and CDCA in the ileum and cecum(P<0.05).This may also explain why OA can maintain the stability of the intestinal microbiota structure in ETEC-challenged piglets.In addition,as a natural ligand of bile acid receptors,OA can reduce the severity of intestinal inflammation and enhance the strength of intestinal epithelial cell antimicrobial programs through the bile acid receptors TGR5 and FXR(P<0.05).Specifically,OA inhibited NF-κB-mediated intestinal inflammation by directly activating TGR5 and its downstream c AMP-PKA-CREB signaling pathway(P<0.05).Furthermore,OA enhanced CDCA-mediated MEK-ERK signaling in intestinal epithelial cells by upregulating the expression of FXR(P<0.05),thereby upregulating the expression of endogenous defense molecules in intestinal epithelial cells.Conclusions In conclusion,our findings suggest that OA-mediated regulation of bile acid metabolism plays an important role in the innate immune response,which provides a new diet-based intervention for intestinal diseases caused by pathogenic bacterial infections in piglets.展开更多
The production of industrial chemicals with renewable biomass feedstock holds potential to aid the world in pursuing a carbon-neutral society.Trimellitic and trimesic acids are important commodity chemicals in industr...The production of industrial chemicals with renewable biomass feedstock holds potential to aid the world in pursuing a carbon-neutral society.Trimellitic and trimesic acids are important commodity chemicals in industry that are prepared by the oxidation of petroleum-derived trimethylbenzene.To reduce the dependence on the limited oil source,we develop a potential sustainable alternative towards trimellitic and trimesic acids using biomass-based 2-methyl-2,4-pentandiol(MPD),acrylate and crotonaldehyde as starting materials.The process for trimellitic acid includes dehydration/D-A reaction of MPD and acrylate,flow aromatization over Pd/C catalyst,hydrolysis and catalytic aerobic oxidation(60%overall yield).The challenging regioselectivity issue of D-A reaction is tackled by a matched combination of temperature and deep eutectic solvent ChCl/HCO_(2)H.Crotonaldehyde can also participate in the reaction,followed by Pd/C-catalyzed decarbonylation/dehydrogenation and oxidation to provide trimesic acid in 54%overall yield.Life cycle assessment implies that compared to conventional fossil process,our biomass-based routes present a potential in reducing carbon emissions.展开更多
The tetrazole analogues have been synthesized from fluorenylmethoxycarbonyl (Fmoc)- protected amino acids by three steps. The structures of the analogues were characterized by HPLC-MS, ^1H NMR and ^13C NMR.
This research deals with an investigation of the adsorption of two acids, namely, 5-amino- 2-chlorotoluene-4-sulfonic and chlorhydric acids from their solution onto weakly basic resin. The screening of res-ins, kineti...This research deals with an investigation of the adsorption of two acids, namely, 5-amino- 2-chlorotoluene-4-sulfonic and chlorhydric acids from their solution onto weakly basic resin. The screening of res-ins, kinetics, and isotherm were studied. The results indicate that the D301R is more appropriate for the removal of acids from solution. The adsorption of acids obeys Langmuir isotherm and the first-order kinetics model. Sorptive affinity of the two acids on D301R was found to be in the order of 5-amino-2-chlorotoluene-4-sulfonic acid> chlorhydric acid. Thermodynamic parameters for the adsorption of acids were calculated and discussed. The maxi-mum removal of acids was observed around 97% and 76% at 25℃ for 5-amino-2-chlorotoluene-4-sulfonic acid and chlorhydric acid , respectively.展开更多
Introduction Calixarenes are one of the most important supra- molecular building blocks, which can be modified by introducing different functional and/or structural groups to create a specific interaction between the...Introduction Calixarenes are one of the most important supra- molecular building blocks, which can be modified by introducing different functional and/or structural groups to create a specific interaction between the host and the target molecules, such as metal cations and small organic molecules. In particular, the recognition of amino acids is an interesting theme in biomimetic chemistry.展开更多
Soybean is one of the most important sources of vegetable oil.The oil content and fatty acid ratio have attracted significant attention due to their impacts on the shelf-life of soybean oil products and consumer healt...Soybean is one of the most important sources of vegetable oil.The oil content and fatty acid ratio have attracted significant attention due to their impacts on the shelf-life of soybean oil products and consumer health.In this study,a high-density genetic map derived from Guizao 1 and Brazil 13 was used to analyze the quantitative trait loci of palmitic acid(PA),stearic acid(SA),oleic acid(OA),linoleic acid(LA),linolenic acid(LNA),and oil content(OC).A total of 54 stable QTLs were detected in the genetic map linkage analysis,which shared six bin intervals.Among them,the bin interval on chromosome 13(bin106-bin118 and bin123-bin125)was found to include stable QTLs in multiple environments that were linked to OA,LA,and LNA.Eight differentially expressed genes(DEGs)within these QTL intervals were determined as candidate genes according to the combination of parental resequencing,bioinformatics and RNA sequencing data.All these results are conducive to breeding soybean with the ideal fatty acid ratio for food,and provide the genetic basis for mining genes related to the fatty acid and oil content traits in soybean.展开更多
基金the National Natural Science Foundation of China(Nos.20572061,20672104)the Chinese Ministry of Education and Zhengzhou University for financial support.
文摘The reactions of four different N-(O,O'-diisopropyl) phosphoamino acids (DIPP-aa), such as N-phosphoryl-L-α-alanine (DIPP- L-α-Ala), N-phosphoryl-D-α-alanine (DIPP-D-α-A1a), N-phosphoryl-β-alanine (DIPP-β-A1a) and N-phosphoryl-γ-amino butyric acid (DIPP-γ-Aba), and four nucleosides, adenosine (A), guanosine (G), cytidine (C) and uridine (U), were studied by electrospray ionization tandem mass spectrometry (ESI-MS/MS) and HPLC/ESI-MS. DIPP-L-α-A1a and DIPP-D-α-A1a produced the same phosphorylated nucleosides, dinucleotides and phosphoroligopeptide. However, DIPP-β-A1a and DIPP-γ-Aba gave no relevant products.
基金supported by a grant from the French Society of Sleep Research and Medicine(to LS)The China Scholarship Council(to HL)The CNRS,INSERM,Claude Bernard University Lyon1(to LS)。
文摘The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and,either directly or indirectly,overall body health,encompassing metabolic and cardiovascular well-being.Given the heightened metabolic activity of the brain,there exists a considerable demand for nutrients in comparison to other organs.Among these,the branched-chain amino acids,comprising leucine,isoleucine,and valine,display distinctive significance,from their contribution to protein structure to their involvement in overall metabolism,especially in cerebral processes.Among the first amino acids that are released into circulation post-food intake,branched-chain amino acids assume a pivotal role in the regulation of protein synthesis,modulating insulin secretion and the amino acid sensing pathway of target of rapamycin.Branched-chain amino acids are key players in influencing the brain's uptake of monoamine precursors,competing for a shared transporter.Beyond their involvement in protein synthesis,these amino acids contribute to the metabolic cycles ofγ-aminobutyric acid and glutamate,as well as energy metabolism.Notably,they impact GABAergic neurons and the excitation/inhibition balance.The rhythmicity of branchedchain amino acids in plasma concentrations,observed over a 24-hour cycle and conserved in rodent models,is under circadian clock control.The mechanisms underlying those rhythms and the physiological consequences of their disruption are not fully understood.Disturbed sleep,obesity,diabetes,and cardiovascular diseases can elevate branched-chain amino acid concentrations or modify their oscillatory dynamics.The mechanisms driving these effects are currently the focal point of ongoing research efforts,since normalizing branched-chain amino acid levels has the ability to alleviate the severity of these pathologies.In this context,the Drosophila model,though underutilized,holds promise in shedding new light on these mechanisms.Initial findings indicate its potential to introduce novel concepts,particularly in elucidating the intricate connections between the circadian clock,sleep/wake,and metabolism.Consequently,the use and transport of branched-chain amino acids emerge as critical components and orchestrators in the web of interactions across multiple organs throughout the sleep/wake cycle.They could represent one of the so far elusive mechanisms connecting sleep patterns to metabolic and cardiovascular health,paving the way for potential therapeutic interventions.
基金supported by MICIU(grant number PID2021-128133NB-100/AEI/FEDER10.13039/501100011033 to JMHG)by the National Institutes of Health(grant number R01 NS083858 to SAK)+1 种基金the Intramural Grants Program IGPP00057(to SAK)VIC enjoys a FPU contract from the Comunidad de Madrid(PIPF-2022/SAL-GL-25948)。
文摘The involvement of the excitatory amino acids glutamate and aspartate in ce rebral ischemia and excitotoxicity is well-documented.Nevertheless,the role of non-excitatory amino acids in brain damage following a stroke or brain trauma remains largely understudied.The release of amino acids by necrotic cells in the ischemic core may contribute to the expansion of the penumbra.Our findings indicated that the reversible loss of field excitato ry postsynaptic potentials caused by transient hypoxia became irreversible when exposed to a mixture of just four non-excitatory amino acids(L-alanine,glycine,L-glutamine,and L-serine)at their plasma concentrations.These amino acids induce swelling in the somas of neurons and astrocytes during hypoxia,along with permanent dendritic damage mediated by N-methyl-D-aspartate receptors.Blocking N-methyl-D-aspartate receptors prevented neuronal damage in the presence of these amino acids during hypoxia.It is likely that astroglial swelling caused by the accumulation of these amino acids via the alanine-serine-cysteine transporter 2 exchanger and system N transporters activates volume-regulated anion channels,leading to the release of excitotoxins and subsequent neuronal damage through N-methyl-D-aspartate receptor activation.Thus,previously unrecognized mechanisms involving non-excitatory amino acids may contribute to the progression and expansion of brain injury in neurological emergencies such as stroke and traumatic brain injury.Understanding these pathways co uld highlight new therapeutic targets to mitigate brain injury.
基金supported by Key R&D Program of Zhejiang Province,China (No.2022C03061)the National Natural Science Foundation of China (No.52074204)the Fundamental Research Funds for the Central Universities (No.2023-vb-032).
文摘The proper recycling of spent lithium-ion batteries(LIBs)can promote the recovery and utilization of valuable resources,while also negative environmental effects resulting from the presence of toxic and hazardous substances.In this study,a new environmentally friendly hydro-metallurgical process was proposed for leaching lithium(Li),nickel(Ni),cobalt(Co),and manganese(Mn)from spent LIBs using sulfuric acid with citric acid as a reductant.The effects of the concentration of sulfuric acid,the leaching temperature,the leaching time,the solid-liquid ratio,and the reducing agent dosage on the leaching behavior of the above elements were investigated.Key parameters were optimized using response surface methodology(RSM)to maximize the recovery of metals from spent LIBs.The maxim-um recovery efficiencies of Li,Ni,Co,and Mn can reach 99.08%,98.76%,98.33%,and 97.63%.under the optimized conditions(the sulfuric acid concentration was 1.16 mol/L,the citric acid dosage was 15wt%,the solid-liquid ratio was 40 g/L,and the temperature was 83℃ for 120 min),respectively.It was found that in the collaborative leaching process of sulfuric acid and citric acid,the citric acid initially provided strong reducing CO_(2)^(-),and the transition metal ions in the high state underwent a reduction reaction to produce transition metal ions in the low state.Additionally,citric acid can also act as a proton donor and chelate with lower-priced transition metal ions,thus speeding up the dissolution process.
基金Supported by the Major Basic Research Project of Natural Science Foundation of Shandong Province,No.ZR2020ZD15.
文摘BACKGROUND Gastric cancer(GC)is associated with high mortality rates.Bile acids(BAs)reflux is a well-known risk factor for GC,but the specific mechanism remains unclear.During GC development in both humans and animals,BAs serve as signaling molecules that induce metabolic reprogramming.This confers additional cancer phenotypes,including ferroptosis sensitivity.Ferroptosis is a novel mode of cell death characterized by lipid peroxidation that contributes universally to malignant progression.However,it is not fully defined if BAs can influence GC progression by modulating ferroptosis.AIM To reveal the mechanism of BAs regulation in ferroptosis of GC cells.METHODS In this study,we treated GC cells with various stimuli and evaluated the effect of BAs on the sensitivity to ferroptosis.We used gain and loss of function assays to examine the impacts of farnesoid X receptor(FXR)and BTB and CNC homology 1(BACH1)overexpression and knockdown to obtain further insights into the molecular mechanism involved.RESULTS Our data suggested that BAs could reverse erastin-induced ferroptosis in GC cells.This effect correlated with increased glutathione(GSH)concentrations,a reduced GSH to oxidized GSH ratio,and higher GSH peroxidase 4(GPX4)expression levels.Subsequently,we confirmed that BAs exerted these effects by activating FXR,which markedly increased the expression of GSH synthetase and GPX4.Notably,BACH1 was detected as an essential intermediate molecule in the promotion of GSH synthesis by BAs and FXR.Finally,our results suggested that FXR could significantly promote GC cell proliferation,which may be closely related to its anti-ferroptosis effect.CONCLUSION This study revealed for the first time that BAs could inhibit ferroptosis sensitivity through the FXR-BACH1-GSHGPX4 axis in GC cells.This work provided new insights into the mechanism associated with BA-mediated promotion of GC and may help identify potential therapeutic targets for GC patients with BAs reflux.
基金financial support from the King Abdullah University of Science and Technology(KAUST).
文摘The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving carbon neutrality is the utilization of CO_(2) under economic and sustainable conditions.Recently,the strong need for carbon neutrality has led to a proliferation of studies on the direct conversion of CO_(2) into carboxylic acids,which can effectively alleviate CO_(2) emissions and create high-value chemicals.The purpose of this review is to present the application prospects of carboxylic acids and the basic principles of CO_(2) conversion into carboxylic acids through photo-,electric-,and thermal catalysis.Special attention is focused on the regulation strategy of the activity of abundant catalysts at the molecular level,inspiring the preparation of high-performance catalysts.In addition,theoretical calculations,advanced technologies,and numerous typical examples are introduced to elaborate on the corresponding process and influencing factors of catalytic activity.Finally,challenges and prospects are provided for the future development of this field.It is hoped that this review will contribute to a deeper understanding of the conversion of CO_(2) into carboxylic acids and inspire more innovative breakthroughs.
文摘AIM:To explore the correlation of gut microbiota and the metabolites with the progression of diabetic retinopathy(DR)and provide a novel strategy to elucidate the pathological mechanism of DR.METHODS:The fecal samples from 32 type 2 diabetes patients with proliferative retinopathy(PDR),23 with nonproliferative retinopathy(NPDR),27 without retinopathy(DM),and 29 from the sex-,age-and BMI-matched healthy controls(29 HC)were analyzed by 16S rDNA gene sequencing.Sixty fecal samples from PDR,DM,and HC groups were assayed by untargeted metabolomics.Fecal metabolites were measured using liquid chromatographymass spectrometry(LC-MS)analysis.Associations between gut microbiota and fecal metabolites were analyzed.RESULTS:A cluster of 2 microbiome and 12 metabolites accompanied with the severity of DR,and the close correlation of the disease progression with PDR-related microbiome and metabolites were found.To be specific,the structure of gut microbiota differed in four groups.Diversity and richness of gut microbiota were significantly lower in PDR and NPDR groups,than those in DM and HC groups.A cluster of microbiome enriched in PDR group,including Pseudomonas,Ruminococcaceae-UCG-002,Ruminococcaceae-UCG-005,Christensenellaceae-R-7,was observed.Functional analysis showed that the glucose and nicotinate degradations were significantly higher in PDR group than those in HC group.Arginine,serine,ornithine,and arachidonic acid were significantly enriched in PDR group,while proline was enriched in HC group.Functional analysis illustrated that arginine biosynthesis,lysine degradation,histidine catabolism,central carbon catabolism in cancer,D-arginine and D-ornithine catabolism were elevated in PDR group.Correlation analysis revealed that Ruminococcaceae-UCG-002 and Christensenellaceae-R-7 were positively associated with L-arginine,ornithine levels in fecal samples.CONCLUSION:This study elaborates the different microbiota structure in the gut from four groups.The relative abundance of Ruminococcaceae-UCG-002 and Parabacteroides are associated with the severity of DR.Amino acid and fatty acid catabolism is especially disordered in PDR group.This may help provide a novel diagnostic parameter for DR,especially PDR.
基金supported by Fujian Provincial Natural Science(2020J01122587)National Natural Science Foundation of China(82103355,82102255,and 82222901)+1 种基金RGC Theme-based Research Scheme(T12-703/19-R)Research grants Council-General Research Fund(14117422 and 14117123)。
文摘Hepatocellular carcinoma(HCC)is a prevalent and aggressive liver malignancy.The interplay between bile acids(BAs)and the gut microbiota has emerged as a critical factor in HCC development and progression.Under normal conditions,BA metabolism is tightly regulated through a bidirectional interplay between gut microorganisms and BAs.The gut microbiota plays a critical role in BA metabolism,and BAs are endogenous signaling molecules that help maintain liver and intestinal homeostasis.Of note,dysbiotic changes in the gut microbiota during pathogenesis and cancer development can disrupt BA homeostasis,thereby leading to liver inflammation and fibrosis,and ultimately contributing to HCC development.Therefore,understanding the intricate interplay between BAs and the gut microbiota is crucial for elucidating the mechanisms underlying hepatocarcinogenesis.In this review,we comprehensively explore the roles and functions of BA metabolism,with a focus on the interactions between BAs and gut microorganisms in HCC.Additionally,therapeutic strategies targeting BA metabolism and the gut microbiota are discussed,including the use of BA agonists/antagonists,probiotic/prebiotic and dietary interventions,fecal microbiota transplantation,and engineered bacteria.In summary,understanding the complex BA-microbiota crosstalk can provide valuable insights into HCC development and facilitate the development of innovative therapeutic approaches for liver malignancy.
基金the National Natural Science Foundation of China(NSFC 21971102)Guangdong Innovative Program(2019BT02Y335)for financial support.
文摘γ-Aminobutyric acid is a major inhibitory neurotransmitter in the mammalian central nervous system that plays a substantial role in brain disorders.γ-Amino phosphonic acid is a unique surrogate of both natural and unnatural γ-amino acid.Because of their unique biological activity,γ-amino acid and γ-amino phosphonic acid derivatives have attracted considerable attention.However,an efficient and straightforward method for constructing chiral γ-substituted-γ-amino acid and γ-amino phosphonic acid derivatives remains a long-standing challenge.Herein,a highly efficient,versatile,and universal Cucatalyzed asymmetric hydroamination of cinnamyl esters,cinnamyl phosphonates,and cinnamyl phosphine oxides is presented for accessing γ-amino acid andγ-amino phosphonic acid derivatives in good yields with high levels of enantiocontrol and regioselectivity.
基金supported by National Natural Science Foundation of China(Nos.31871861 and 31501548)The Apicultural Industry Technology System(NCYTI-43-KXJ17)The Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2015-IAR)。
文摘The significant demand for high quality food has motivated us to adopt appropriate processing methods to improve the food nutritional quality and flavors.In this study,the effects of five drying methods,namely,pulsed vacuum drying(PVD),freeze drying(FD),infrared drying(IRD),hot-air drying(HAD)and sun drying(SD)on free amino acids(FAAs),α-dicarbonyl compounds(α-DCs)and volatile compounds(VOCs)in rape bee pollen(RBP)were determined.The results showed that FD significantly released the essential amino acids(EAAs)compared with fresh samples while SD caused the highest loss.Glucosone was the dominantα-DCs in RBP and the highest loss was observed after PVD.Aldehydes were the dominant volatiles of RBP and SD samples contained more new volatile substances(especially aldehydes)than the other four drying methods.Comprehensively,FD and PVD would be potential methods to effectively reduce the quality deterioration of RBP in the drying process.
基金the National Natural Science Foundation of China (No.30371689)Shanghai Major Program Science and Technology Foundation (No.064319009)Shanghai Leading Academic Discipline Project (No.B906).
文摘Nine racemic homocamptothecin derivatives were synthesized and in vitro antitumor activities were evaluated by standard MTT method. The results showed that some of the compound had higher antitumor activity than iritecan.
基金supported by the National Natural Science Foundation of China,Nos.81974134(to XX)and 82000895(to HL)National Key Research and Development Program of China,Nos.2021YFA1101200&2021YFA1101202National Natural Science Foundation of Hunan Province,China,No.2022JJ30071(to HL)。
文摘The retina of zebrafish can regenerate completely after injury.M ultiple studies have demonstrated that metabolic alte rations occur during retinal damage;however to date no study has identified a link between metabolites and retinal regeneration of zebrafish.Here,we performed an unbiased metabolome sequencing in the N-methyl-D-aspartic acid-damaged retinas of zebrafish to demonstrate the metabolomic mechanism of retinal regeneration.Among the differentially-ex pressed metabolites,we found a significant decrease in p-aminobenzoic acid in the N-methyl-D-aspartic acid-damaged retinas of zebrafish.Then,we investigated the role of p-aminobenzoic acid in retinal regeneration in adult zebrafish.Impo rtantly,p-aminobenzoic acid activated Achaetescute complex-like 1a expression,thereby promoting Müller glia reprogramming and division,as well as Müller glia-derived progenitor cell proliferation.Finally,we eliminated folic acid and inflammation as downstream effectors of PABA and demonstrated that PABA had little effect on Müller glia distribution.Taken together,these findings show that PABA contributes to retinal regeneration through activation of Achaetescute complex-like 1a expression in the N-methyl-Daspartic acid-damaged retinas of zebrafish.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFC1605000)National Natural Science Foundation of China(Grant No.31871806)the Beijing Livestock Industry Innovation Team(BAIC05-2023)。
文摘Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects and possible underlying mechanisms of MFGM on cow’s milk allergy(CMA)in aβ-lactoglobulin(BLG)-induced allergic mice model.MFGM was supplemented to allergic mice induced by BLG at a dose of 400 mg/kg body weight.Results demonstrated that MFGM alleviated food allergy symptoms,decreased serum levels of lipopolysaccharide,pro-inflammatory cytokines,immunoglobulin(Ig)E,Ig G1,and Th2 cytokines including interleukin(IL)-4,while increased serum levels of Th1 cytokines including interferon-γand regulatory T cells(Tregs)cytokines including IL-10 and transforming growth factor-β.MFGM modulated gut microbiota and enhanced intestinal barrier of BLG-allergic mice,as evidenced by decreased relative abundance of Desulfobacterota,Rikenellaceae,Lachnospiraceae,and Desulfovibrionaceae,while increased relative abundance of Bacteroidetes,Lactobacillaceae and Muribaculaceae,and enhanced expressions of tight junction proteins including Occludin,Claudin-1 and zonula occludens-1.Furthermore,MFGM increased fecal short-chain fatty acids(SCFAs)levels,which elevated G protein-coupled receptor(GPR)43 and GPR109A expressions.The increased expressions of GPR43 and GPR109A induced CD103+dendritic cells accumulation and promoted Tregs differentiation in mesenteric lymph node to a certain extent.In summary,MFGM alleviated CMA in a BLG-induced allergic mice model through enhancing intestinal barrier and promoting Tregs differentiation,which may be correlated with SCFAs-mediated activation of GPRs.These findings suggest that MFGM may be useful as a promising functional ingredient against CMA.
基金Project supported in part by the International Technology Collaboration Research Program of China (Grant No 2007DFA706700)
文摘Proteomics is the study of proteins and their interactions in a cell. With the successful completion of the Human Cenome Project, it comes the postgenome era when the proteomics technology is emerging. This paper studies protein molecule from the algebraic point of view. The algebraic system (∑, +, *) is introduced, where ∑ is the set of 64 codons. According to the characteristics of (∑, +, *), a novel quasi-amino acids code classification method is introduced and the corresponding algebraic operation table over the set ZU of the 16 kinds of quasi-amino acids is established. The internal relation is revealed about quasi-amino acids. The results show that there exist some very close correlations between the properties of the quasi-amino acids and the codon. All these correlation relationships may play an important part in establishing the logic relationship between codons and the quasi-amino acids during the course of life origination. According to Ma F et al (2003 J. Anhui Agricultural University 30 439), the corresponding relation and the excellent properties about amino acids code are very difficult to observe. The present paper shows that (ZU, +,×) is a field. Furthermore, the operational results display that the eodon tga has different property from other stop codons. In fact, in the mitochondrion from human and ox genomic codon, tga is just tryptophane, is not the stop codon like in other genetic code, it is the case of the Chen W C et al (2002 Acta Biophysiea Siniea 18(1) 87). The present theory avoids some inexplicable events of the 20 kinds of amino acids code, in other words it solves the problem of 'the 64 codon assignments of mRNA to amino acids is probably completely wrong' proposed by Yang (2006 Progress in Modern Biomedicine 6 3).
基金financially supported by the National Natural Science Foundation of China(Grant No.31972580 and U21A20252)the China Agriculture Research System(CARS-35)+1 种基金the Science Fund for Distinguished Young Scholars of Heilongjiang Province(JQ2022C002)the Support Project of Young Leading Talents of Northeast Agricultural University(NEAU2023QNLJ-017)。
文摘Background Infection with pathogenic bacteria during nonantibiotic breeding is one of the main causes of animal intestinal diseases.Oleanolic acid(OA)is a pentacyclic triterpene that is ubiquitous in plants.Our previous work demonstrated the protective effect of OA on intestinal health,but the underlying molecular mechanisms remain unclear.This study investigated whether dietary supplementation with OA can prevent diarrhea and intestinal immune dysregulation caused by enterotoxigenic Escherichia coli(ETEC)in piglets.The key molecular role of bile acid receptor signaling in this process has also been explored.Results Our results demonstrated that OA supplementation alleviated the disturbance of bile acid metabolism in ETEC-infected piglets(P<0.05).OA supplementation stabilized the composition of the bile acid pool in piglets by regulating the enterohepatic circulation of bile acids and significantly increased the contents of UDCA and CDCA in the ileum and cecum(P<0.05).This may also explain why OA can maintain the stability of the intestinal microbiota structure in ETEC-challenged piglets.In addition,as a natural ligand of bile acid receptors,OA can reduce the severity of intestinal inflammation and enhance the strength of intestinal epithelial cell antimicrobial programs through the bile acid receptors TGR5 and FXR(P<0.05).Specifically,OA inhibited NF-κB-mediated intestinal inflammation by directly activating TGR5 and its downstream c AMP-PKA-CREB signaling pathway(P<0.05).Furthermore,OA enhanced CDCA-mediated MEK-ERK signaling in intestinal epithelial cells by upregulating the expression of FXR(P<0.05),thereby upregulating the expression of endogenous defense molecules in intestinal epithelial cells.Conclusions In conclusion,our findings suggest that OA-mediated regulation of bile acid metabolism plays an important role in the innate immune response,which provides a new diet-based intervention for intestinal diseases caused by pathogenic bacterial infections in piglets.
基金supported by the National Key R&D Program of China(no.2022YFA1504902,2022YFB4201802)National Natural Science Foundation of China(no.21721004,21801239,22178335,22078318),DICP(Grant:DICP I201944)the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy(grant:YLU-DNL Fund 2021020).
文摘The production of industrial chemicals with renewable biomass feedstock holds potential to aid the world in pursuing a carbon-neutral society.Trimellitic and trimesic acids are important commodity chemicals in industry that are prepared by the oxidation of petroleum-derived trimethylbenzene.To reduce the dependence on the limited oil source,we develop a potential sustainable alternative towards trimellitic and trimesic acids using biomass-based 2-methyl-2,4-pentandiol(MPD),acrylate and crotonaldehyde as starting materials.The process for trimellitic acid includes dehydration/D-A reaction of MPD and acrylate,flow aromatization over Pd/C catalyst,hydrolysis and catalytic aerobic oxidation(60%overall yield).The challenging regioselectivity issue of D-A reaction is tackled by a matched combination of temperature and deep eutectic solvent ChCl/HCO_(2)H.Crotonaldehyde can also participate in the reaction,followed by Pd/C-catalyzed decarbonylation/dehydrogenation and oxidation to provide trimesic acid in 54%overall yield.Life cycle assessment implies that compared to conventional fossil process,our biomass-based routes present a potential in reducing carbon emissions.
基金supported by the National Natural Science Foundation of China(No.20575052)Science Foundation of Northwest University(No.04NW42).
文摘The tetrazole analogues have been synthesized from fluorenylmethoxycarbonyl (Fmoc)- protected amino acids by three steps. The structures of the analogues were characterized by HPLC-MS, ^1H NMR and ^13C NMR.
基金Supported by the Natural Science Foundation of Jilin Province (No.990337).
文摘This research deals with an investigation of the adsorption of two acids, namely, 5-amino- 2-chlorotoluene-4-sulfonic and chlorhydric acids from their solution onto weakly basic resin. The screening of res-ins, kinetics, and isotherm were studied. The results indicate that the D301R is more appropriate for the removal of acids from solution. The adsorption of acids obeys Langmuir isotherm and the first-order kinetics model. Sorptive affinity of the two acids on D301R was found to be in the order of 5-amino-2-chlorotoluene-4-sulfonic acid> chlorhydric acid. Thermodynamic parameters for the adsorption of acids were calculated and discussed. The maxi-mum removal of acids was observed around 97% and 76% at 25℃ for 5-amino-2-chlorotoluene-4-sulfonic acid and chlorhydric acid , respectively.
基金Supported by the National Natural Science Foundation of China(No. 20402002) Natural Science Foundation of FujianProvince, China(Nos. E0220002 and 2006J0155).
文摘Introduction Calixarenes are one of the most important supra- molecular building blocks, which can be modified by introducing different functional and/or structural groups to create a specific interaction between the host and the target molecules, such as metal cations and small organic molecules. In particular, the recognition of amino acids is an interesting theme in biomimetic chemistry.
基金supported by funding from the Seed Industry Revitalization Plan of Guangdong Province,China(2022-NPY-00-007)the Hainan Seed Industry Laboratory,China(B21HJ0901 and B23C1000416)+5 种基金the Key-Area Research and Development Program of Guangdong Province,China(2020B020220008)the National Natural Science Foundation of China(31971966and 31971965)the China Agricultural Research System(CARS-04-PS09)the National Key Research and Development Projects,China(2018YFE0116900-06)Guangdong Agricultural Science and Technology Innovation and Promotion Project,China(2019KJ136-03)the Sanya Science and Technology Innovation Special Project,China(2022KJCX11)。
文摘Soybean is one of the most important sources of vegetable oil.The oil content and fatty acid ratio have attracted significant attention due to their impacts on the shelf-life of soybean oil products and consumer health.In this study,a high-density genetic map derived from Guizao 1 and Brazil 13 was used to analyze the quantitative trait loci of palmitic acid(PA),stearic acid(SA),oleic acid(OA),linoleic acid(LA),linolenic acid(LNA),and oil content(OC).A total of 54 stable QTLs were detected in the genetic map linkage analysis,which shared six bin intervals.Among them,the bin interval on chromosome 13(bin106-bin118 and bin123-bin125)was found to include stable QTLs in multiple environments that were linked to OA,LA,and LNA.Eight differentially expressed genes(DEGs)within these QTL intervals were determined as candidate genes according to the combination of parental resequencing,bioinformatics and RNA sequencing data.All these results are conducive to breeding soybean with the ideal fatty acid ratio for food,and provide the genetic basis for mining genes related to the fatty acid and oil content traits in soybean.